Displaying publications 1 - 20 of 246 in total

Abstract:
Sort:
  1. Ghoshal R, Sharanjeet-Kaur S, Fadzil NM, Ghosh S, Ngah NF, Aziz RABA
    PMID: 33806713 DOI: 10.3390/ijerph18052581
    The objective of this study was to compare visual parameters and retinal layers' morphology pre-treatment (baseline) and 6 months post-treatment in polypoidal choroidal vasculopathy (PCV) eyes. A single centre, longitudinal, prospective study was conducted at a public tertiary hospital of Malaysia. Visual parameters including distance and near visual acuity (DVA and NVA), contrast sensitivity (CS), reading speed (RS), and different qualitative and quantitative optical coherence tomography (OCT) parameters were evaluated pre- and 6 months post-treatment. Thirty-three naïve PCV eyes of 32 patients (mean age of 67.62 years) were evaluated pre- and post-treatment of intravitreal ranibizumab with and without photodynamic therapy. After treatment, sub retinal fluid decreased from 27 eyes (84.35%) at baseline to 7 eyes (21.88%) at 6 months while pigment epithelium detachment decreased from 32 eyes (100%) at base line to 15 eyes (46.87%) at 6 months. Mean pre-treatment quantitative morphological OCT retinal parameters including thickness and volume of central sub field, center thickness, center minimum, and maximum thickness reduced significantly. Similarly, all visual parameters including DVA, NVA, CS, and RS showed statistically significant improvement. While 89% of the eyes showed improvement in CS, 78%, 71%, and 65% of the eyes showed improvement in NVA, RS, and DVA, respectively. Thus, CS was the most treatment responsive visual parameter.
  2. Ghosh S, Choudhury D, Roy T, Moradi A, Masjuki HH, Pingguan-Murphy B
    Sci Technol Adv Mater, 2015 Aug;16(4):045002.
    PMID: 27877822
    The concentration of biological components of synovial fluid (such as albumin, globulin, hyaluronic acid, and lubricin) varies between healthy persons and osteoarthritis (OA) patients. The aim of the present study is to compare the effects of such variation on tribological performance in a simulated hip joint model. The study was carried out experimentally by utilizing a pin-on-disk simulator on ceramic-on-ceramic (CoC) and ceramic-on-polyethylene (CoP) hip joint implants. The experimental results show that both friction and wear of artificial joints fluctuate with the concentration level of biological components. Moreover, the performance also varies between material combinations. Wear debris sizes and shapes produced by ceramic and polyethylene were diverse. We conclude that the biological components of synovial fluid and their concentrations should be considered in order to select an artificial hip joint to best suit that patient.
  3. Ghosh S, Choudhury D, Roy T, Bin Mamat A, Masjuki HH, Pingguan-Murphy B
    Sci Technol Adv Mater, 2015 Jun;16(3):035002.
    PMID: 27877803
    Osteoarthritis-oriented synovial fluid (OASF), i.e., that typical of a patient with osteoarthritis, has different physical and biological characteristics than bovine serum (BS), a lubricant widely used in biotribological investigations. Micro-dimpled and diamond-like carbon- (DLC) coated surfaces are key emerging interfaces for orthopedic implants. In this study, tribological performances of dimpled surfaces, with and without DLC coating, have been investigated under both BS and OASF. The friction tests were performed utilizing a pin on a disk tribometer, whereas contact pressure, speed, and temperature were simulated to a 'medium walking gait' of hip joint conditions. The mechanical properties of the specimen and the physical properties of the lubricant were characterized before the friction test. Raman analysis was conducted to identify the coating condition both before and after the test. The DLC-coated dimpled surface showed maximum hardness and residual stress. A DLC-coated dimpled surface under an OASF lubricated condition yielded a lower friction coefficient and wear compared to those of plain and dimpled specimens. The higher graphitization of coated materials with increasing load was confirmed by Raman spectroscopy.
  4. Igwegbe CA, Obiora-Okafo IA, Iwuozor KO, Ghosh S, Kurniawan SB, Rangabhashiyam S, et al.
    Environ Sci Pollut Res Int, 2022 Feb;29(8):11004-11026.
    PMID: 35001268 DOI: 10.1007/s11356-021-17992-4
    Researchers in recent years have utilized a broad spectrum of treatment technologies in treating bakers' yeast production wastewater. This paper aims to review the treatment technologies for the wastewater, compare the process technologies, discuss recent innovations, and propose future perspectives in the research area. The review observed that nanofiltration was the most effective membrane process for the treatment of the effluent (at >95% pollutant rejection). Other separation processes like adsorption and distillation had technical challenges of desorption, a poor fit for high pollutant load and cost limitations. Chemical treatment processes have varying levels of success but they are expensive and produce toxic sludge. Sludge production would be a hurdle when product recovery and reuse are targeted. It is difficult to make an outright choice of the best process for treating the effluent because each has its merits and demerits and an appropriate choice can be made when all factors are duly considered. The process intensification of the industrial-scale production of the bakers' yeast process will be a very direct approach, where the process optimisation, zero effluent discharge, and enhanced recovery of value-added product from the waste streams are important approaches that need to be taken into account.
  5. Murugasenapathi NK, Ghosh R, Ramanathan S, Ghosh S, Chinnappan A, Mohamed SAJ, et al.
    Crit Rev Anal Chem, 2023;53(5):1044-1065.
    PMID: 34788167 DOI: 10.1080/10408347.2021.2002133
    Transistor-based sensors have been widely recognized to be highly sensitive and reliable for point-of-care/bed-side diagnosis. In this line, a range of cutting-edge technologies has been generated to elevate the role of transistors for biomolecule detection. Detection of a wide range of clinical biomarkers has been reported using various configurations of transistors. The inordinate sensitivity of transistors to the field-effect imparts high sensitivity toward wide range of biomolecules. This overview has gleaned the present achievements with the technological advancements using high performance transistor-based sensors. This review encloses transistors incorporated with a variety of functional nanomaterials and organic elements for their excellence in selectivity and sensitivity. In addition, the technological advancements in fabrication of these microdevices or nanodevices and functionalization of the sensing elements have also been discussed. The technological gap in the realization of sensors in transistor platforms and the resulted scope for research has been discussed. Finally, foreseen technological advancements and future research perspectives are described.
  6. Hatta MAM, Arora S, Ghosh S, Matny O, Smedley MA, Yu G, et al.
    Plant Biotechnol J, 2021 Feb;19(2):273-284.
    PMID: 32744350 DOI: 10.1111/pbi.13460
    In the last 20 years, stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt), has re-emerged as a major threat to wheat and barley production in Africa and Europe. In contrast to wheat with 60 designated stem rust (Sr) resistance genes, barley's genetic variation for stem rust resistance is very narrow with only ten resistance genes genetically identified. Of these, only one complex locus consisting of three genes is effective against TTKSK, a widely virulent Pgt race of the Ug99 tribe which emerged in Uganda in 1999 and has since spread to much of East Africa and parts of the Middle East. The objective of this study was to assess the functionality, in barley, of cloned wheat Sr genes effective against race TTKSK. Sr22, Sr33, Sr35 and Sr45 were transformed into barley cv. Golden Promise using Agrobacterium-mediated transformation. All four genes were found to confer effective stem rust resistance. The barley transgenics remained susceptible to the barley leaf rust pathogen Puccinia hordei, indicating that the resistance conferred by these wheat Sr genes was specific for Pgt. Furthermore, these transgenic plants did not display significant adverse agronomic effects in the absence of disease. Cloned Sr genes from wheat are therefore a potential source of resistance against wheat stem rust in barley.
  7. Awuah WA, Ahluwalia A, Ghosh S, Roy S, Tan JK, Adebusoye FT, et al.
    Eur J Med Res, 2023 Nov 16;28(1):529.
    PMID: 37974227 DOI: 10.1186/s40001-023-01504-w
    Single-cell ribonucleic acid sequencing (scRNA-seq) has emerged as a transformative technology in neurological and neurosurgical research, revolutionising our comprehension of complex neurological disorders. In brain tumours, scRNA-seq has provided valuable insights into cancer heterogeneity, the tumour microenvironment, treatment resistance, and invasion patterns. It has also elucidated the brain tri-lineage cancer hierarchy and addressed limitations of current models. Neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis have been molecularly subtyped, dysregulated pathways have been identified, and potential therapeutic targets have been revealed using scRNA-seq. In epilepsy, scRNA-seq has explored the cellular and molecular heterogeneity underlying the condition, uncovering unique glial subpopulations and dysregulation of the immune system. ScRNA-seq has characterised distinct cellular constituents and responses to spinal cord injury in spinal cord diseases, as well as provided molecular signatures of various cell types and identified interactions involved in vascular remodelling. Furthermore, scRNA-seq has shed light on the molecular complexities of cerebrovascular diseases, such as stroke, providing insights into specific genes, cell-specific expression patterns, and potential therapeutic interventions. This review highlights the potential of scRNA-seq in guiding precision medicine approaches, identifying clinical biomarkers, and facilitating therapeutic discovery. However, challenges related to data analysis, standardisation, sample acquisition, scalability, and cost-effectiveness need to be addressed. Despite these challenges, scRNA-seq has the potential to transform clinical practice in neurological and neurosurgical research by providing personalised insights and improving patient outcomes.
  8. Schaefer N, Rotermund C, Blumrich EM, Lourenco MV, Joshi P, Hegemann RU, et al.
    J Neurochem, 2017 Jun 20.
    PMID: 28632905 DOI: 10.1111/jnc.14107
    One of the most intriguing features of the brain is its ability to be malleable, allowing it to adapt continually to changes in the environment. Specific neuronal activity patterns drive long-lasting increases or decreases in the strength of synaptic connections, referred to as long-term potentiation and long-term depression, respectively. Such phenomena have been described in a variety of model organisms, which are used to study molecular, structural, and functional aspects of synaptic plasticity. This review originated from the first International Society for Neurochemistry (ISN) and Journal of Neurochemistry (JNC) Flagship School held in Alpbach, Austria (Sep 2016), and will use its curriculum and discussions as a framework to review some of the current knowledge in the field of synaptic plasticity. First, we describe the role of plasticity during development and the persistent changes of neural circuitry occurring when sensory input is altered during critical developmental stages. We then outline the signaling cascades resulting in the synthesis of new plasticity-related proteins, which ultimately enable sustained changes in synaptic strength. Going beyond the traditional understanding of synaptic plasticity conceptualized by long-term potentiation and long-term depression, we discuss system-wide modifications and recently unveiled homeostatic mechanisms, such as synaptic scaling. Finally, we describe the neural circuits and synaptic plasticity mechanisms driving associative memory and motor learning. Evidence summarized in this review provides a current view of synaptic plasticity in its various forms, offers new insights into the underlying mechanisms and behavioral relevance, and provides directions for future research in the field of synaptic plasticity. Read the Editorial Highlight for this article on doi: 10.1111/jnc.14102.
  9. Clarke K, Ricciardi S, Pearson T, Bharudin I, Davidsen PK, Bonomo M, et al.
    Cell Rep, 2017 Nov 07;21(6):1507-1520.
    PMID: 29117557 DOI: 10.1016/j.celrep.2017.10.040
    Regular endurance training improves muscle oxidative capacity and reduces the risk of age-related disorders. Understanding the molecular networks underlying this phenomenon is crucial. Here, by exploiting the power of computational modeling, we show that endurance training induces profound changes in gene regulatory networks linking signaling and selective control of translation to energy metabolism and tissue remodeling. We discovered that knockdown of the mTOR-independent factor Eif6, which we predicted to be a key regulator of this process, affects mitochondrial respiration efficiency, ROS production, and exercise performance. Our work demonstrates the validity of a data-driven approach to understanding muscle homeostasis.
  10. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2018 Apr 06;120(14):142301.
    PMID: 29694144 DOI: 10.1103/PhysRevLett.120.142301
    The relative yields of ϒ mesons produced in pp and Pb-Pb collisions at sqrt[s_{NN}]=5.02  TeV and reconstructed via the dimuon decay channel are measured using data collected by the CMS experiment. Double ratios are formed by comparing the yields of the excited states, ϒ(2S) and ϒ(3S), to the ground state, ϒ(1S), in both Pb-Pb and pp collisions at the same center-of-mass energy. The double ratios, [ϒ(nS)/ϒ(1S)]_{Pb-Pb}/[ϒ(nS)/ϒ(1S)]_{pp}, are measured to be 0.308±0.055(stat)±0.019(syst) for the ϒ(2S) and less than 0.26 at 95% confidence level for the ϒ(3S). No significant ϒ(3S) signal is found in the Pb-Pb data. The double ratios are studied as a function of collision centrality, as well as ϒ transverse momentum and rapidity. No significant dependencies are observed.
  11. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2017;77(4):252.
    PMID: 28515669 DOI: 10.1140/epjc/s10052-017-4781-1
    The nuclear modification factor [Formula: see text] and the azimuthal anisotropy coefficient [Formula: see text] of prompt and nonprompt (i.e. those from decays of b hadrons) [Formula: see text] mesons, measured from PbPb and pp collisions at [Formula: see text] [Formula: see text] at the LHC, are reported. The results are presented in several event centrality intervals and several kinematic regions, for transverse momenta [Formula: see text] [Formula: see text] and rapidity [Formula: see text], extending down to [Formula: see text] [Formula: see text] in the [Formula: see text] range. The [Formula: see text] of prompt [Formula: see text] is found to be nonzero, but with no strong dependence on centrality, rapidity, or [Formula: see text] over the full kinematic range studied. The measured [Formula: see text] of nonprompt [Formula: see text] is consistent with zero. The [Formula: see text] of prompt [Formula: see text] exhibits a suppression that increases from peripheral to central collisions but does not vary strongly as a function of either y or [Formula: see text] in the fiducial range. The nonprompt [Formula: see text] [Formula: see text] shows a suppression which becomes stronger as rapidity or [Formula: see text] increases. The [Formula: see text] and [Formula: see text] of open and hidden charm, and of open charm and beauty, are compared.
  12. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Phys Rev Lett, 2015 Feb 6;114(5):051801.
    PMID: 25699433
    A study of vector boson scattering in pp collisions at a center-of-mass energy of 8 TeV is presented. The data sample corresponds to an integrated luminosity of 19.4  fb(-1) collected with the CMS detector. Candidate events are selected with exactly two leptons of the same charge, two jets with large rapidity separation and high dijet mass, and moderate missing transverse energy. The signal region is expected to be dominated by electroweak same-sign W-boson pair production. The observation agrees with the standard model prediction. The observed significance is 2.0 standard deviations, where a significance of 3.1 standard deviations is expected based on the standard model. Cross section measurements for W(±)W(±) and WZ processes in the fiducial region are reported. Bounds on the structure of quartic vector-boson interactions are given in the framework of dimension-eight effective field theory operators, as well as limits on the production of doubly charged Higgs bosons.
  13. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(2):123.
    PMID: 30863200 DOI: 10.1140/epjc/s10052-019-6620-z
    Measurements of normalized differential cross sections as functions of the multiplicity and kinematic variables of charged-particle tracks from the underlying event in top quark and antiquark pair production are presented. The measurements are performed in proton-proton collisions at a center-of-mass energy of 13 Te , and are based on data collected by the CMS experiment at the LHC in 2016 corresponding to an integrated luminosity of 35.9 fb - 1 . Events containing one electron, one muon, and two jets from the hadronization and fragmentation of b quarks are used. These measurements characterize, for the first time, properties of the underlying event in top quark pair production and show no deviation from the universality hypothesis at energy scales typically above twice the top quark mass.
  14. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2018;78(3):242.
    PMID: 31264999 DOI: 10.1140/epjc/s10052-018-5691-6
    Events with no charged particles produced between the two leading jets are studied in proton-proton collisions at s = 7 TeV . The jets were required to have transverse momentum p T jet > 40 GeV and pseudorapidity 1.5 < | η jet | < 4.7 , and to have values of η jet with opposite signs. The data used for this study were collected with the CMS detector during low-luminosity running at the LHC, and correspond to an integrated luminosity of 8 pb - 1 . Events with no charged particles with p T > 0.2 GeV in the interval - 1 < η < 1 between the jets are observed in excess of calculations that assume no color-singlet exchange. The fraction of events with such a rapidity gap, amounting to 0.5-1% of the selected dijet sample, is measured as a function of the p T of the second-leading jet and of the rapidity separation between the jets. The data are compared to previous measurements at the Tevatron, and to perturbative quantum chromodynamics calculations based on the Balitsky-Fadin-Kuraev-Lipatov evolution equations, including different models of the non-perturbative gap survival probability.
  15. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, Brandstetter J, et al.
    Eur Phys J C Part Fields, 2020;80(8):718.
    PMID: 32834020 DOI: 10.1140/epjc/s10052-020-8166-5
    Central exclusive and semiexclusive production of pairs is measured with the CMS detector in proton-proton collisions at the LHC at center-of-mass energies of 5.02 and 13TeV. The theoretical description of these nonperturbative processes, which have not yet been measured in detail at the LHC, poses a significant challenge to models. The two pions are measured and identified in the CMS silicon tracker based on specific energy loss, whereas the absence of other particles is ensured by calorimeter information. The total and differential cross sections of exclusive and semiexclusive central production are measured as functions of invariant mass, transverse momentum, and rapidity of the system in the fiducial region defined as transverse momentum and pseudorapidity . The production cross sections for the four resonant channels , , , and are extracted using a simple model. These results represent the first measurement of this process at the LHC collision energies of 5.02 and 13TeV.
  16. Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, Brandstetter J, et al.
    Phys Rev Lett, 2017 Aug 25;119(8):082301.
    PMID: 28952777 DOI: 10.1103/PhysRevLett.119.082301
    The production of jets in association with Z bosons, reconstructed via the μ^{+}μ^{-} and e^{+}e^{-} decay channels, is studied in pp and, for the first time, in Pb-Pb collisions. Both data samples were collected by the CMS experiment at the LHC, at a nucleon-nucleon center-of-mass energy of 5.02 TeV. The Pb-Pb collisions were analyzed in the 0%-30% centrality range. The back-to-back azimuthal alignment was studied in both pp and Pb-Pb collisions for Z bosons with transverse momentum p_{T}^{Z}>60  GeV/c and a recoiling jet with p_{T}^{jet}>30  GeV/c. The p_{T} imbalance x_{jZ}=p_{T}^{jet}/p_{T}^{Z}, as well as the average number of jet partners per Z, R_{jZ}, was studied in intervals of p_{T}^{Z}. The R_{jZ} is found to be smaller in Pb-Pb than in pp collisions, which suggests that in Pb-Pb collisions a larger fraction of partons associated with the Z bosons fall below the 30  GeV/c p_{T}^{jet} threshold because they lose energy.
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2016 Jan 22;116(3):032301.
    PMID: 26849587 DOI: 10.1103/PhysRevLett.116.032301
    The production cross sections of the B^{+}, B^{0}, and B_{s}^{0} mesons, and of their charge conjugates, are measured via exclusive hadronic decays in p+Pb collisions at the center-of-mass energy sqrt[s_{NN}]=5.02  TeV with the CMS detector at the CERN LHC. The data set used for this analysis corresponds to an integrated luminosity of 34.6  nb^{-1}. The production cross sections are measured in the transverse momentum range between 10 and 60  GeV/c. No significant modification is observed compared to proton-proton perturbative QCD calculations scaled by the number of incoherent nucleon-nucleon collisions. These results provide a baseline for the study of in-medium b quark energy loss in Pb+Pb collisions.
  18. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2020 Sep 04;125(10):102001.
    PMID: 32955327 DOI: 10.1103/PhysRevLett.125.102001
    The first study of charm quark diffusion with respect to the jet axis in heavy ion collisions is presented. The measurement is performed using jets with p_{T}^{jet}>60  GeV/c and D^{0} mesons with p_{T}^{D}>4  GeV/c in lead-lead (Pb-Pb) and proton-proton (pp) collisions at a nucleon-nucleon center-of-mass energy of sqrt[s_{NN}]=5.02  TeV, recorded by the CMS detector at the LHC. The radial distribution of D^{0} mesons with respect to the jet axis is sensitive to the production mechanisms of the meson, as well as to the energy loss and diffusion processes undergone by its parent parton inside the strongly interacting medium produced in Pb-Pb collisions. When compared to Monte Carlo event generators, the radial distribution in pp collisions is found to be well described by pythia, while the slope of the distribution predicted by sherpa is steeper than that of the data. In Pb-Pb collisions, compared to the pp results, the D^{0} meson distribution for 4
  19. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Phys Rev Lett, 2019 Jul 12;123(2):022001.
    PMID: 31386524 DOI: 10.1103/PhysRevLett.123.022001
    The transverse momentum spectra of D^{0} mesons from b hadron decays are measured at midrapidity (|y|<1) in pp and Pb-Pb collisions at a nucleon-nucleon center of mass energy of 5.02 TeV with the CMS detector at the LHC. The D^{0} mesons from b hadron decays are distinguished from prompt D^{0} mesons by their decay topologies. In Pb-Pb collisions, the B→D^{0} yield is found to be suppressed in the measured p_{T} range from 2 to 100  GeV/c as compared to pp collisions. The suppression is weaker than that of prompt D^{0} mesons and charged hadrons for p_{T} around 10  GeV/c. While theoretical calculations incorporating partonic energy loss in the quark-gluon plasma can successfully describe the measured B→D^{0} suppression at higher p_{T}, the data show an indication of larger suppression than the model predictions in the range of 2
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(11):939.
    PMID: 30881211 DOI: 10.1140/epjc/s10052-018-6390-z
    Measurements of B s 2 ∗ ( 5840 ) 0 and B s 1 ( 5830 ) 0 mesons are performed using a data sample of proton-proton collisions corresponding to an integrated luminosity of , collected with the CMS detector at the LHC at a centre-of-mass energy of 8 TeV . The analysis studies P-wave B s 0 meson decays into B ( ∗ ) + K - and B ( ∗ ) 0 K S 0 , where the B + and B 0 mesons are identified using the decays B + → J / ψ K + and B 0 → J / ψ K ∗ ( 892 ) 0 . The masses of the P-wave B s 0 meson states are measured and the natural width of the B s 2 ∗ ( 5840 ) 0 state is determined. The first measurement of the mass difference between the charged and neutral B ∗ mesons is also presented. The B s 2 ∗ ( 5840 ) 0 decay to B 0 K S 0 is observed, together with a measurement of its branching fraction relative to the B s 2 ∗ ( 5840 ) 0 → B + K - decay.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links