Displaying publications 1 - 20 of 60 in total

Abstract:
Sort:
  1. Zulkapli MM, Ab Ghani NS, Ting TY, Aizat WM, Goh HH
    Front Plant Sci, 2020;11:625507.
    PMID: 33552113 DOI: 10.3389/fpls.2020.625507
    Nepenthes is a genus comprising carnivorous tropical pitcher plants that have evolved trapping organs at the tip of their leaves for nutrient acquisition from insect trapping. Recent studies have applied proteomics approaches to identify proteins in the pitcher fluids for better understanding the carnivory mechanism, but protein identification is hindered by limited species-specific transcriptomes for Nepenthes. In this study, the proteomics informed by transcriptomics (PIT) approach was utilized to identify and compare proteins in the pitcher fluids of Nepenthes ampullaria, Nepenthes rafflesiana, and their hybrid Nepenthes × hookeriana through PacBio isoform sequencing (Iso-Seq) and liquid chromatography-mass spectrometry (LC-MS) proteomic profiling. We generated full-length transcriptomes from all three species of 80,791 consensus isoforms with an average length of 1,692 bp as a reference for protein identification. The comparative analysis found that transcripts and proteins identified in the hybrid N. × hookeriana were more resembling N. rafflesiana, both of which are insectivorous compared with omnivorous N. ampullaria that can derive nutrients from leaf litters. Previously reported hydrolytic proteins were detected, including proteases, glucanases, chitinases, phosphatases, nucleases, peroxidases, lipid transfer protein, thaumatin-like protein, pathogenesis-related protein, and disease resistance proteins. Many new proteins with diverse predicted functions were also identified, such as amylase, invertase, catalase, kinases, ligases, synthases, esterases, transferases, transporters, and transcription factors. Despite the discovery of a few unique enzymes in N. ampullaria, we found no strong evidence of adaptive evolution to produce endogenous enzymes for the breakdown of leaf litter. A more complete picture of digestive fluid protein composition in this study provides important insights on the molecular physiology of pitchers and carnivory mechanism of Nepenthes species with distinct dietary habits.
  2. Zulkapli MM, Rosli MAF, Salleh FIM, Mohd Noor N, Aizat WM, Goh HH
    Genom Data, 2017 Jun;12:130-131.
    PMID: 28529881 DOI: 10.1016/j.gdata.2017.05.003
    Tropical pitcher plants in the species-rich Nepenthaceae family of carnivorous plants possess unique pitcher organs. Hybridisation, natural or artificial, in this family is extensive resulting in pitchers with diverse features. The pitcher functions as a passive insect trap with digestive fluid for nutrient acquisition in nitrogen-poor habitats. This organ shows specialisation according to the dietary habit of different Nepenthes species. In this study, we performed the first single-molecule real-time isoform sequencing (Iso-Seq) analysis of full-length cDNA from Nepenthes ampullaria which can feed on leaf litter, compared to carnivorous Nepenthes rafflesiana, and their carnivorous hybrid Nepenthes × hookeriana. This allows the comparison of pitcher transcriptomes from the parents and the hybrid to understand how hybridisation could shape the evolution of dietary habit in Nepenthes. Raw reads have been deposited to SRA database with the accession numbers SRX2692198 (N. ampullaria), SRX2692197 (N. rafflesiana), and SRX2692196 (N. × hookeriana).
  3. Wan Zakaria WNA, Aizat WM, Goh HH, Mohd Noor N
    J Plant Res, 2019 Sep;132(5):681-694.
    PMID: 31422552 DOI: 10.1007/s10265-019-01130-w
    Carnivorous plants capture and digest insects for nutrients, allowing them to survive in soil deprived of nitrogenous nutrients. Plants from the genus Nepenthes produce unique pitchers containing secretory glands, which secrete enzymes into the digestive fluid. We performed RNA-seq analysis on the pitcher tissues and liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis on the pitcher fluids of Nepenthes × ventrata to study protein expression in this carnivory organ during early days of pitcher opening. This transcriptome provides a sequence database for pitcher fluid protein identification. A total of 32 proteins of diverse functions were successfully identified in which 19 proteins can be quantified based on label-free quantitative proteomics (SWATH-MS) analysis while 16 proteins were not reported previously. Our findings show that certain proteins in the pitcher fluid were continuously secreted or replenished after pitcher opening, even without any prey or chitin induction. We also discovered a new aspartic proteinase, Nep6, secreted into pitcher fluid. This is the first SWATH-MS analysis of protein expression in Nepenthes pitcher fluid using a species-specific reference transcriptome. Taken together, our study using a gel-free shotgun proteomics informed by transcriptomics (PIT) approach showed the dynamics of endogenous protein secretion in the digestive organ of N. × ventrata and provides insights on protein regulation during early pitcher opening prior to prey capture.
  4. Wan Zakaria WNA, Aizat WM, Goh HH, Noor NM
    Data Brief, 2018 Apr;17:517-519.
    PMID: 29876422 DOI: 10.1016/j.dib.2018.01.037
    The carnivorous plants of genus Nepenthes produce unique pitchers containing secretory glands, which secrete proteins into the digestive fluid. We investigated protein profile in the pitcher fluid during the first three days of opening to understand carnivory trait of Nepenthes × ventrata. The proteome analysis of pitcher fluid from N. × ventrata was performed by label-free quantitative liquid chromatography mass spectrometry (nLC-MS/MSALL). Raw MS data have been deposited to the ProteomeXchange with identifier PXD007251. This dataset allows the identification and quantification of proteins from pitcher fluids to elucidate proteins involved in carnivory physiology of Nepenthes species.
  5. Wan Zakaria WN, Loke KK, Goh HH, Mohd Noor N
    Genom Data, 2016 Mar;7:18-9.
    PMID: 26981352 DOI: 10.1016/j.gdata.2015.11.007
    Carnivorous plants have the ability to capture and digest insects for nutrients, which allows them to survive in land deprived of nitrogenous nutrients. Nepenthes spp. are one of the carnivorous plants, which uniquely produce pitcher from the tip of an elongated leaf. This study provides the first transcriptome resource from pitcher of a Nepenthes ventricosa × Nepenthes alata hybrid, Nepenthes × ventrata to understand carnivory mechanism in Nepenthes spp., as well as in other carnivorous species. Raw reads and the transcriptome assembly project have been deposited to SRA database with the accession numbers SRX1389337 (day 0 control), SRX1389392 (day 3 longevity), and SRX1389395 (day 3 chitin-treated).
  6. Wan Zakaria WN, Loke KK, Zulkapli MM, Mohd Salleh F', Goh HH, Mohd Noor N
    Front Plant Sci, 2015;6:1229.
    PMID: 26793209 DOI: 10.3389/fpls.2015.01229
  7. Veeramohan R, Azizan KA, Aizat WM, Goh HH, Mansor SM, Yusof NSM, et al.
    Data Brief, 2018 Jun;18:1212-1216.
    PMID: 29900296 DOI: 10.1016/j.dib.2018.04.001
    Mitragyna speciosa is a psychoactive plant known as "ketum" in Malaysia and "kratom" in Thailand. This plant is distinctly known to produce two important alkaloids, namely mitragynine (MG) and 7-hydroxymitragynine (7-OH-MG) that can bind to opioid receptors [1]. MG was reported to exhibit antidepressant properties in animal studies [2]. These compounds were also proposed to have the potential to replace opioid analgesics with much lower risks of side effects [3]. To date, there are only over 40 metabolites identified in M. speciosa [4,5]. To obtain a more complete profile of secondary metabolites in ketum, we performed metabolomics study using mature leaves of the green M. speciosa variety. The leaf samples were extracted using methanol prior to liquid chromatography-electrospray ionization-time of flight-mass spectrometry (LC-ESI-TOF-MS) analysis. This data can be useful to for the identification of unknown metabolites that are associated with alkaloid biosynthesis pathway in M. speciosa.
  8. Veeramohan R, Zamani AI, Azizan KA, Goh HH, Aizat WM, Razak MFA, et al.
    PLoS One, 2023;18(3):e0283147.
    PMID: 36943850 DOI: 10.1371/journal.pone.0283147
    The fresh leaves of Mitragyna speciosa (Korth.) Havil. have been traditionally consumed for centuries in Southeast Asia for its healing properties. Although the alkaloids of M. speciosa have been studied since the 1920s, comparative and systematic studies of metabolite composition based on different leaf maturity levels are still lacking. This study assessed the secondary metabolite composition in two different leaf stages (young and mature) of M. speciosa, using an untargeted liquid chromatography-electrospray ionisation-time-of-flight-mass spectrometry (LC-ESI-TOF-MS) metabolite profiling. The results revealed 86 putatively annotated metabolite features (RT:m/z value) comprising 63 alkaloids, 10 flavonoids, 6 terpenoids, 3 phenylpropanoids, and 1 of each carboxylic acid, glucoside, phenol, and phenolic aldehyde. The alkaloid features were further categorised into 14 subclasses, i.e., the most abundant class of secondary metabolites identified. As per previous reports, indole alkaloids are the most abundant alkaloid subclass in M. speciosa. The result of multivariate analysis (MVA) using principal component analysis (PCA) showed a clear separation of 92.8% between the young and mature leaf samples, indicating a high variance in metabolite levels between them. Akuammidine, alstonine, tryptamine, and yohimbine were tentatively identified among the many new alkaloids reported in this study, depicting the diverse biological activities of M. speciosa. Besides delving into the knowledge of metabolite distribution in different leaf stages, these findings have extended the current alkaloid repository of M. speciosa for a better understanding of its pharmaceutical potential.
  9. Ting TY, Li Y, Bunawan H, Ramzi AB, Goh HH
    J Biosci Bioeng, 2023 Apr;135(4):259-265.
    PMID: 36803862 DOI: 10.1016/j.jbiosc.2023.01.010
    Saccharomyces cerevisiae has a long-standing history of biotechnological applications even before the dawn of modern biotechnology. The field is undergoing accelerated advancement with the recent systems and synthetic biology approaches. In this review, we highlight the recent findings in the field with a focus on omics studies of S. cerevisiae to investigate its stress tolerance in different industries. The latest advancements in S. cerevisiae systems and synthetic biology approaches for the development of genome-scale metabolic models (GEMs) and molecular tools such as multiplex Cas9, Cas12a, Cpf1, and Csy4 genome editing tools, modular expression cassette with optimal transcription factors, promoters, and terminator libraries as well as metabolic engineering. Omics data analysis is key to the identification of exploitable native genes/proteins/pathways in S. cerevisiae with the optimization of heterologous pathway implementation and fermentation conditions. Through systems and synthetic biology, various heterologous compound productions that require non-native biosynthetic pathways in a cell factory have been established via different strategies of metabolic engineering integrated with machine learning.
  10. Tan LW, Tan CS, Rahman ZA, Goh HH, Ismail I, Zainal Z
    Data Brief, 2017 Oct;14:267-271.
    PMID: 28795104 DOI: 10.1016/j.dib.2017.07.047
    The dataset presented in this article describes microarray experiment of Auxin-binding protein 57, Abp57-overexpressing transgenic rice. The gene expression profiles were generated using Affymetrix GeneChip® Rice (Cn) Gene 1.0 ST Arrays. Total RNA from seedlings tissue of transgenic rice and wildtype, which serve as control were used as starting materials for microarray experiment. Detailed experimental methods and data analysis were described here. The raw and normalized microarray data were deposited into Gene Expression Omnibus (GEO) under accession number GSE99055.
  11. Shah FLA, Ramzi AB, Baharum SN, Noor NM, Goh HH, Leow TC, et al.
    Mol Biol Rep, 2019 Dec;46(6):6647-6659.
    PMID: 31535322 DOI: 10.1007/s11033-019-05066-1
    Flavonoids are polyphenols that are important organic chemicals in plants. The health benefits of flavonoids that result in high commercial values make them attractive targets for large-scale production through bioengineering. Strategies such as engineering a flavonoid biosynthetic pathway in microbial hosts provide an alternative way to produce these beneficial compounds. Escherichia coli, Saccharomyces cerevisiae and Streptomyces sp. are among the expression systems used to produce recombinant products, as well as for the production of flavonoid compounds through various bioengineering approaches including clustered regularly interspaced short palindromic repeats (CRISPR)-based genome engineering and genetically encoded biosensors to detect flavonoid biosynthesis. In this study, we review the recent advances in engineering model microbial hosts as being the factory to produce targeted flavonoid compounds.
  12. Shah FLA, Baharum SN, Goh HH, Leow TC, Ramzi AB, Oslan SN, et al.
    Mol Biol Rep, 2023 Jun;50(6):5283-5294.
    PMID: 37148413 DOI: 10.1007/s11033-023-08417-1
    BACKGROUND: Chalcone isomerase (CHI; EC 5.5.1.6) is one of the key enzymes in the flavonoid biosynthetic pathway that is responsible for the intramolecular cyclization of chalcones into specific 2S-flavanones.

    METHODS AND RESULTS: In this study, the open reading frame (ORF) of CHI was successfully isolated from the cDNA of Polygonum minus at 711-bp long, encoding for 236 amino acid residues, with a predicted molecular weight of 25.4 kDa. Multiple sequence alignment and phylogenetic analysis revealed that the conserved residues (Thr50, Tyr108, Asn115, and Ser192) in the cleft of CHI enzyme group active site are present in PmCHI protein sequence and classified as type I. PmCHI comprises more hydrophobic residues without a signal peptide and transmembrane helices. The three-dimensional (3D) structure of PmCHI predicted through homology modeling was validated by Ramachandran plot and Verify3D, with values within the acceptable range of a good model. PmCHI was cloned into pET-28b(+) plasmid, expressed in Escherichia coli BL21(DE3) at 16 °C and partially purified.

    CONCLUSION: These findings contribute to a deeper understanding of the PmCHI protein and its potential for further characterization of its functional properties in the flavonoid biosynthetic pathway.

  13. Rusdi NA, Goh HH, Sabri S, Ramzi AB, Mohd Noor N, Baharum SN
    Molecules, 2018 06 06;23(6).
    PMID: 29882808 DOI: 10.3390/molecules23061370
    Polygonum minus (syn. Persicaria minor) is a herbal plant that is well known for producing sesquiterpenes, which contribute to its flavour and fragrance. This study describes the cloning and functional characterisation of PmSTPS1 and PmSTPS2, two sesquiterpene synthase genes that were identified from P. minus transcriptome data mining. The full-length sequences of the PmSTPS1 and PmSTPS2 genes were expressed in the E. coli pQE-2 expression vector. The sizes of PmSTPS1 and PmSTPS2 were 1098 bp and 1967 bp, respectively, with open reading frames (ORF) of 1047 and 1695 bp and encoding polypeptides of 348 and 564 amino acids, respectively. The proteins consist of three conserved motifs, namely, Asp-rich substrate binding (DDxxD), metal binding residues (NSE/DTE), and cytoplasmic ER retention (RxR), as well as the terpene synthase family N-terminal domain and C-terminal metal-binding domain. From the in vitro enzyme assays, using the farnesyl pyrophosphate (FPP) substrate, the PmSTPS1 enzyme produced multiple acyclic sesquiterpenes of β-farnesene, α-farnesene, and farnesol, while the PmSTPS2 enzyme produced an additional nerolidol as a final product. The results confirmed the roles of PmSTPS1 and PmSTPS2 in the biosynthesis pathway of P. minus, to produce aromatic sesquiterpenes.
  14. Rosli MAF, Mediani A, Azizan KA, Baharum SN, Goh HH
    Front Plant Sci, 2021;12:655004.
    PMID: 33968110 DOI: 10.3389/fpls.2021.655004
    Hybridization is key to the evolution and diversity of plants in nature. Nepenthaceae comprises a family of diverse tropical carnivorous pitcher plant species with extensive hybridization. However, there is no study to date on the metabolite expression of hybrids in this family. We performed a non-targeted metabolomics analysis of the pitchers of two Nepenthes species with different dietary habits, namely, the semi-detritivorous N. ampullaria and carnivorous N. rafflesiana with their hybrid (N. × hookeriana) for a comparative study. The whole-pitcher samples were extracted in methanol:chloroform:water (3:1:1) via sonication-assisted extraction and analyzed using ultra-performance liquid chromatography time-of-flight mass spectrometry (UPLC-TOF-MS) followed by data analysis to profile chemical compositions. A total of 1,441 metabolite features were profiled from the three species in which 43.3% of features in the hybrid samples were not found in either of its parents. The partial least squares discriminant analysis (PLS-DA) found 324 metabolite features with variable in projection (VIP) values greater than one in which 55 features were statistically significant. This showed that the hybrid is closer to N. rafflesiana, which is consistent to the previous study on gene and protein expressions. A total of 105 metabolites were putatively identified with manual searches using public metabolite databases. Phenols were detected to be the most abundant secondary metabolites due to a high flavonoid content, especially in N. rafflesiana. The most abundant feature 476.3s:449.102 was found to be the most significant VIP for distinguishing between the three species as a chemical marker. This is the first study comparing metabolites in the carnivory organs of different Nepenthes species with comprehensive profiling and putative identification. The differential metabolite compositions in the pitchers of different species might have ecological implications with the hybrid showing intermediate phenotype between the parents as well as manifesting unique metabolites. However, there is no clear evidence of metabolites related to the differences in dietary habits between the hybrid and the two parent species.
  15. Rosli MAF, Azizan KA, Baharum SN, Goh HH
    Data Brief, 2017 Oct;14:295-297.
    PMID: 28795107 DOI: 10.1016/j.dib.2017.07.068
    Hybridisation plays a significant role in the evolution and diversification of plants. Hybridisation among Nepenthes species is extensive, either naturally or man-made. To investigate the effects of hybridisation on the chemical compositions, we carried out metabolomics study on pitcher tissue of Nepenthes ampullaria, Nepenthes rafflesiana and their hybrid, Nepenthes × hookeriana. Pitcher samples were harvested and extracted in methanol:chloroform:water via sonication-assisted extraction before analysed using LC-TOF-MS. MS data were analysed using XCMS online version 2.2.5. This is the first MS data report towards the profiling, identification and comprehensive comparison of metabolites present in Nepenthes species.
  16. Ravee R, Mohd Salleh F', Goh HH
    PeerJ, 2018;6:e4914.
    PMID: 29888132 DOI: 10.7717/peerj.4914
    Background: Carnivorous plants have been fascinating researchers with their unique characters and bioinspired applications. These include medicinal trait of some carnivorous plants with potentials for pharmaceutical industry.

    Methods: This review will cover recent progress based on current studies on digestive enzymes secreted by different genera of carnivorous plants: Drosera (sundews), Dionaea (Venus flytrap), Nepenthes (tropical pitcher plants), Sarracenia (North American pitcher plants), Cephalotus (Australian pitcher plants), Genlisea (corkscrew plants), and Utricularia (bladderworts).

    Results: Since the discovery of secreted protease nepenthesin in Nepenthes pitcher, digestive enzymes from carnivorous plants have been the focus of many studies. Recent genomics approaches have accelerated digestive enzyme discovery. Furthermore, the advancement in recombinant technology and protein purification helped in the identification and characterisation of enzymes in carnivorous plants.

    Discussion: These different aspects will be described and discussed in this review with focus on the role of secreted plant proteases and their potential industrial applications.

  17. Ravee R, Baharin A, Cho WT, Ting TY, Goh HH
    Physiol Plant, 2021 Dec;173(4):1967-1978.
    PMID: 34455610 DOI: 10.1111/ppl.13540
    Nepenthes ampullaria is a unique carnivorous tropical pitcher plant with the detritivorous capability of sequestering nutrients from leaf litter apart from being insectivorous. The changes in the protein composition and protease activity of its pitcher fluids during the early opening of pitchers (D0 and D3C) were investigated via a proteomics approach and a controlled protein depletion experiment (D3L). A total of 193 proteins were identified. Common proteins such as pathogenesis-related protein, proteases (Nep [EC:3.4.23.12], SCP [EC:3.4.16.-]), peroxidase [EC:1.11.1.7], GDSL esterase/lipase [EC:3.1.1.-], and purple acid phosphatase [EC:3.1.3.2] were found in high abundance in the D0 pitchers and were replenished in D3L samples. This reflects their importance for biological processes upon pitcher opening. Meanwhile, prey-inducible chitinases [EC:3.2.1.14] were found in D0 but not in D3C and D3L samples, which suggests their degradation in the absence of prey. Protease activity assays demonstrated the replenishment of proteases in D3L with similar levels of proteolytic activities to that of D3C samples. This supports a feedback mechanism and signaling in the molecular regulation of endogenous protein secretion, turnover, and activity in Nepenthes pitcher fluids. Furthermore, we also discovered several new enzymes (XTH [EC:2.4.1.207], PAE [EC:3.1.1.98]) with possible functions in cell wall degradation that could contribute to the detritivory habit of N. ampullaria.
  18. Rahnamaie-Tajadod R, Goh HH, Mohd Noor N
    J Plant Physiol, 2019 Sep;240:152994.
    PMID: 31226543 DOI: 10.1016/j.jplph.2019.152994
    Polygonum minus Huds. is a medicinal aromatic plant rich in terpenes, aldehydes, and phenolic compounds. Methyl jasmonate (MeJA) is a plant signaling molecule commonly applied to elicit stress responses to produce plant secondary metabolites. In this study, the effects of exogenous MeJA treatment on the composition of volatile organic compounds (VOCs) in P. minus leaves were investigated by using a metabolomic approach. Time-course changes in the leaf composition of VOCs on days 1, 3, and 5 after MeJA treatment were analyzed through solid-phase microextraction (SPME) and gas chromatography-mass spectrometry (GC-MS). The VOCs found in MeJA-elicited leaves were similar to those found in mock-treated leaves but varied in quantity at different time points. We focused our analysis on the content and composition of monoterpenes, sesquiterpenes, and green leaf volatiles (GLVs) within the leaf samples. Our results suggest that MeJA enhances the activity of biosynthetic pathways for aldehydes and terpenes in P. minus. Hence, the production of aromatic compounds in this medicinal herb can be increased by MeJA elicitation. Furthermore, the relationship between MeJA elicitation and terpene biosynthesis in P. minus was shown through SPME-GC-MS analysis of VOCs combined with transcriptomic analysis of MeJA-elicited P. minus leaves from our previous study.
  19. Rahnamaie-Tajadod R, Loke KK, Goh HH, Noor NM
    Front Plant Sci, 2017;8:109.
    PMID: 28220135 DOI: 10.3389/fpls.2017.00109
    Polygonum minus is an herbal plant that grows in Southeast Asian countries and traditionally used as medicine. This plant produces diverse secondary metabolites such as phenolic compounds and their derivatives, which are known to have roles in plant abiotic and biotic stress responses. Methyl jasmonate (MeJA) is a plant signaling molecule that triggers transcriptional reprogramming in secondary metabolism and activation of defense responses against many biotic and abiotic stresses. However, the effect of MeJA elicitation on the genome-wide expression profile in the leaf tissue of P. minus has not been well-studied due to the limited genetic information. Hence, we performed Illumina paired-end RNA-seq for de novo reconstruction of P. minus leaf transcriptome to identify differentially expressed genes (DEGs) in response to MeJA elicitation. A total of 182,111 unique transcripts (UTs) were obtained by de novo assembly of 191.57 million paired-end clean reads using Trinity analysis pipeline. A total of 2374 UTs were identified to be significantly up-/down-regulated 24 h after MeJA treatment. These UTs comprising many genes related to plant secondary metabolite biosynthesis, defense and stress responses. To validate our sequencing results, we analyzed the expression of 21 selected DEGs by quantitative real-time PCR and found a good correlation between the two analyses. The single time-point analysis in this work not only provides a useful genomic resource for P. minus but also gives insights on molecular mechanisms of stress responses in P. minus.
  20. Othman SMIS, Mustaffa AF, Che-Othman MH, Samad AFA, Goh HH, Zainal Z, et al.
    Plants (Basel), 2023 Feb 03;12(3).
    PMID: 36771753 DOI: 10.3390/plants12030669
    The application of miRNA mimic technology for silencing mature miRNA began in 2007. This technique originated from the discovery of the INDUCED BY PHOSPHATE STARVATION 1 (IPS1) gene, which was found to be a competitive mimic that prevents the cleavage of the targeted mRNA by miRNA inhibition at the post-transcriptional level. To date, various studies have been conducted to understand the molecular mimic mechanism and to improve the efficiency of this technology. As a result, several mimic tools have been developed: target mimicry (TM), short tandem target mimic (STTM), and molecular sponges (SPs). STTM is the most-developed tool due to its stability and effectiveness in decoying miRNA. This review discusses the application of STTM technology on the loss-of-function studies of miRNA and members from diverse plant species. A modified STTM approach for studying the function of miRNA with spatial-temporal expression under the control of specific promoters is further explored. STTM technology will enhance our understanding of the miRNA activity in plant-tissue-specific development and stress responses for applications in improving plant traits via miRNA regulation.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links