Displaying publications 1 - 20 of 71 in total

Abstract:
Sort:
  1. Liew KJ, Teo SC, Shamsir MS, Sani RK, Chong CS, Chan KG, et al.
    3 Biotech, 2018 Aug;8(8):376.
    PMID: 30105201 DOI: 10.1007/s13205-018-1391-z
    Rhodothermaceae bacterium RA is a halo-thermophile isolated from a saline hot spring. Previously, the genome of this bacterium was sequenced using a HiSeq 2500 platform culminating in 91 contigs. In this report, we report on the resequencing of its complete genome using a PacBio RSII platform. The genome has a GC content of 68.3%, is 4,653,222 bp in size, and encodes 3711 genes. We are interested in understanding the carbohydrate metabolic pathway, in particular the lignocellulosic biomass degradation pathway. Strain RA harbors 57 glycosyl hydrolase (GH) genes that are affiliated with 30 families. The bacterium consists of cellulose-acting (GH 3, 5, 9, and 44) and hemicellulose-acting enzymes (GH 3, 10, and 43). A crude cell-free extract of the bacterium exhibited endoglucanase, xylanase, β-glucosidase, and β-xylosidase activities. The complete genome information coupled with biochemical assays confirms that strain RA is able to degrade cellulose and xylan. Therefore, strain RA is another excellent member of family Rhodothermaceae as a repository of novel and thermostable cellulolytic and hemicellulolytic enzymes.
  2. Ng HJ, Goh KM, Yahya A, Abdul-Wahab MF
    3 Biotech, 2024 Mar;14(3):91.
    PMID: 38419684 DOI: 10.1007/s13205-024-03933-8
    Oil palm processing generates substantial waste materials rich in organic content, posing various environmental challenges. Anaerobic digestion (AD), particularly for palm oil mill effluent (POME), offers a sustainable solution, by converting waste into valuable biomethane for thermal energy or electricity generation. The synergistic activities of the AD microbiota directly affect the biomethane production, and the microbial community involved in biomethane production in POME anaerobic digestion has been reported. The composition of bacterial and archaeal communities varies under different substrate and physicochemical conditions. This review discusses the characteristics of POME, explores the microbial members engaged in each stage of AD, and elucidates the impacts of substrate and physicochemical conditions on the microbial community dynamics, with a specific focus on POME. Finally, the review outlines current research needs and provides future perspectives on optimizing the microbial communities for enhanced biomethane production from oil palm wastes.
  3. Poli A, Romano I, Mastascusa V, Buono L, Orlando P, Nicolaus B, et al.
    Antonie Van Leeuwenhoek, 2018 Jul;111(7):1105-1115.
    PMID: 29299771 DOI: 10.1007/s10482-017-1013-5
    Strain Corallo1T was isolated from mucus of red coral (Corallium rubrum) at Punta Pizzaco (Procida island, Naples, Italy). It was characterised as a Gram-stain negative, motile, rod-shaped bacterium. Strain Corallo1T was found to show positive responses for cytochrome-c oxidase, catalase, reduction of nitrate and nitrite, β-galactosidase activity and hydrolysis of starch, xylan, peptone, Tween 40, Tween 80 and casein. Strain Corallo1T was found to be mesophilic, neutrophilic to alkalophilic and slightly halophilic. According to analysis of the almost-complete 16S rRNA gene, strain Corallo1T is closely related to Vibrio celticus (100% sequence similarity), Vibrio gigantis (100%), Vibrio crassostreae (99.7%), Vibrio artabrorum (99.7%) and Vibrio pomeroyi (99.6%). MLSA of five housekeeping genes (atpA, pyrH, recA, rpoA and rpoD) was performed to refine the phylogenetic relationships of strain Corallo1T. A draft genome sequence of strain Corallo1T was obtained. The DNA G+C content of this strain was determined to be 44.5 mol %. The major cellular fatty acids of strain Corallo1T are C16:1, n-C16:0 and C18:1, and the major isoprenoid ubiquinone is Q8. ANI indexes, in silico estimations of DDH values and wet lab DDH values demonstrated that strain Corallo1T represents an independent genomospecies. Based on a polyphasic taxonomic characterisation, strain Corallo1T is concluded to represent a novel species of the genus Vibrio, for which the name Vibrio coralliirubri sp. nov. is proposed. The type strain is Corallo1T (= DSM 27495T = CIP 110630T).
  4. Goh KM, Kahar UM, Chai YY, Chong CS, Chai KP, Ranjani V, et al.
    Appl Microbiol Biotechnol, 2013 Feb;97(4):1475-88.
    PMID: 23324802 DOI: 10.1007/s00253-012-4663-2
    The Bacillaceae family members are a good source of bacteria for bioprocessing and biotransformation involving whole cells or enzymes. In contrast to Bacillus and Geobacillus, Anoxybacillus is a relatively new genus that was proposed in the year 2000. Because these bacteria are alkali-tolerant thermophiles, they are suitable for many industrial applications. More than a decade after the first report of Anoxybacillus, knowledge accumulated from fundamental and applied studies suggests that this genus can serve as a good alternative in many applications related to starch and lignocellulosic biomasses, environmental waste treatment, enzyme technology, and possibly bioenergy production. This current review provides the first summary of past and recent discoveries regarding the isolation of Anoxybacillus, its medium requirements, its proteins that have been characterized and cloned, bioremediation applications, metabolic studies, and genomic analysis. Comparisons to some other members of Bacillaceae and possible future applications of Anoxybacillus are also discussed.
  5. Kahar UM, Ng CL, Chan KG, Goh KM
    Appl Microbiol Biotechnol, 2016 Jul;100(14):6291-307.
    PMID: 27000839 DOI: 10.1007/s00253-016-7451-6
    Type I pullulanases are enzymes that specifically hydrolyse α-1,6 linkages in polysaccharides. This study reports the analyses of a novel type I pullulanase (PulASK) from Anoxybacillus sp. SK3-4. Purified PulASK (molecular mass of 80 kDa) was stable at pH 5.0-6.0 and was most active at pH 6.0. The optimum temperature for PulASK was 60 °C, and the enzyme was reasonably stable at this temperature. Pullulan was the preferred substrate for PulASK, with 89.90 % adsorbance efficiency (various other starches, 56.26-72.93 % efficiency). Similar to other type I pullulanases, maltotriose was formed on digestion of pullulan by PulASK. PulASK also reacted with β-limit dextrin, a sugar rich in short branches, and formed maltotriose, maltotetraose and maltopentaose. Nevertheless, PulASK was found to preferably debranch long branches at α-1,6 glycosidic bonds of starch, producing amylose, linear or branched oligosaccharides, but was nonreactive against short branches; thus, no reducing sugars were detected. This is surprising as all currently known type I pullulanases produce reducing sugars (predominantly maltotriose) on digesting starch. The closest homologue of PulASK (95 % identity) is a type I pullulanase from Anoxybacillus sp. LM14-2 (Pul-LM14-2), which is capable of forming reducing sugars from starch. With rational design, amino acids 362-370 of PulASK were replaced with the corresponding sequence of Pul-LM14-2. The mutant enzyme formed reducing sugars on digesting starch. Thus, we identified a novel motif involved in substrate specificity in type I pullulanases. Our characterization may pave the way for the industrial application of this unique enzyme.
  6. Urbieta MS, Donati ER, Chan KG, Shahar S, Sin LL, Goh KM
    Biotechnol Adv, 2015 Nov 1;33(6 Pt 1):633-47.
    PMID: 25911946 DOI: 10.1016/j.biotechadv.2015.04.007
    Thermophiles and hyperthermophiles are present in various regions of the Earth, including volcanic environments, hot springs, mud pots, fumaroles, geysers, coastal thermal springs, and even deep-sea hydrothermal vents. They are also found in man-made environments, such as heated compost facilities, reactors, and spray dryers. Thermophiles, hyperthermophiles, and their bioproducts facilitate various industrial, agricultural, and medicinal applications and offer potential solutions to environmental damages and the demand for biofuels. Intensified efforts to sequence the entire genome of hyperthermophiles and thermophiles are increasing rapidly, as evidenced by the fact that over 120 complete genome sequences of the hyperthermophiles Aquificae, Thermotogae, Crenarchaeota, and Euryarchaeota are now available. In this review, we summarise the major current applications of thermophiles and thermozymes. In addition, emphasis is placed on recent progress in understanding the biodiversity, genomes, transcriptomes, metagenomes, and single-cell sequencing of thermophiles in the genomic era.
  7. Chan CS, Sin LL, Chan KG, Shamsir MS, Manan FA, Sani RK, et al.
    Biotechnol Biofuels, 2016;9(1):174.
    PMID: 27555880 DOI: 10.1186/s13068-016-0587-x
    In general, biofuel production involves biomass pretreatment and enzymatic saccharification, followed by the subsequent sugar conversion to biofuel via fermentation. The crucial step in the production of biofuel from biomass is the enzymatic saccharification. Many of the commercial cellulase enzyme cocktails, such as Spezyme(®) CP (Genencor), Acellerase™ 1000 (Genencor), and Celluclast(®) 1.5L (Novozymes), are ineffectively to release free glucose from the pretreated biomass without additional β-glucosidase.
  8. Lam MQ, Chen SJ, Goh KM, Abd Manan F, Yahya A, Shamsir MS, et al.
    Braz J Microbiol, 2021 Mar;52(1):251-256.
    PMID: 33141351 DOI: 10.1007/s42770-020-00401-2
    The wide use of whole-genome sequencing approach in the modern genomic era has opened a great opportunity to reveal the prospective applications of halophilic bacteria. Robertkochia marina CC-AMO-30DT is one of the halophilic bacteria that was previously taxonomically identified without any inspection on its biotechnological potential from a genomic aspect. In this study, we present the whole-genome sequence of R. marina and demonstrated the ability of this bacterium in solubilizing phosphate by producing phosphatase. The genome of R. marina has 3.57 Mbp and contains 3107 predicted genes, from which 3044 are protein coding, 52 are non-coding RNAs, and 11 are pseudogenes. Several phosphatases such as alkaline phosphatases and pyrophosphatases were mined from the genome. Further genomic study (phylogenetics, sequence analysis, and functional mechanism) and experimental data suggested that the alkaline phosphatase produced by R. marina could potentially be utilized in promoting plant growth, particularly for plants on saline-based agricultural land.
  9. Thevarajoo S, Selvaratnam C, Chan KG, Goh KM, Chong CS
    Braz J Microbiol, 2017 07 19;49(1):10-12.
    PMID: 28778371 DOI: 10.1016/j.bjm.2017.03.013
    Vitellibacter aquimaris D-24T (=KCTC 42708T=DSM 101732T), a halophilic marine bacterium, was isolated from seawater collected from Desaru beach, Malaysia. Here, we present the draft genome sequence of D-24T with a genome size of approximately 3.1Mbp and G+C content of 39.93%. The genome of D-24T contains genes involved in reducing a potent greenhouse gas (N2O) in the environment and the degradation of proteinaceous compounds. Genome availability will provide insights into potential biotechnological and environmental applications of this bacterium.
  10. Goh KM, Liew KJ, Shahar S, Zakaria II, Kahar UM
    Data Brief, 2022 Dec;45:108695.
    PMID: 36425965 DOI: 10.1016/j.dib.2022.108695
    Thermovorax subterraneus 70BT is a thermophile found in a geothermically active underground mine. The strain 70BT belongs to the class of Clostridia, order of Thermosediminibacterales, and family of Thermosediminibacteraceae. Strain 70BT was the only type strain since the genus was discovered >10 years ago. Strain 70BT was compared to strains from other genera in terms of its phenotypics, chemotaxonomics, and phylogenetics (16S rRNA gene) in previous studies. However, the genome sequence of this strain has not been described. We herein described the genome sequence of strain 70BT. In total, the assembled genome of strain 70BT has a size of 2,451,552 bp, contributed by 44 contigs, with a coverage of 445X, a N50 of 86,294 bp, and a GC% of 43.8. A total of 2,540 genes were encoded in the genome, including 2,431 protein-coding sequences, 46 pseudogenes, and 63 RNA genes. Through the Cluster of Orthologous Groups (COGs) analysis, a total of 2,404 protein-coding genes were functionally assigned to COGs in the genome of strain 70BT. Among the members of Thermosediminibacteraceae family, strain 70BT has the closest relationship to Caldanaerovirga acetigignens JW/SA-NV4T based on the genome-to-genome comparison indexes (i.e., ANI, dDDH, AAI, and POCP). An earlier study reported that strain 70BT could produce hydrogen. We discovered genes encoding [FeFe] hydrogenase through gene mining analysis. For future research, this genome data will be used as a reference for all matters pertaining to the genus Thermovorax and family Thermosediminibacteraceae.
  11. Chai YY, Kahar UM, Md Salleh M, Md Illias R, Goh KM
    Environ Technol, 2012 Jun;33(10-12):1231-8.
    PMID: 22856294
    Two thermophilic bacteria (SK3-4 and DT3-1) were isolated from the Sungai Klah (SK) and Dusun Tua (DT) hot springs in Malaysia. The cells from both strains were rod-shaped, stained Gram positive and formed endospores. The optimal growth of both strains was observed at 55 degrees C and pH 7. Strain DT3-1 exhibited a higher tolerance to chloramphenicol (100 microg ml(-1)) but showed a lower tolerance to sodium chloride (2%, w/v) compared to strain SK3-4. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both strains belong to the genus Anoxybacillus. High concentrations of 15:0 iso in the fatty acid profiles support the conclusion that both strains belong to the genus Anoxybacillus and exhibit unique fatty acid compositions and percentages compared to other Anoxybacillus species. The DNA G + C contents were 42.0 mol% and 41.8 mol% for strains SK3-4 and DT3-1, respectively. Strains SK3-4 and DT3-1 were able to degrade pullulan and to produce maltotriose and glucose, respectively, as their main end products. Based on phenotypic and chemotaxonomic characteristics, 16S rRNA gene sequences, and the DNA G + C content, we propose that strains SK3-4 and DT3-1 are new pullulan-degrading Anoxybacillus strains.
  12. Bhat R, Goh KM
    Food Chem, 2017 Jan 15;215:470-6.
    PMID: 27542500 DOI: 10.1016/j.foodchem.2016.07.160
    Hand-pressed strawberry juice samples were subjected to sonication treatments (0, 15 and 30min at 20°C, 25kHz frequency). Physicochemical properties (°Brix, pH, water activity, viscosity, titratable acidity, cloud assessment and turbidity), antioxidant compounds and activity (total phenolics, ascorbic acid, anthocyanins, free radical scavenging activity), polyphenoloxidase enzyme activity, browning degree and microbial load were evaluated. Results showed non-significant changes for °Brix, pH, water activity, titratable acidity and colour parameters in sonicated samples compared to control (0min). Sonication treatments resulted in reduced viscosity and increased cloudiness and turbidity. Overall, treatment for 30min showed significant enhancement in bioactive compounds under study. Besides, sonication treatment imparted non-significant changes in polyphenoloxidase activity and in browning degree. However, sonication was incompetent in reducing microbial load. Results generated from this study were encouraging and this is expected to provide platform for future commercial applications on a pilot scale.
  13. Goh KM, Lai OM, Abas F, Tan CP
    Food Chem, 2017 Jan 15;215:200-8.
    PMID: 27542468 DOI: 10.1016/j.foodchem.2016.07.146
    Soy sauce fermentation was simulated in a laboratory and subjected to 10min of sonication. A full factorial design, including different cycles, probe size, and amplitude was used. The composition of 17 free-amino acids (FAAs) was determined by the AccQ-Tag method with fluorescent detection. Main effect plots showed total FAAs extraction was favoured under continuous sonication at 100% amplitude using a 14mm diameter transducer probe, reaching 1214.2±64.3mg/100ml of total FAAs. Moreover, after 7days of fermentation, sonication treatment caused significantly higher levels (p<0.05) of glutamic acids (343.0±22.09mg/100g), total FAAs (1720.0±70.6mg/100g), and essential FAAs (776.3±7.0mg/100g) 3days sooner than the control. Meanwhile, enzymatic and microbial behaviours remained undisturbed. Collectively, the sonication to moromi resulted in maturation 57% faster than the untreated control.
  14. Goh KM, Wong YH, Ang MY, Yeo SCM, Abas F, Lai OM, et al.
    Food Res Int, 2019 07;121:553-560.
    PMID: 31108780 DOI: 10.1016/j.foodres.2018.12.013
    The detection of 3- and 2-MCPD ester and glycidyl ester was transformed from selected ion monitoring (SIM) mode to multiple reaction monitoring (MRM) mode by gas chromatography triple quadrupole spectrometry. The derivatization process was adapted from AOCS method Cd 29a-13. The results showed that the coefficient of determination (R2) of all detected compounds obtained from both detection mode was comparable, which falls between 0.997 and 0.999. The limit of detection and quantification (LOD and LOQ) were improved in MRM mode as compared to SIM mode. In MRM mode, the LOD of 3- and 2-MCPD ester was achieved 0.01 mg/kg while the LOQ was 0.05 mg/kg. Besides, LOD and LOQ of glycidyl ester were 0.024 and 0.06 mg/kg respectively. A blank spiked with MCPD esters (0.03, 0.10 and 0.50 mg/kg) and GE (0.06, 0.24 and 1.20 mg/kg) were chosen for repeatability and recovery tests. MRM mode showed better repeatability in area ratio and recovery with relative standard deviation (RSD %) 
  15. Ji Y, Lan D, Wang W, Goh KM, Tan CP, Wang Y
    Foods, 2022 Dec 16;11(24).
    PMID: 36553815 DOI: 10.3390/foods11244073
    With the prevalence of edible diacylglycerol (DAG) oil, which is beneficial to human, the generation of 3-monochloropropanediol esters (3-MCPDE) and glycidyl esters (GE) as well as the stability of physical properties during heat-induced processing still need to be explored. In this study, the experiment used olive-based edible oil with different contents of DAG (40, 60, and 80%) to make crackers and fry chicken. They were heated at 160 and 180 °C to determine the changes in 3-MCPDE and GE, the crackers’ hardness and gumminess, and the physical properties of the oil. During baking and frying, 3-MCPDE decreased, while the content of GE slightly increased with the prolonged heating duration. Finally, 3-MCPDE and GE were lower than 1.25 mg/kg and 1.00 mg/kg, respectively. The AV increased proportionally as duration increased and POV was below 0.30 g/100 g. In general, the changes in 3-MCPDE and GE were related to the heating temperature and duration, and not significantly (p > 0.05) related to the content of DAG.
  16. Goh KM, Wong YH, Abas F, Lai OM, Mat Yusoff M, Tan TB, et al.
    Foods, 2020 Jun 04;9(6).
    PMID: 32512737 DOI: 10.3390/foods9060739
    Shortening derived from palm oil is widely used in baking applications. However, palm oil and the related products are reported to contain high levels of monochloropropandiol (MCPD) ester and glycidyl ester (GE). MCPD and glycidol are known as process contaminants, which are carcinogenic and genotoxic compounds, respectively. The objective was to evaluate the effects of antioxidant addition in palm olein and stearin to the content of MCPD esters and GE in baked cake. Butylated hydroxyanisole (BHA), rosemary extract and tocopherol were used to fortify the samples at 200 mg/kg and in combinations (400, 600 and 800 mg/kg rosemary or tocopherol combined with 200 mg/kg BHA). The MCPD esters and GE content, radical formation and the quality of the fats portion were analyzed. The results showed that palm olein fortified with rosemary extract yielded less 2-MCPD ester. The GE content was lower when soft stearin was fortified with rosemary. ESR spectrometry measurements showed that the antioxidants were effective to reduce radical formation. The synergistic effects of combining antioxidants controlled the contaminants formation. In conclusion, oxidation stability was comparable either in the single or combined antioxidants. Tocopherol in combination with BHA was more effective in controlling the MCPD esters and GE formation.
  17. Chan CS, Chan KG, Tay YL, Chua YH, Goh KM
    Front Microbiol, 2015;6:177.
    PMID: 25798135 DOI: 10.3389/fmicb.2015.00177
    The Sungai Klah (SK) hot spring is the second hottest geothermal spring in Malaysia. This hot spring is a shallow, 150-m-long, fast-flowing stream, with temperatures varying from 50 to 110°C and a pH range of 7.0-9.0. Hidden within a wooded area, the SK hot spring is continually fed by plant litter, resulting in a relatively high degree of total organic content (TOC). In this study, a sample taken from the middle of the stream was analyzed at the 16S rRNA V3-V4 region by amplicon metagenome sequencing. Over 35 phyla were detected by analyzing the 16S rRNA data. Firmicutes and Proteobacteria represented approximately 57% of the microbiome. Approximately 70% of the detected thermophiles were strict anaerobes; however, Hydrogenobacter spp., obligate chemolithotrophic thermophiles, represented one of the major taxa. Several thermophilic photosynthetic microorganisms and acidothermophiles were also detected. Most of the phyla identified by 16S rRNA were also found using the shotgun metagenome approaches. The carbon, sulfur, and nitrogen metabolism within the SK hot spring community were evaluated by shotgun metagenome sequencing, and the data revealed diversity in terms of metabolic activity and dynamics. This hot spring has a rich diversified phylogenetic community partly due to its natural environment (plant litter, high TOC, and a shallow stream) and geochemical parameters (broad temperature and pH range). It is speculated that symbiotic relationships occur between the members of the community.
  18. Chan CS, Chan KG, Ee R, Hong KW, Urbieta MS, Donati ER, et al.
    Front Microbiol, 2017;8:1252.
    PMID: 28729863 DOI: 10.3389/fmicb.2017.01252
    Malaysia has a great number of hot springs, especially along the flank of the Banjaran Titiwangsa mountain range. Biological studies of the Malaysian hot springs are rare because of the lack of comprehensive information on their microbial communities. In this study, we report a cultivation-independent census to describe microbial communities in six hot springs. The Ulu Slim (US), Sungai Klah (SK), Dusun Tua (DT), Sungai Serai (SS), Semenyih (SE), and Ayer Hangat (AH) hot springs exhibit circumneutral pH with temperatures ranging from 43°C to 90°C. Genomic DNA was extracted from environmental samples and the V3-V4 hypervariable regions of 16S rRNA genes were amplified, sequenced, and analyzed. High-throughput sequencing analysis showed that microbial richness was high in all samples as indicated by the detection of 6,334-26,244 operational taxonomy units. In total, 59, 61, 72, 73, 65, and 52 bacterial phyla were identified in the US, SK, DT, SS, SE, and AH hot springs, respectively. Generally, Firmicutes and Proteobacteria dominated the bacterial communities in all hot springs. Archaeal communities mainly consisted of Crenarchaeota, Euryarchaeota, and Parvarchaeota. In beta diversity analysis, the hot spring microbial memberships were clustered primarily on the basis of temperature and salinity. Canonical correlation analysis to assess the relationship between the microbial communities and physicochemical variables revealed that diversity patterns were best explained by a combination of physicochemical variables, rather than by individual abiotic variables such as temperature and salinity.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links