Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Wang F, Gopinath SC, Lakshmipriya T
    Int J Nanomedicine, 2019;14:8469-8481.
    PMID: 31695375 DOI: 10.2147/IJN.S219976
    BACKGROUND: A pandemic influenza viral strain, influenza A/California/07/2009 (pdmH1N1), has been considered to be a potential issue that needs to be controlled to avoid the seasonal emergence of mutated strains.

    MATERIALS AND METHODS: In this study, aptamer-antibody complementation was implemented on a multiwalled carbon nanotube-gold conjugated sensing surface with a dielectrode to detect pandemic pdmH1N1. Preliminary biomolecular and dielectrode surface analyses were performed by molecular and microscopic methods. A stable anti-pdmH1N1 aptamer sequence interacted with hemagglutinin (HA) and was compared with the antibody interaction. Both aptamer and antibody attachments on the surface as the basic molecule attained the saturation at nanomolar levels.

    RESULTS: Aptamers were found to have higher affinity and electric response than antibodies against HA of pdmH1N1. Linear regression with aptamer-HA interaction displays sensitivity in the range of 10 fM, whereas antibody-HA interaction shows a 100-fold lower level (1 pM). When sandwich-based detection of aptamer-HA-antibody and antibody-HA-aptamer was performed, a higher response of current was observed in both cases. Moreover, the detection strategy with aptamer clearly discriminated the closely related HA of influenza B/Tokyo/53/99 and influenza A/Panama/2007/1999 (H3N2).

    CONCLUSION: The high performance of the abovementioned detection methods was supported by the apparent specificity and reproducibility by the demonstrated sensing system.

  2. Velusamy P, Su CH, Venkat Kumar G, Adhikary S, Pandian K, Gopinath SC, et al.
    PLoS One, 2016;11(6):e0157612.
    PMID: 27304672 DOI: 10.1371/journal.pone.0157612
    In the current study, facile synthesis of carboxymethyl cellulose (CMC) and sodium alginate capped silver nanoparticles (AgNPs) was examined using microwave radiation and aniline as a reducing agent. The biopolymer matrix embedded nanoparticles were synthesized under various experimental conditions using different concentrations of biopolymer (0.5, 1, 1.5, 2%), volumes of reducing agent (50, 100, 150 μL), and duration of heat treatment (30 s to 240 s). The synthesized nanoparticles were analyzed by scanning electron microscopy, UV-Vis spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy for identification of AgNPs synthesis, crystal nature, shape, size, and type of capping action. In addition, the significant antibacterial efficacy and antibiofilm activity of biopolymer capped AgNPs were demonstrated against different bacterial strains, Staphylococcus aureus MTCC 740 and Escherichia coli MTCC 9492. These results confirmed the potential for production of biopolymer capped AgNPs grown under microwave irradiation, which can be used for industrial and biomedical applications.
  3. Toh SY, Citartan M, Gopinath SC, Tang TH
    Biosens Bioelectron, 2015 Feb 15;64:392-403.
    PMID: 25278480 DOI: 10.1016/j.bios.2014.09.026
    The application of antibodies in enzyme-linked immunosorbent assay (ELISA) is the basis of this diagnostic technique which is designed to detect a potpourri of complex target molecules such as cell surface antigens, allergens, and food contaminants. However, development of the systematic evolution of Ligands by Exponential Enrichment (SELEX) method, which can generate a nucleic acid-based probe (aptamer) that possess numerous advantages compared to antibodies, offers the possibility of using aptamers as an alternative molecular recognition element in ELISA. Compared to antibodies, aptamers are smaller in size, can be easily modified, are cheaper to produce, and can be generated against a wide array of target molecules. The application of aptamers in ELISA gives rise to an ELISA-derived assay called enzyme-linked apta-sorbent assay (ELASA). As with the ELISA method, ELASA can be used in several different configurations, including direct, indirect, and sandwich assays. This review provides an overview of the strategies involved in aptamer-based ELASA.
  4. Ten ST, Hashim U, Gopinath SC, Liu WW, Foo KL, Sam ST, et al.
    Biosens Bioelectron, 2017 Jul 15;93:146-154.
    PMID: 27660016 DOI: 10.1016/j.bios.2016.09.035
    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.
  5. Tan AA, Phang WM, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Biomed Res Int, 2015;2015:453289.
    PMID: 26167486 DOI: 10.1155/2015/453289
    Breast cancer is one of the major issues in the field of oncology, reported with a higher prevalence rate in women worldwide. In attempt to reveal the potential biomarkers for breast cancer, the findings of differentially glycosylated haptoglobin and osteonectin in previous study have drawn our attention towards glycoproteins of secretome from the MCF-7 cancer cell line. In the present study, further analyses were performed on the medium of MCF-7 cells by subjecting it to two-dimensional analyses followed by image analysis in contrast to the medium of human mammary epithelial cells (HMEpC) as a negative control. Carboxypeptidase A4 (CPA4), alpha-1-antitrypsin (AAT), haptoglobin (HP), and HSC70 were detected in the medium of MCF-7, while only CPA4 and osteonectin (ON) were detected in HMEpC medium. In addition, CPA4 was detected as upregulated in the MCF-7 medium. Further analysis by lectin showed that CPA4, AAT, HP, and HSC70 were secreted as N-glycan in the medium of MCF-7, with HP also showing differentially N-glycosylated isoforms. For the HMEpC, only CPA4 was detected as N-glycan. No O-glycan was detected in the medium of HMEpC but MCF-7 expressed O-glycosylated CPA4 and HSC70. All these revealed that glycoproteins could be used as glycan-based biomarkers for the prognosis of breast cancer.
  6. Soo Yean CY, Selva Raju K, Xavier R, Subramaniam S, Gopinath SC, Chinni SV
    PLoS One, 2016;11(7):e0158736.
    PMID: 27367909 DOI: 10.1371/journal.pone.0158736
    Non-protein coding RNA (npcRNA) is a functional RNA molecule that is not translated into a protein. Bacterial npcRNAs are structurally diversified molecules, typically 50-200 nucleotides in length. They play a crucial physiological role in cellular networking, including stress responses, replication and bacterial virulence. In this study, by using an identified npcRNA gene (Sau-02) in Methicillin-resistant Staphylococcus aureus (MRSA), we identified the Gram-positive bacteria S. aureus. A Sau-02-mediated monoplex Polymerase Chain Reaction (PCR) assay was designed that displayed high sensitivity and specificity. Fourteen different bacteria and 18 S. aureus strains were tested, and the results showed that the Sau-02 gene is specific to S. aureus. The detection limit was tested against genomic DNA from MRSA and was found to be ~10 genome copies. Further, the detection was extended to whole-cell MRSA detection, and we reached the detection limit with two bacteria. The monoplex PCR assay demonstrated in this study is a novel detection method that can replicate other npcRNA-mediated detection assays.
  7. Phang WM, Tan AA, Gopinath SC, Hashim OH, Kiew LV, Chen Y
    Int J Med Sci, 2016;13(5):330-9.
    PMID: 27226773 DOI: 10.7150/ijms.14341
    Breast cancer is one of the most common cancers that affect women globally and accounts for ~23% of all cancers diagnosed in women. Breast cancer is also one of the leading causes of death primarily due to late stage diagnoses and a lack of effective treatments. Therefore, discovering protein expression biomarkers is mandatory for early detection and thus, critical for successful therapy. Two-dimensional electrophoresis (2D-E) coupled with lectin-based analysis followed by mass spectrometry were applied to identify potential biomarkers in the secretions of a murine mammary carcinoma cell line. Comparisons of the protein profiles of the murine 4T1 mammary carcinoma cell line and a normal murine MM3MG mammary cell line indicated that cadherin-1 (CDH), collagenase 3 (MMP-13), Viral envelope protein G7e (VEP), Gag protein (GAG) and Hypothetical protein LOC433182 (LOC) were uniquely expressed by the 4T1 cells, and pigment epithelium-derived factor (PEDF) was exclusively secreted by the MM3MG cells. Further analysis by a lectin-based study revealed that aberrant O-glycosylated CDH, N-glycosylated MMP-13 and LOC were present in the 4T1 medium. These differentially expressed N- and O-linked glycoprotein candidates, which were identified by combining lectin-based analysis with 2D-E, could serve as potential diagnostic and prognostic markers for breast cancer.
  8. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Liu WW, Poopalan P, et al.
    PLoS One, 2015;10(12):e0144964.
    PMID: 26694656 DOI: 10.1371/journal.pone.0144964
    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
  9. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Poopalan P, Liu WW, et al.
    Biosens Bioelectron, 2016 Apr 15;78:14-22.
    PMID: 26584078 DOI: 10.1016/j.bios.2015.10.083
    Creating novel nanostructures is a primary step for high-performance analytical sensing. Herein, a new worm like nanostructure with Zinc Oxide-gold (ZnO/Au) hybrid was fabricated through an aqueous hydrothermal method, by doping Au-nanoparticle (AuNP) on the growing ZnO lattice. During ZnO growth, fine tuning the solution temperature expedites random curving of ZnO nanorods and forms nano-worms. The nano-worms which were evidenced by morphological, physical and structural analyses, revealed elongated structures protruding from the surface (length: 1 µm; diameter: ~100 nm). The appropriate peaks for the face centred cubic gold were (111) and (200), as seen from X-ray diffractogram. The strong interrelation between Au and ZnO was manifested by X-ray photoelectron spectroscopy. The combined surface area increment from the nanoparticle radii and ZnO nanorod random curving gives raise an enhancement in detection sensitivity by increasing bio-loading. 'Au-decorated hybrid nano-worm' was immobilized with a probe DNA from Vibrio Cholera and duplexed with a target which was revealed by Fourier Transform Infrared Spectroscopy. Our novel Au-decorated hybrid nano-worm is suitable for high-performance bio-sensing, as evidenced by impedance spectroscopy, having higher-specificity and attained femtomolar (10 fM) sensitivity. Further, higher stability, reproducibility and regeneration on this sensing surface were demonstrated.
  10. Perumal V, Hashim U, Gopinath SC, Rajintra Prasad H, Wei-Wen L, Balakrishnan SR, et al.
    Nanoscale Res Lett, 2016 Dec;11(1):31.
    PMID: 26787050 DOI: 10.1186/s11671-016-1245-8
    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
  11. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Foo KL, Balakrishnan SR, et al.
    Sci Rep, 2015 Jul 16;5:12231.
    PMID: 26178973 DOI: 10.1038/srep12231
    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
  12. Nithya R, Ahmed SA, Hoe CH, Gopinath SC, Citartan M, Chinni SV, et al.
    PLoS One, 2015;10(3):e0118668.
    PMID: 25774907 DOI: 10.1371/journal.pone.0118668
    Salmonellosis, a communicable disease caused by members of the Salmonella species, transmitted to humans through contaminated food or water. It is of paramount importance, to generate accurate detection methods for discriminating the various Salmonella species that cause severe infection in humans, including S. Typhi and S. Paratyphi A. Here, we formulated a strategy of detection and differentiation of salmonellosis by a multiplex polymerase chain reaction assay using S. Typhi non-protein coding RNA (sRNA) genes. With the designed sequences that specifically detect sRNA genes from S. Typhi and S. Paratyphi A, a detection limit of up to 10 pg was achieved. Moreover, in a stool-seeding experiment with S. Typhi and S. Paratyphi A, we have attained a respective detection limit of 15 and 1.5 CFU/mL. The designed strategy using sRNA genes shown here is comparatively sensitive and specific, suitable for clinical diagnosis and disease surveillance, and sRNAs represent an excellent molecular target for infectious disease.
  13. Nadzirah Sh, Azizah N, Hashim U, Gopinath SC, Kashif M
    PLoS One, 2015;10(10):e0139766.
    PMID: 26445455 DOI: 10.1371/journal.pone.0139766
    Nanoparticle-mediated bio-sensing promoted the development of novel sensors in the front of medical diagnosis. In the present study, we have generated and examined the potential of titanium dioxide (TiO2) crystalline nanoparticles with aluminium interdigitated electrode biosensor to specifically detect single-stranded E.coli O157:H7 DNA. The performance of this novel DNA biosensor was measured the electrical current response using a picoammeter. The sensor surface was chemically functionalized with (3-aminopropyl) triethoxysilane (APTES) to provide contact between the organic and inorganic surfaces of a single-stranded DNA probe and TiO2 nanoparticles while maintaining the sensing system's physical characteristics. The complement of the target DNA of E. coli O157:H7 to the carboxylate-probe DNA could be translated into electrical signals and confirmed by the increased conductivity in the current-to-voltage curves. The specificity experiments indicate that the biosensor can discriminate between the complementary sequences from the base-mismatched and the non-complementary sequences. After duplex formation, the complementary target sequence can be quantified over a wide range with a detection limit of 1.0 x 10(-13)M. With target DNA from the lysed E. coli O157:H7, we could attain similar sensitivity. Stability of DNA immobilized surface was calculated with the relative standard deviation (4.6%), displayed the retaining with 99% of its original response current until 6 months. This high-performance interdigitated DNA biosensor with high sensitivity, stability and non-fouling on a novel sensing platform is suitable for a wide range of biomolecular interactive analyses.
  14. Marimuthu C, Tang TH, Tominaga J, Tan SC, Gopinath SC
    Analyst, 2012 Mar 21;137(6):1307-15.
    PMID: 22314701 DOI: 10.1039/c2an15905h
    The discovery that synthetic short chain nucleic acids are capable of selective binding to biological targets has made them to be widely used as molecular recognition elements. These nucleic acids, called aptamers, are comprised of two types, DNA and RNA aptamers, where the DNA aptamer is preferred over the latter due to its stability, making it widely used in a number of applications. However, the success of the DNA selection process through Systematic Evolution of Ligands by Exponential Enrichment (SELEX) experiments is very much dependent on its most critical step, which is the conversion of the dsDNA to ssDNA. There is a plethora of methods available in generating ssDNA from the corresponding dsDNA. These include asymmetric PCR, biotin-streptavidin separation, lambda exonuclease digestion and size separation on denaturing-urea PAGE. Herein, different methods of ssDNA generation following the PCR amplification step in SELEX are reviewed.
  15. Lee LP, Karbul HM, Citartan M, Gopinath SC, Lakshmipriya T, Tang TH
    Biomed Res Int, 2015;2015:820575.
    PMID: 26180812 DOI: 10.1155/2015/820575
    Lipases are of great interest for different industrial applications due to their diversity and versatility. Among different lipases, microbial lipases are preferable due to their broad substrate specificity, and higher stability with lower production costs compared to the lipases from plants and animals. In the past, a vast number of bacterial species have been reported as potential lipases producers. In this study, the lipases-producing bacterial species were isolated from an oil spillage area in the conventional night market. Isolated species were identified as Bacillus species by biochemical tests which indicate their predominant establishment, and further screened on the agar solid surfaces using lipid and gelatin as the substrates. Out of the ten strains tested, four potential strains were subjected to comparison analysis of the lipolytic versus proteolytic activities. Strain 10 exhibited the highest lipolytic and proteolytic activity. In all the strains, the proteolytic activity is higher than the lipolytic activity except for strain 8, suggesting the possibility for substrate-based extracellular gene induction. The simultaneous secretion of both the lipase and protease is a mean of survival. The isolated bacterial species which harbour both lipase and protease enzymes could render potential industrial-based applications and solve environmental issues.
  16. Lakshmipriya T, Gopinath SC, Tang TH
    PLoS One, 2016;11(3):e0151153.
    PMID: 26954237 DOI: 10.1371/journal.pone.0151153
    Enzyme Linked Immunosorbent Assay (ELISA) is the gold standard assay for detecting and identifying biomolecules using antibodies as the probe. Improving ELISA is crucial for detecting disease-causing agents and facilitating diagnosis at the early stages of disease. Biotinylated antibody and streptavidin-conjugated horse radish peroxide (streptavidin-HRP) often are used with ELISA to enhance the detection of various kinds of targets. In the present study, we used a competition-based strategy in which we pre-mixed free biotin with streptavidin-HRP to generate high-performance system, as free biotin occupies some of the biotin binding sites on streptavidin, thereby providing more chances for streptavidin-HRP to bind with biotinylated antibody. ESAT-6, which is a protein secreted early during tuberculosis infection, was used as the model target. We found that 8 fM of free biotin mixed with streptavidin-HRP anchored the higher detection level of ESAT-6 by four-fold compared with detection without free biotin (only streptavidin-HRP), and the limit of detection of the new method was 250 pM. These results suggest that biotin-streptavidin competition can be used to improve the diagnosis of analytes in other types of sensors.
  17. Kerishnan JP, Gopinath SC, Kai SB, Tang TH, Ng HL, Rahman ZA, et al.
    Int J Med Sci, 2016;13(6):424-31.
    PMID: 27279791 DOI: 10.7150/ijms.14475
    The association between human papillomavirus type 16 (HPV16) and oral cancer has been widely reported. However, detecting anti-HPV antibodies in patient sera to determine risk for oral squamous cell carcinoma (OSCC) has not been well studied. In the present investigation, a total of 206 OSCC serum samples from the Malaysian Oral Cancer Database & Tissue Bank System, with 134 control serum samples, were analyzed by enzyme-linked immunosorbant assay (ELISA) to detect HPV16-specific IgG and IgM antibodies. In addition, nested PCR analysis using comprehensive consensus primers (PGMY09/11 and GP5(+)/6(+)) was used to confirm the presence of HPV. Furthermore, we have evaluated the association of various additional causal factors (e.g., smoking, alcohol consumption, and betel quid chewing) in HPV-infected OSCC patients. Statistical analysis of the Malaysian population indicated that OSCC was more prevalent in female Indian patients that practices betel quid chewing. ELISA revealed that HPV16 IgG, which demonstrates past exposure, could be detected in 197 (95.6%) OSCC patients and HPV16-specific IgM was found in a total of 42 (20.4%) OSCC patients, indicating current exposure. Taken together, our study suggest that HPV infection may play a significant role in OSCC (OR: 13.6; 95% CI: 3.89-47.51) and HPV16-specific IgG and IgM antibodies could represent a significant indicator of risk factors in OSCC patients.
  18. Jin NZ, Anniebell S, Gopinath SC, Chen Y
    Nanoscale Res Lett, 2016 Dec;11(1):399.
    PMID: 27637891 DOI: 10.1186/s11671-016-1615-2
    Electrostatic attraction, covalent binding, and hydrophobic absorption are spontaneous processes to assemble and disassemble the molecules of gold nanoparticles (GNP). This dynamic change can be performed in the presence of ions, such as NaCl or charged molecules. Current research encompasses the GNP in mediating non-biofouling and investigating the molecular attachment and detachment. Experiments were performed with different sizes of GNP and polymers. As a proof of concept, poly(ethylene glycol)-b-poly(acrylic acid), called PEG-PAAc, attachment and binding events between factor IX and factor IX-bp from snake venom were demonstrated, and the variations with these molecular attachment on GNP were shown. Optimal concentration of NaCl for GNP aggregation was 250 mM, and the optimal size of GNP used was 30 nm. The polymer PEG-PAAc (1 mg/ml) has a strong affinity to the GNP as indicated by the dispersed GNP. The concentration of 5800 nM of factor IX was proved to be optimal for dispersion of GNP, and at least 100 nM of factor IX-bp was needed to remove factor IX from the surface of GNP. This study delineates the usage of unmodified GNP for molecular analysis and downstream applications.
  19. Haarindraprasad R, Hashim U, Gopinath SC, Perumal V, Liu WW, Balakrishnan SR
    Anal Chim Acta, 2016 Jun 21;925:70-81.
    PMID: 27188319 DOI: 10.1016/j.aca.2016.04.030
    Diabetes is a metabolic disease with a prolonged elevated level of glucose in the blood leads to long-term complications and increases the chances for cardiovascular diseases. The present study describes the fabrication of a ZnO nanowire (NW)-modified interdigitated electrode (IDE) to monitor the level of blood glucose. A silver IDE was generated by wet etching-assisted conventional lithography, with a gap between adjacent electrodes of 98.80 μm. The ZnO-based thin films and NWs were amended by sol-gel and hydrothermal routes. High-quality crystalline and c-axis orientated ZnO thin films were observed by XRD analyses. The ZnO thin film was annealed for 1, 3 and 5 h, yielding a good-quality crystallite with sizes of 50, 100 and 110 nm, and the band gaps were measured as 3.26, 3.20 and 3.17 eV, respectively. Furthermore, a flower-modeled NW was obtained with the lowest diameter of 21 nm. Our designed ZnO NW-modified IDE was shown to have a detection limit as low as 0.03 mg/dL (correlation coefficient = 0.98952) of glucose with a low response time of 3 s, perform better than commercial glucose meter, suitable to instantly monitor the glucose level of diabetes patients. This study demonstrated the high performance of NW-mediated IDEs for glucose sensing as alternative to current glucose sensors.
  20. Haarindraprasad R, Hashim U, Gopinath SC, Kashif M, Veeradasan P, Balakrishnan SR, et al.
    PLoS One, 2015;10(7):e0132755.
    PMID: 26167853 DOI: 10.1371/journal.pone.0132755
    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links