Displaying all 10 publications

Abstract:
Sort:
  1. Kuppusamy P, Yusoff MM, Maniam GP, Ichwan SJ, Soundharrajan I, Govindan N
    Acta Pharm Sin B, 2014 Jun;4(3):173-81.
    PMID: 26579381 DOI: 10.1016/j.apsb.2014.04.002
    Colon cancer is a world-wide health problem and the second-most dangerous type of cancer, affecting both men and women. The modern diet and lifestyles, with high meat consumption and excessive alcohol use, along with limited physical activity has led to an increasing mortality rate for colon cancer worldwide. As a result, there is a need to develop novel and environmentally benign drug therapies for colon cancer. Currently, nutraceuticals play an increasingly important role in the treatment of various chronic diseases such as colon cancer, diabetes and Alzheimer׳s disease. Nutraceuticals are derived from various natural sources such as medicinal plants, marine organisms, vegetables and fruits. Nutraceuticals have shown the potential to reduce the risk of colon cancer and slow its progression. These dietary substances target different molecular aspects of colon cancer development. Accordingly, this review briefly discusses the medicinal importance of nutraceuticals and their ability to reduce the risk of colorectal carcinogenesis.
  2. Kuppusamy P, Ichwan SJ, Al-Zikri PN, Suriyah WH, Soundharrajan I, Govindan N, et al.
    Biol Trace Elem Res, 2016 Oct;173(2):297-305.
    PMID: 26961292 DOI: 10.1007/s12011-016-0666-7
    Recently, metal nanoparticles have been getting great medical and social interests due to their potential physico-chemical properties such as higher affinity, low molecular weight, and larger surface area. The biosynthesized gold and silver nanoparticles are spherical, triangular in shape with an average size of 24-150 nm as reported in our earlier studies. The biological properties of synthesized gold and silver nanoparticles are demonstrated in this paper. The different in vitro assays such as MTT, flow cytometry, and reverse transcription polymerase chain reaction (RT-qPCR) techniques were used to evaluate the in vitro anticancer properties of synthesized metal nanoparticles. The biosynthesized gold and silver nanoparticles have shown reduced cell viability and increased cytotoxicity in HCT-116 colon cancer cells with IC50 concentration of 200 and 100 μg/ml, respectively. The flow cytometry experiments revealed that the IC50 concentrations of gold and silver nanoparticle-treated cells that have significant changes were observed in the sub-G1 cell cycle phase compared with the positive control. Additionally, the relative messenger RNA (mRNA) gene expressions of HCT-116 cells were studied by RT-qPCR techniques. The pro-apoptotic genes such as PUMA (++), Caspase-3 (+), Caspase-8 (++), and Caspase-9 (++) were upregulated in the treated HCT-116 cells compared with cisplatin. Overall, these findings have proved that the synthesized gold and silver nanoparticles could be potent anti-colon cancer drugs.
  3. Prabhu S, Vijayakumar S, Manogar P, Maniam GP, Govindan N
    Biomed Pharmacother, 2017 Aug;92:528-535.
    PMID: 28575810 DOI: 10.1016/j.biopha.2017.05.077
    Peroxisome proliferator-activated receptor gamma (PPARγ), a type II nuclear receptor present in adipose tissue, colon and macrophages. It reduces the hyperglycemia associated metabolic syndromes. Particularly, type II diabetes-related cardiovascular system risk in human beings. The fatty acid storage and glucose metabolism are regulated by PPARγ activation in human body. According to recent reports commercially available PPARγ activating drugs have been causing severe side effects. At the same time, natural products have been proved to be a promising area of drug discovery. Recently, many studies have been attempted to screen and identify a potential drug candidate to activate PPARγ. Hence, in this study we have selected some of the bio-active molecules from traditional medicinal plants. Molecular docking studies have been carried out against the target, PPARγ. We Results suggested that Punigluconin has a efficient docking score and it is found to have good binding affinities than other ligands. Hence, we concluded that Punigluconin is a better drug candidate for activation of PPARγ gene expression. Further studies are necessary to confirm their efficacy and possibly it can develop as a potential drug in future.
  4. Lee KD, Kuppusamy P, Kim DH, Govindan N, Maniam GP, Choi KC
    Indian J Microbiol, 2018 Dec;58(4):507-514.
    PMID: 30262961 DOI: 10.1007/s12088-018-0755-8
    Italian ryegrass is one of main feed for livestock animals/birds. It has potential antioxidant metabolites that can improve their health and protect them against various infectious diseases. In this work, we studied synthesis of silver nanoparticles assisted by forage crop Lolium multiflorum as a green synthesis way. Potential antibacterial efficacy of these synthesized nanosized silver nanoparticles against poultry pathogenic bacteria was then studied. Aqueous extract of IRG was used as reducing agent for bio-reduction of silver salt to convert Ag+ to Ag0 metallic nano-silver. Size, shape, metallic composition, functional group, and crystalline nature of these synthesized silver nanoparticles were then characterized using UV-Vis spectrophotometer, FESEM, EDX, FT-IT, and XRD, respectively. In addition, antibacterial effects of these synthesized AgNPs against poultry pathogenic bacteria were evaluated by agar well diffusion method. UV-Vis spectra showed strong absorption peak of 440-450 nm with differ reaction time ranging from 30 min to 24 h. FESEM measurements revealed particles sizes of around 20-100 nm, majority of which were spherical in shape while a few were irregular. These biosynthesized silver nanoparticles using IRG extract exhibited strong antibacterial activities against poultry pathogenic microorganisms, including Pseudomonas aeruginosa, Salmonella typhi, Escherichia coli, and Bacillus subtilis. Overall results confirmed that IRG plant extract possessed potential bioactive compounds for converting silver ions into nanosized silver at room temperature without needing any external chemical for redox reaction. In addition, such synthesized AgNPs showed strong antibacterial activities against pathogenic bacteria responsible for infectious diseases in poultry.
  5. Palanisamy KM, Paramasivam P, Maniam GP, Rahim MHA, Govindan N, Chisti Y
    J Biotechnol, 2021 Feb 10;327:86-96.
    PMID: 33421508 DOI: 10.1016/j.jbiotec.2020.12.021
    Biomass and lipid production by the marine diatom Chaetoceros affinis were characterized under continuous light with aeration. Media based on palm oil mill effluent (POME; 10, 20 and 30 % v/v in distilled water) were used together with a standard control medium. The maximum biomass concentration on day 12 of batch cultures in control medium was 821 ± 71 mg L-1. Under identical conditions, in the best POME medium (20 % POME v/v in distilled water with other inorganic components), the biomass concentration was reduced by ∼11 % to 734 ± 66 mg L-1. The lipid content of the biomass grown in the control medium was 50.8 ± 4.5 % by dry weight, but was a little lower (48.9 ± 4.1 % by dry wt) in the above specified best POME medium. In the best POME medium, oleic acid was the major fatty acid (72.3 ± 5.2 % by weight) in the total lipids extracted from the biomass and monounsaturated fatty acids were the main type of fatty acids (74.6 ± 5.2 %). POME levels of >20 % in the medium suppressed both biomass and lipid production relative to the medium with 20 % POME.
  6. Kuppusamy P, Ichwan SJ, Parine NR, Yusoff MM, Maniam GP, Govindan N
    J Environ Sci (China), 2015 Mar 1;29:151-7.
    PMID: 25766024 DOI: 10.1016/j.jes.2014.06.050
    In this present study, we reported broccoli (Brassica oleracea L.) as a potential candidate for the synthesis of gold and silver nanoparticles (NPs) in green chemistry method. The synthesized metal nanoparticles are evaluated their antimicrobial efficacy against different human pathogenic organisms. The physico-chemical properties of gold nanoparticles were analyzed using different analytical techniques such as a UV-Vis spectrophotometer, Field Emission Scanning Electron Microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction and a Fourier Transform Infrared spectrophotometer. In addition, gold and silver NP antimicrobial efficacy was checked by disc diffusion assay. UV-Vis color intensity of the nanoparticles was shown at 540 and 450 nm for gold and silver nanoparticles respectively. Higher magnification of the Field Emission Scanning Electron Microscopy image shows the variable morphology of the gold nanoparticles such as spherical, rod and triangular shapes and silver nanoparticles were seen in spherical shapes. The average spherical size of the particles was observed in 24-38 nm for gold and 30-45 nm for silver NPs. X-ray diffraction pattern confirmed the presence of gold nanoparticles and silver nanoparticles which were crystalline in nature. Additionally, the functional metabolites were identified by the Fourier Transform Infrared spectroscopy. IR spectra revealed phenols, alcohols, aldehydes (sugar moieties), vitamins and proteins are present in the broccoli extract which are accountable to synthesize the nanoparticles. The synthesized gold and silver NPs inhibited the growth of the tested bacterial and fungal pathogens at the concentration of 50 μg/mL respectively. In addition, broccoli mediated gold and silver nanoparticles have shown potent antimicrobial activity against human pathogens.
  7. Kuppusamy P, Yusoff MM, Parine NR, Govindan N
    Saudi J Biol Sci, 2015 May;22(3):293-301.
    PMID: 25972750 DOI: 10.1016/j.sjbs.2014.09.016
    The study explored on the commonly available weed plant Commelina nudiflora which has potential in-vitro antioxidant and antimicrobial activity. The different polar solvents such as ethanol, chloroform, dichloromethane, hexane and aqueous were used for the soxhlet extraction. The extracts were identified pharmacologically as important bioactive compounds and their potential free radical scavenging activities, and antimicrobial properties were studied. C. nudiflora extracts were monitored on their in-vitro antioxidant ability by DPPH and ABTS radical scavenging assay. Aqueous extract shows significant free radical scavenging activity of 63.4 mg/GAE and 49.10 mg/g in DPPH and ABTS respectively. Furthermore, the aqueous crude extract was used in antibacterial studies, which shows the highest inhibitory activity against Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Among all the extracts, aqueous extract of C. nudiflora has significant control over free radical scavenging activity and inhibition of the growth of food pathogenic bacteria. Also, the aqueous extract contains abundance of phenolics and flavonoids higher than other extracts. This study explored weed plant C. nudiflora as a potential source of antioxidant and antibacterial efficacy and identified various therapeutic value bioactive compounds from GC-MS analysis.
  8. Kuppusamy P, Govindan N, Yusoff MM, Ichwan SJA
    Saudi J Biol Sci, 2017 Sep;24(6):1212-1221.
    PMID: 28855814 DOI: 10.1016/j.sjbs.2014.09.017
    Colon cancer is the most common type of cancer and major cause of death worldwide. The detection of colon cancer is difficult in early stages. However, the secretory proteins have been used as ideal biomarker for the detection of colon cancer progress in cancer patients. Serum/tissue protein expression could help general practitioners to identify colon cancer at earlier stages. By this way, we use the biomarkers to evaluate the anticancer drugs and their response to therapy in cancer models. Recently, the biomarker discovery is important in cancer biology and disease management. Also, many measurable specific molecular components have been studied in colon cancer therapeutics. The biomolecules are mainly DNA, RNA, metabolites, enzymes, mRNA, aptamers and proteins. Thus, in this review we demonstrate the important protein biomarker in colon cancer development and molecular identification of protein biomarker discovery.
  9. Kuppusamy P, Yusoff MM, Maniam GP, Govindan N
    Saudi Pharm J, 2016 Jul;24(4):473-84.
    PMID: 27330378 DOI: 10.1016/j.jsps.2014.11.013
    The field of nanotechnology mainly encompasses with biology, physics, chemistry and material sciences and it develops novel therapeutic nanosized materials for biomedical and pharmaceutical applications. The biological syntheses of nanoparticles are being carried out by different macro-microscopic organisms such as plant, bacteria, fungi, seaweeds and microalgae. The biosynthesized nanomaterials have been effectively controlling the various endemic diseases with less adverse effect. Plant contains abundant natural compounds such as alkaloids, flavonoids, saponins, steroids, tannins and other nutritional compounds. These natural products are derived from various parts of plant such as leaves, stems, roots shoots, flowers, barks, and seeds. Recently, many studies have proved that the plant extracts act as a potential precursor for the synthesis of nanomaterial in non-hazardous ways. Since the plant extract contains various secondary metabolites, it acts as reducing and stabilizing agents for the bioreduction reaction to synthesized novel metallic nanoparticles. The non-biological methods (chemical and physical) are used in the synthesis of nanoparticles, which has a serious hazardous and high toxicity for living organisms. In addition, the biological synthesis of metallic nanoparticles is inexpensive, single step and eco-friendly methods. The plants are used successfully in the synthesis of various greener nanoparticles such as cobalt, copper, silver, gold, palladium, platinum, zinc oxide and magnetite. Also, the plant mediated nanoparticles are potential remedy for various diseases such as malaria, cancer, HIV, hepatitis and other acute diseases.
  10. Jayakumar S, Bhuyar P, Pugazhendhi A, Rahim MHA, Maniam GP, Govindan N
    Sci Total Environ, 2021 May 10;768:145471.
    PMID: 33736330 DOI: 10.1016/j.scitotenv.2021.145471
    In this research investigation, three microalgal species were screened (Pleurosigma sp., Amphora sp., and Amphiprora sp.) for lipid content before choosing the potential microalgae for biodiesel production. It was found that the lipid content of Amphiprora sp. was 41.48 ± 0.18%, which was higher than the Pleurosigma sp. (27.3 ± 0.8%) and Amphora sp. (22.49 ± 0.21%). The diatom microalga, Amphiprora sp. was isolated and exposed to a controlled environment. Two different media were prepared, and the main research was on the SiO2-NP medium as the cell wall of diatom was made up of silica. Essential growth parameters were studied such as dry cell weight and chlorophyll a content. The results revealed that Amphiprora sp. cultured in the modified medium showed a higher biomass yield and growth rate in all the analyses. In Soxhlet extraction method, biodiesel yield of Amphiprora sp. in modified medium under 24 μmol m-2 s-1 of light intensity was 81.47 ± 1.59% when using 2% of catalyst amount with 1.5:1 volume ratio of methanol/oil in 3 h reaction time at 65 °C. Results reveled that Amphiprora sp. diatom has a higher yield of oil 52.94 ± 0.42% and can be efficiently optimized with further studies with modified nanomaterial culture medium. The present research revealed the series of experiments on microalgal lipid transesterification and in future investigation different types of nanomaterials should be used in culture medium to identify the lipid production in microalgal cells.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links