Displaying publications 1 - 20 of 28 in total

Abstract:
Sort:
  1. de Manuel M, Barnett R, Sandoval-Velasco M, Yamaguchi N, Garrett Vieira F, Zepeda Mendoza ML, et al.
    Proc Natl Acad Sci U S A, 2020 May 19;117(20):10927-10934.
    PMID: 32366643 DOI: 10.1073/pnas.1919423117
    Lions are one of the world's most iconic megafauna, yet little is known about their temporal and spatial demographic history and population differentiation. We analyzed a genomic dataset of 20 specimens: two ca. 30,000-y-old cave lions (Panthera leo spelaea), 12 historic lions (Panthera leo leo/Panthera leo melanochaita) that lived between the 15th and 20th centuries outside the current geographic distribution of lions, and 6 present-day lions from Africa and India. We found that cave and modern lions shared an ancestor ca. 500,000 y ago and that the 2 lineages likely did not hybridize following their divergence. Within modern lions, we found 2 main lineages that diverged ca. 70,000 y ago, with clear evidence of subsequent gene flow. Our data also reveal a nearly complete absence of genetic diversity within Indian lions, probably due to well-documented extremely low effective population sizes in the recent past. Our results contribute toward the understanding of the evolutionary history of lions and complement conservation efforts to protect the diversity of this vulnerable species.
  2. Zhang W, Liang Y, Zheng K, Gu C, Liu Y, Wang Z, et al.
    BMC Genomics, 2021 Sep 20;22(1):675.
    PMID: 34544379 DOI: 10.1186/s12864-021-07978-4
    BACKGROUND: Marine bacteriophages play key roles in the community structure of microorganisms, biogeochemical cycles, and the mediation of genetic diversity through horizontal gene transfer. Recently, traditional isolation methods, complemented by high-throughput sequencing metagenomics technology, have greatly increased our understanding of the diversity of bacteriophages. Oceanospirillum, within the order Oceanospirillales, are important symbiotic marine bacteria associated with hydrocarbon degradation and algal blooms, especially in polar regions. However, until now there has been no isolate of an Oceanospirillum bacteriophage, and so details of their metagenome has remained unknown.

    RESULTS: Here, we reported the first Oceanospirillum phage, vB_OliS_GJ44, which was assembled into a 33,786 bp linear dsDNA genome, which includes abundant tail-related and recombinant proteins. The recombinant module was highly adapted to the host, according to the tetranucleotides correlations. Genomic and morphological analyses identified vB_OliS_GJ44 as a siphovirus, however, due to the distant evolutionary relationship with any other known siphovirus, it is proposed that this virus could be classified as the type phage of a new Oceanospirivirus genus within the Siphoviridae family. vB_OliS_GJ44 showed synteny with six uncultured phages, which supports its representation in uncultured environmental viral contigs from metagenomics. Homologs of several vB_OliS_GJ44 genes have mostly been found in marine metagenomes, suggesting the prevalence of this phage genus in the oceans.

    CONCLUSIONS: These results describe the first Oceanospirillum phage, vB_OliS_GJ44, that represents a novel viral cluster and exhibits interesting genetic features related to phage-host interactions and evolution. Thus, we propose a new viral genus Oceanospirivirus within the Siphoviridae family to reconcile this cluster, with vB_OliS_GJ44 as a representative member.

  3. Zhang W, Liu Y, Zheng K, Xing J, Li Q, Gu C, et al.
    PMID: 36975807 DOI: 10.1128/aem.01896-22
    The marine bacterial family Oceanospirillaceae, is well-known for its ability to degrade hydrocarbons and for its close association with algal blooms. However, only a few Oceanospirillaceae-infecting phages have been reported thus far. Here, we report on a novel Oceanospirillum phage, namely, vB_OsaM_PD0307, which has a 44,421 bp linear dsDNA genome and is the first myovirus infecting Oceanospirillaceae. A genomic analysis demonstrated that vB_OsaM_PD0307 is a variant of current phage isolates from the NCBI data set but that it has similar genomic features to two high-quality, uncultured viral genomes identified from marine metagenomes. Hence, we propose that vB_OsaM_PD0307 can be classified as the type phage of a new genus, designated Oceanospimyovirus. Additionally, metagenomic read mapping results have further shown that Oceanospimyovirus species are widespread in the global ocean, display distinct biogeographic distributions, and are abundant in polar regions. In summary, our findings expand the current understanding of the genomic characteristics, phylogenetic diversity, and distribution of Oceanospimyovirus phages. IMPORTANCE Oceanospirillum phage vB_OsaM_PD0307 is the first myovirus found to infect Oceanospirillaceae, and it represents a novel abundant viral genus in polar regions. This study provides insights into the genomic, phylogenetic, and ecological characteristics of the new viral genus, namely Oceanospimyovirus.
  4. Yang J, Lu J, Zhu Q, Tao Y, Zhu Q, Guo C, et al.
    J Biosci Bioeng, 2021 Aug;132(2):161-166.
    PMID: 33972168 DOI: 10.1016/j.jbiosc.2020.12.016
    As one of Lianyungang's most famous specialties, Acanthogobius hasta is delicious and nutritious fish, but is extremely susceptible to spoilage during transportation and storage. In this study, Lactobacillus plantarum MMB-07 was isolated from traditional fermented sour fish to reduce losses and improve the utilization and food value of A. hasta. L. plantarum MMB-07 had good ability of acid production and acid resistance. Moreover, it could also inhibit common pathogens in food or aquatic products to ensure the safety of fermented products. MMB-07 was used to ferment A. hasta and obtain fermented Suanyu rich in nutrition value and good flavor. The volatile base nitrogen was 18.44 mg/100 g and the fermented fish meat maintained second-grade freshness. Thiobarbituric acid assay was 0.90 mg/kg and fat in fish meat was oxidized to a low degree. The studies indicated that MMB-07 has a high application prospect in low salt fermented fish.
  5. Xu X, Liu R, Li Y, Zhang C, Guo C, Zhu J, et al.
    Mol Neurobiol, 2024 Jan 23.
    PMID: 38261255 DOI: 10.1007/s12035-024-03954-7
    Spinal cord injury (SCI) is an unfortunate experience that may generate extensive sensory and motor disabilities due to the destruction and passing of nerve cells. MicroRNAs are small RNA molecules that do not code for proteins but instead serve to regulate protein synthesis by targeting messenger RNA's expression. After SCI, secondary damage like apoptosis, oxidative stress, inflammation, and autophagy occurs, and differentially expressed microRNAs show a function in these procedures. Almost all animal and plant cells release exosomes, which are sophisticated formations of lipid membranes. These exosomes have the capacity to deliver significant materials, such as proteins, RNAs and lipids, to cells in need, regulating their functions and serving as a way of communication. This new method offers a fresh approach to treating spinal cord injury. Obviously, the exosome has the benefit of conveying the transported material across performing regulatory activities and the blood-brain barrier. Among the exosome cargoes, microRNAs, which modulate their mRNA targets, show considerable promise in the pathogenic diagnosis, process, and therapy of SCI. Herein, we describe the roles of microRNAs in SCI. Furthermore, we emphasize the importance of exosomal microRNAs in this disease.
  6. Wang Z, Zhang F, Liang Y, Zheng K, Gu C, Zhang W, et al.
    Microbiol Spectr, 2021 10 31;9(2):e0046321.
    PMID: 34643440 DOI: 10.1128/Spectrum.00463-21
    Alteromonas is a ubiquitous, abundant, copiotrophic and phytoplankton-associated marine member of the Gammaproteobacteria with a range extending from tropical waters to polar regions and including hadal zones. Here, we describe a novel Alteromonas phage, ZP6, that was isolated from surface coastal waters of Qingdao, China. ZP6 contains a linear, double-stranded, 38,080-bp DNA molecule with 50.1% G+C content and 47 putative open reading frames (ORFs). Three auxiliary metabolic genes were identified, encoding metal-dependent phosphohydrolase, diaminopurine synthetase, and nucleotide pyrophosphohydrolase. The first two ORFs facilitate the replacement of adenine (A) by diaminopurine (Z) in phage genomes and help phages to evade attack from host restriction enzymes. The nucleotide pyrophosphohydrolase enables the host cells to stop programmed cell death and improves the survival rate of the host in a nutrient-depleted environment. Phylogenetic analysis based on the amino acid sequences of whole genomes and comparative genomic analysis revealed that ZP6 is most closely related to Enhodamvirus but with low similarity (shared genes, <30%, and average nucleotide sequence identity, <65%); it is distinct from other bacteriophages. Together, these results suggest that ZP6 could represent a novel viral genus, here named Mareflavirus. Combining its ability to infect Alteromonas, its harboring of a diaminopurine genome-biosynthetic system, and its representativeness of an understudied viral group, ZP6 could be an important and novel model system for marine virus research. IMPORTANCE Alteromonas is an important symbiotic bacterium of phytoplankton, but research on its bacteriophages is still at an elementary level. Our isolation and genome characterization of a novel Alteromonas podovirus, ZP6, identified a new viral genus of podovirus, namely, Mareflavirus. The ZP6 genome, with a diaminopurine genome-biosynthetic system, is different from those of other isolated Alteromonas phages and will bring new impetus to the development of virus classification and provide important insights into novel viral sequences from metagenomic data sets.
  7. Teng XJ, Ng WM, Chong WH, Chan DJC, Mohamud R, Ooi BS, et al.
    Langmuir, 2021 08 03;37(30):9192-9201.
    PMID: 34255525 DOI: 10.1021/acs.langmuir.1c01345
    The changes in the transport behavior of a microswimmer before and after cargo loading are crucial to understanding and control of the motion of a biohybrid microbot. In this work, we show the change in swimming behavior of biflagellated microalgae Chlamydomonas reinhardtii picking up a 4.5 μm polystyrene microbead upon collision. The microswimmer changed from linear forward motion into helical motion upon the attachment of the cargo and swam with a decreased swimming velocity. We revealed the helical motion of the microswimmer upon cargo loading due to suppression of flagella by image analysis of magnified time-lapse images of C. reinhardtii with one microbead attached at the anterior end (between the flagella). Furthered suppression on the flagellum imposed by the loading of the second cargo has led to increased oscillation per displacement traveled and decreased swimming velocity. Moreover, the microswimmer with a microbead attached at the posterior end swam with swimming velocity close to free swimming microalgae and did not exhibit helical swimming behavior. The experimental results and analysis showed that the loading location of the cargo has a great influence over the swimming behavior of the microswimmer. Furthermore, the work balance calculation and mathematical analysis based on Lighthill's model are well consistent with our experimental findings.
  8. Promsuwan K, Soleh A, Saisahas K, Saichanapan J, Kanatharana P, Thavarungkul P, et al.
    J Colloid Interface Sci, 2021 Sep;597:314-324.
    PMID: 33872888 DOI: 10.1016/j.jcis.2021.03.162
    A unique nanocomposite was fabricated using negatively charged manganese dioxide nanoparticles, poly (3,4-ethylenedioxythiophene) and reduced graphene oxide (MnO2/PEDOT/rGO). The nanocomposite was deposited on a glassy carbon electrode (GCE) functionalized with amino groups. The modified GCE was used to electrochemically detect dopamine (DA). The surface morphology, charge effect and electrochemical behaviours of the modified GCE were characterized by scanning electron microscopy, energy dispersive X-ray analysis (EDX), cyclic voltammetry and electrochemical impedance spectroscopy, respectively. The MnO2/PEDOT/rGO/GCE exhibited excellent performance towards DA sensing with a linear range between 0.05 and 135 µM with a lowest detection limit of 30 nM (S/N = 3). Selectivity towards DA was high in the presence of high concentrations of the typical interferences ascorbic acid and uric acid. The stability and reproducibility of the electrode were good. The sensor accurately determined DA in human serum. The synergic effect of the multiple components of the fabricated nanocomposite were critical to the good DA sensing performance. rGO provided a conductive backbone, PEDOT directed the uniform growth of MnO2 and adsorbed DA via pi-pi and electrostatic interaction, while the negatively charged MnO2 provided adsorption and catalytic sites for protonated DA. This work produced a promising biosensor that sensitively and selectively detected DA.
  9. Ng WM, Che HX, Guo C, Liu C, Low SC, Chieh Chan DJ, et al.
    Langmuir, 2018 07 10;34(27):7971-7980.
    PMID: 29882671 DOI: 10.1021/acs.langmuir.8b01210
    An artificial magnetotactic microbot was created by integrating the microalgal cell with magnetic microbead for its potential application as biomotor in microscale environment. Here, we demonstrate the remote magnetotactic control of the microbot under a low gradient magnetic field (<100 T/m). We characterize the kinematic behavior of the microbots carrying magnetic microbeads of two different sizes, with diameter of 2 and 4.5 μm, in the absence and presence of magnetic field. In the absence of magnetic field, we observed the microbot showed a helical motion as a result of the misalignment between the thrust force and the symmetry axis after the attachment. The microbot bound with a larger magnetic microbead moved with higher translational velocity but rotated slower about its axis of rotation. The viscous force was balanced by the thrust force of the microbot, resulting in a randomized swimming behavior of the microbot at its terminal velocity. Meanwhile, under the influence of a low gradient magnetic field, we demonstrated that the directional control of the microbot was based on following principles: (1) magnetophoretic force was insignificant on influencing its perpendicular motion and (2) its parallel motion was dependent on both self-swimming and magnetophoresis, in which this cooperative effect was a function of separation distance from the magnet. As the microbot approached the magnet, the magnetophoretic force suppressed its self-swimming behavior, leading to a positive magnetotaxis of the microbot toward the source of magnetic field. Our experimental results and kinematic analysis revealed the contribution of mass density variation of particle-and-cell system on influencing its dynamical behavior.
  10. Mohd Yunus SS, Soh HY, Abdul Rahman M, Peng X, Guo C, Ramli R
    Front Physiol, 2023;14:1021429.
    PMID: 37179831 DOI: 10.3389/fphys.2023.1021429
    Medication related osteonecrosis of the jaw (MRONJ) is a condition caused by inhibition of the osteoclast activity by the anti-resorptive and anti-angiogenic drugs. Clinically, there is an exposure of the necrotic bone or a fistula which fails to heal for more than 8 weeks. The adjacent soft tissue is inflamed and pus may be present as a result of the secondary infection. To date, there is no consistent biomarker that could aid in the diagnosis of the disease. The aim of this review was to explore the literature on the microRNAs (miRNAs) related to medication related osteonecrosis of the jaw, and to describe the role of each miRNA as a biomarker for diagnostic purpose and others. Its role in therapeutics was also searched. It was shown that miR-21, miR-23a, and miR-145 were significantly different in a study involving multiple myeloma patients as well as in a human-animal study while miR-23a-3p and miR-23b-3p were 12- to 14-fold upregulated compared to the control group in an animal study. The role of the microRNAs in these studies were for diagnostics, predictor of progress of MRONJ and pathogenesis. Apart from its potential diagnostics role, microRNAs have been shown to be bone resorption regulator through miR-21, miR-23a and miR-145 and this could be utilized therapeutically.
  11. Liu Y, Zheng K, Liu B, Liang Y, You S, Zhang W, et al.
    Front Microbiol, 2021;12:726074.
    PMID: 34512604 DOI: 10.3389/fmicb.2021.726074
    Marinobacter is the abundant and important algal-associated and hydrocarbon biodegradation bacteria in the ocean. However, little knowledge about their phages has been reported. Here, a novel siphovirus, vB_MalS-PS3, infecting Marinobacter algicola DG893(T), was isolated from the surface waters of the western Pacific Ocean. Transmission electron microscopy (TEM) indicated that vB_MalS-PS3 has the morphology of siphoviruses. VB_MalS-PS3 was stable from -20 to 55°C, and with the latent and rise periods of about 80 and 10 min, respectively. The genome sequence of VB_MalS-PS3 contains a linear, double-strand 42,168-bp DNA molecule with a G + C content of 56.23% and 54 putative open reading frames (ORFs). Nineteen conserved domains were predicted by BLASTp in NCBI. We found that vB_MalS-PS3 represent an understudied viral group with only one known isolate. The phylogenetic tree based on the amino acid sequences of whole genomes revealed that vB_MalS-PS3 has a distant evolutionary relationship with other siphoviruses, and can be grouped into a novel viral genus cluster with six uncultured assembled viral genomes from metagenomics, named here as Marinovirus. This study of the Marinobacter phage vB_MalS-PS3 genome enriched the genetic database of marine bacteriophages, in addition, will provide useful information for further research on the interaction between Marinobacter phages and their hosts, and their relationship with algal blooms and hydrocarbon biodegradation in the ocean.
  12. Li M, Zhang H, Zhang W, Cao Y, Sun B, Jiang Q, et al.
    Sci Total Environ, 2023 Mar 14;876:162807.
    PMID: 36921865 DOI: 10.1016/j.scitotenv.2023.162807
    In Shanghai, the prevalence of tet(X4) and tet(X4)-carrying plasmid from food-producing -animal Enterobacteriales has not been intensively investigated. Here, five tet(X4)-positive swine-origin E. coli strains were characterized among 652 food-producing-animal E. coli isolates in Shanghai during 2018-2021 using long-term surveillance among poultry, swine and cattle, antimicrobial susceptibility testing, and tet(X4)-specific PCR. A combination of short- and long-read sequencing technologies demonstrated that the five strains with 4 STs carried a nearly identical 193 kb tet(X4)-bearing plasmid (p193k-tetX4) belonging to the same IncFIA(HI1)/IncHI1A/IncHIB plasmid family (p193k). Surprisingly, 34 of the 151 global tet(X4)-positive plasmids was the p193k members and exclusively pandemic in China. Other p193k members harboring many critically important ARGs (mcr or blaNDM) with particular genetic environment are widespread throughout human-animal-environmental sources, with 33.77 % human origin. Significantly, phylogenetic analysis of 203 p193k-tetX4 sequences revealed that human- and animal-origin plasmids clustered within the same phylogenetic subgroups. The largest lineage (173/203) comprised 161 E. coli, 6 Klebsiella, 3 Enterobacter, 2 Citrobacter, and 1 Leclercia spp. from animals (n = 143), humans (n = 18), and the environment (n = 9). Intriguingly, the earliest 2015 E. coli strain YA_GR3 from Malaysian river water and 2016 S. enterica Chinese clinical strain GX1006 in another lineage demonstrated that p193k-tetX4 have been widely spread from S. enterica or E. coli to other Enterobacterales. Furthermore, 180 E. coli p193k-tetX4 strains were widespread cross-sectorial transmission among food animals, pets, migratory birds, human and ecosystems. Our findings proved the extensive transmission of the high-risk p193k harboring crucial ARGs across multiple interfaces and species. Therefore, one-health-based systemic surveillance of these similar high-risk plasmids across numerous sources and bacterial species is extremely essential.
  13. Li G, Wong TW, Shih B, Guo C, Wang L, Liu J, et al.
    Nat Commun, 2023 Nov 04;14(1):7097.
    PMID: 37925504 DOI: 10.1038/s41467-023-42882-3
    The deep ocean, Earth's untouched expanse, presents immense challenges for exploration due to its extreme pressure, temperature, and darkness. Unlike traditional marine robots that require specialized metallic vessels for protection, deep-sea species thrive without such cumbersome pressure-resistant designs. Their pressure-adaptive forms, unique propulsion methods, and advanced senses have inspired innovation in designing lightweight, compact soft machines. This perspective addresses challenges, recent strides, and design strategies for bioinspired deep-sea soft robots. Drawing from abyssal life, it explores the actuation, sensing, power, and pressure resilience of multifunctional deep-sea soft robots, offering game-changing solutions for profound exploration and operation in harsh conditions.
  14. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  15. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  16. Hu J, Pradit S, Loh PS, Chen Z, Guo C, Le TPQ, et al.
    Mar Pollut Bull, 2024 Jan 29;200:116064.
    PMID: 38290368 DOI: 10.1016/j.marpolbul.2024.116064
    Mangrove forests can help to mitigate climate change by storing a significant amount of carbon (C) in soils. Planted mangrove forests have been established to combat anthropogenic threats posed by climate change. However, the efficiency of planted forests in terms of soil organic carbon (SOC) storage and dynamics relative to that of natural forests is unclear. We assessed SOC and nutrient storage, SOC sources and drivers in a natural and a planted forest in southern Thailand. Although the planted forest stored more C and nutrients than the natural forest, the early-stage planted forest was not a strong sink relative to mudflat. Both forests were predominated by allochthonous organic C and nitrogen limited, with total nitrogen being a major driver of SOC in both cases. SOC showed a significant decline along land-to-sea and depth gradients as a result of soil texture, nutrient availability, and pH in the natural forest.
  17. Hashemi F, Hoepner L, Hamidinejad FS, Haluza D, Afrashteh S, Abbasi A, et al.
    Environ Sci Pollut Res Int, 2023 Jun;30(28):72368-72388.
    PMID: 37166731 DOI: 10.1007/s11356-023-27197-6
    COVID-19 has affected all aspects of human life so far. From the outset of the pandemic, preventing the spread of COVID-19 through the observance of health protocols, especially the use of sanitizers and disinfectants was given more attention. Despite the effectiveness of disinfection chemicals in controlling and preventing COVID-19, there are critical concerns about their adverse effects on human health. This study aims to assess the health effects of sanitizers and disinfectants on a global scale. A total of 91,056 participants from 154 countries participated in this cross-sectional study. Information on the use of sanitizers and disinfectants and health was collected using an electronic questionnaire, which was translated into 26 languages via web-based platforms. The findings of this study suggest that detergents, alcohol-based substances, and chlorinated compounds emerged as the most prevalent chemical agents compared to other sanitizers and disinfectants examined. Most frequently reported health issues include skin effects and respiratory effects. The Chi-square test showed a significant association between chlorinated compounds (sodium hypochlorite and per-chlorine) with all possible health effects under investigation (p-value <0.001). Examination of risk factors based on multivariate logistic regression analysis showed that alcohols and alcohols-based materials were associated with skin effects (OR, 1.98; 95%CI, 1.87-2.09), per-chlorine was associated with eye effects (OR, 1.83; 95%CI, 1.74-1.93), and highly likely with itching and throat irritation (OR, 2.00; 95%CI, 1.90-2.11). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). Furthermore, formaldehyde was associated with a higher prevalence of neurological effects (OR, 2.17; 95%CI, 1.92-2.44). The use of sodium hypochlorite and per-chlorine also had a high chance of having respiratory effects. The findings of the current study suggest that health authorities need to implement more awareness programs about the side effects of using sanitizers and disinfectants during viral epidemics especially when they are used or overused.
  18. Han M, Sun J, Yang Q, Liang Y, Jiang Y, Gao C, et al.
    mSystems, 2023 Feb 23.
    PMID: 36815859 DOI: 10.1128/msystems.01211-22
    The world's largest macroalgal green tide, caused by Ulva prolifera, has resulted in serious consequences for coastal waters of the Yellow Sea, China. Although viruses are considered to be one of the key factors in controlling microalgal bloom demise, understanding of the relationship between viral communities and the macroalgal green tide is still poor. Here, a Qingdao coastal virome (QDCV) time-series data set was constructed based on the metagenomic analysis of 17 DNA viromes along three coastal stations of the Yellow Sea, covering different stages of the green tide from Julian days 165 to 271. A total of 40,076 viral contigs were detected and clustered into 28,058 viral operational taxonomic units (vOTUs). About 84% of the vOTUs could not be classified, and 62% separated from vOTUs in other ecosystems. Green tides significantly influenced the spatiotemporal dynamics of the viral community structure, diversity, and potential functions. For the classified vOTUs, the relative abundance of Pelagibacter phages declined with the arrival of the bloom and rebounded after the bloom, while Synechococcus and Roseobacter phages increased, although with a time lag from the peak of their hosts. More than 80% of the vOTUs reached peaks in abundance at different specific stages, and the viral peaks were correlated with specific hosts at different stages of the green tide. Most of the viral auxiliary metabolic genes (AMGs) were associated with carbon and sulfur metabolism and showed spatiotemporal dynamics relating to the degradation of the large amount of organic matter released by the green tide. IMPORTANCE To the best of our knowledge, this study is the first to investigate the responses of viruses to the world's largest macroalgal green tide. It revealed the spatiotemporal dynamics of the unique viral assemblages and auxiliary metabolic genes (AMGs) following the variation and degradation of Ulva prolifera. These findings demonstrate a tight coupling between viral assemblages, and prokaryotic and eukaryotic abundances were influenced by the green tide.
  19. Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, et al.
    Microbiol Spectr, 2022 Aug 31;10(4):e0058522.
    PMID: 35862991 DOI: 10.1128/spectrum.00585-22
    Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links