Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, et al.
    Gigascience, 2024 Jan 02;13.
    PMID: 38486346 DOI: 10.1093/gigascience/giae006
    Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.
  2. Lee TH, Uchiyama S, Kusuma Y, Chiu HC, Navarro JC, Tan KS, et al.
    Front Neurol, 2024;15:1346177.
    PMID: 38356890 DOI: 10.3389/fneur.2024.1346177
    BACKGROUND: Stroke burden is largely due to long-term impairments requiring prolonged care with loss of productivity. We aimed to identify and assess studies of different registered pharmacological therapies as treatments to improve post-stroke impairments and/or disabilities.

    METHODS: We performed a systematic-search-and-review of treatments that have been investigated as recovery-enhancing or recovery-promoting therapies in adult patients with stroke. The treatment must have received registration or market authorization in any country regardless of primary indication. Outcomes included in the review were neurological impairments and functional/disability assessments. "The best available studies" based on study design, study size, and/or date of publication were selected and graded for level of evidence (LOE) by consensus.

    RESULTS: Our systematic search yielded 7,801 citations, and we reviewed 665 full-text papers. Fifty-eight publications were selected as "the best studies" across 25 pharmacological classes: 31 on ischemic stroke, 21 on ischemic or hemorrhagic stroke, 4 on intracerebral hemorrhage, and 2 on subarachnoid hemorrhage (SAH). Twenty-six were systematic reviews/meta-analyses, 29 were randomized clinical trials (RCTs), and three were cohort studies. Only nimodipine for SAH had LOE A of benefit (systematic review and network meta-analysis). Many studies, some of which showed treatment effects, were assessed as LOE C-LD, mainly due to small sample sizes or poor quality. Seven interventions had LOE B-R (systematic review/meta-analysis or RCT) of treatment effects.

    CONCLUSION: Only one commercially available treatment has LOE A for routine use in stroke. Further studies of putative neuroprotective drugs as adjunctive treatment to revascularization procedures and more confirmatory trials on recovery-promoting therapies will enhance the certainty of their benefit. The decision on their use must be guided by the clinical profile, neurological impairments, and target outcomes based on the available evidence.

    SYSTEMATIC REVIEW REGISTRATION: https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=376973, PROSPERO, CRD42022376973.

  3. Zhang M, Zhang F, Guo L, Dong P, Cheng C, Kumar P, et al.
    J Environ Manage, 2023 Dec 15;348:119465.
    PMID: 37924697 DOI: 10.1016/j.jenvman.2023.119465
    Grassland degradation poses a serious threat to biodiversity, ecosystem services, and human well-being. In this study, we investigated grassland degradation in Zhaosu County, China, between 2001 and 2020, and analyzed the impacts of climate change and human activities using the Miami model. The actual net primary productivity (ANPP) obtained with CASA (Carnegie-Ames-Stanford Approach) modeling, showed a decreasing trend, reflecting the significant degradation that the grasslands in Zhaosu County have experienced in the past 20 years. Grassland degradation was found to be highest in 2018, while the degraded area continuously decreased in the last 3 years (2018-2020). Climatic factors for found to be the dominant factor affecting grassland degradation, particularly the decrease in precipitation. On the other hand, human activities were found to be the main factor affecting improvement of grasslands, especially in recent years. This finding profoundly elucidates the underlying causes of grassland degradation and improvement and helps implement ecological conservation and restoration measures. From a practical perspective, the research results provide an important reference for the formulation of policies and management strategies for sustainable land use.
  4. Guo L, Wang Y, Xu X, Cheng KK, Long Y, Xu J, et al.
    J Proteome Res, 2021 01 01;20(1):346-356.
    PMID: 33241931 DOI: 10.1021/acs.jproteome.0c00431
    Identification of phosphorylation sites is an important step in the function study and drug design of proteins. In recent years, there have been increasing applications of the computational method in the identification of phosphorylation sites because of its low cost and high speed. Most of the currently available methods focus on using local information around potential phosphorylation sites for prediction and do not take the global information of the protein sequence into consideration. Here, we demonstrated that the global information of protein sequences may be also critical for phosphorylation site prediction. In this paper, a new deep neural network model, called DeepPSP, was proposed for the prediction of protein phosphorylation sites. In the DeepPSP model, two parallel modules were introduced to extract both local and global features from protein sequences. Two squeeze-and-excitation blocks and one bidirectional long short-term memory block were introduced into each module to capture effective representations of the sequences. Comparative studies were carried out to evaluate the performance of DeepPSP, and four other prediction methods using public data sets The F1-score, area under receiver operating characteristic curves (AUROC), and area under precision-recall curves (AUPRC) of DeepPSP were found to be 0.4819, 0.82, and 0.50, respectively, for S/T general site prediction and 0.4206, 0.73, and 0.39, respectively, for Y general site prediction. Compared with the MusiteDeep method, the F1-score, AUROC, and AUPRC of DeepPSP were found to increase by 8.6, 2.5, and 8.7%, respectively, for S/T general site prediction and by 20.6, 5.8, and 18.2%, respectively, for Y general site prediction. Among the tested methods, the developed DeepPSP method was also found to produce best results for different kinase-specific site predictions including CDK, mitogen-activated protein kinase, CAMK, AGC, and CMGC. Taken together, the developed DeepPSP method may offer a more accurate phosphorylation site prediction by including global information. It may serve as an alternative model with better performance and interpretability for protein phosphorylation site prediction.
  5. Qiu J, Jia L, Wu D, Weng X, Chen L, Sun J, et al.
    Genome Biol, 2020 03 26;21(1):70.
    PMID: 32213201 DOI: 10.1186/s13059-020-01980-x
    BACKGROUND: Worldwide feralization of crop species into agricultural weeds threatens global food security. Weedy rice is a feral form of rice that infests paddies worldwide and aggressively outcompetes cultivated varieties. Despite increasing attention in recent years, a comprehensive understanding of the origins of weedy crop relatives and how a universal feralization process acts at the genomic and molecular level to allow the rapid adaptation to weediness are still yet to be explored.

    RESULTS: We use whole-genome sequencing to examine the origin and adaptation of 524 global weedy rice samples representing all major regions of rice cultivation. Weed populations have evolved multiple times from cultivated rice, and a strikingly high proportion of contemporary Asian weed strains can be traced to a few Green Revolution cultivars that were widely grown in the late twentieth century. Latin American weedy rice stands out in having originated through extensive hybridization. Selection scans indicate that most genomic regions underlying weedy adaptations do not overlap with domestication targets of selection, suggesting that feralization occurs largely through changes at loci unrelated to domestication.

    CONCLUSIONS: This is the first investigation to provide detailed genomic characterizations of weedy rice on a global scale, and the results reveal diverse genetic mechanisms underlying worldwide convergent rice feralization.

  6. Uchiyama Y, Yamaguchi D, Iwama K, Miyatake S, Hamanaka K, Tsuchida N, et al.
    Hum Mutat, 2021 01;42(1):50-65.
    PMID: 33131168 DOI: 10.1002/humu.24129
    Many algorithms to detect copy number variations (CNVs) using exome sequencing (ES) data have been reported and evaluated on their sensitivity and specificity, reproducibility, and precision. However, operational optimization of such algorithms for a better performance has not been fully addressed. ES of 1199 samples including 763 patients with different disease profiles was performed. ES data were analyzed to detect CNVs by both the eXome Hidden Markov Model (XHMM) and modified Nord's method. To efficiently detect rare CNVs, we aimed to decrease sequencing biases by analyzing, at the same time, the data of all unrelated samples sequenced in the same flow cell as a batch, and to eliminate sex effects of X-linked CNVs by analyzing female and male sequences separately. We also applied several filtering steps for more efficient CNV selection. The average number of CNVs detected in one sample was <5. This optimization together with targeted CNV analysis by Nord's method identified pathogenic/likely pathogenic CNVs in 34 patients (4.5%, 34/763). In particular, among 142 patients with epilepsy, the current protocol detected clinically relevant CNVs in 19 (13.4%) patients, whereas the previous protocol identified them in only 14 (9.9%) patients. Thus, this batch-based XHMM analysis efficiently selected rare pathogenic CNVs in genetic diseases.
  7. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  8. Zhao Y, Han F, Guo L, Zhang J, Zhang H, Abdelaziz IIM, et al.
    Waste Manag, 2021 Dec;136:184-194.
    PMID: 34689097 DOI: 10.1016/j.wasman.2021.10.018
    Postconsumer polyethylene terephthalate (PET) has potential applications in many areas of manufacturing, but contamination by hazardous polyvinyl chloride (PVC) in common waste streams can reduce its recyclable value. Separating collected PET-PVC mixtures before recycling remains very challenging because of the similar physicochemical properties of PET and PVC. Herein, we describe a novel flotation process with corona modification pretreatment to facilitate the separation of PET-PVC mixtures. Through water contact angle, surface free energy, X-ray photoelectron and FT-IR characterization, we found that polar hydroxyl groups can be more easily introduced on the PVC surface than on the PET surface induced by corona modification. This selective wetting can suppress the floatability of PVC, leading to the separation of PET as floating product. A reliable mechanism including two different hydrogen-abstraction pathways was established. Response surface methodology consisting of Plackett-Burman and Box-Behnken designs was adopted for optimization of the combined process, and control parameters were solved based on high-quality prediction models, with fitting from significant variables and interactions. For physical or chemical circulation strategies with PET purity prioritization, the validated purity of the product reached 96.05% at a 626 W corona power, 5.42 m/min passing speed, 24.78 mg/L frother concentration and 286 L/h air flow rate. For the energy recuperation strategy with PET recovery prioritization, the factual recovery reached 98.08% under a 601 W corona power, 6.04 m/min passing speed, 27.55 mg/L frother concentration and 184 L/h air flow rate. The current work provides technological insights into the cleaner disposal of waste plastics.
  9. Guo L, Zhu XQ, Hu CH, Ristaino JB
    Phytopathology, 2010 Oct;100(10):997-1006.
    PMID: 20839935 DOI: 10.1094/PHYTO-05-09-0126
    One hundred isolates of Phytophthora infestans collected from 10 provinces in China between 1998 and 2004 were analyzed for mating type, metalaxyl resistance, mitochondrial DNA (mtDNA) haplotype, allozyme genotype, and restriction fragment length polymorphism (RFLP) with the RG-57 probe. In addition, herbarium samples collected in China, Russia, Australia, and other Asian countries were also typed for mtDNA haplotype. The Ia haplotype was found during the first outbreaks of the disease in China (1938 and 1940), Japan (1901, 1930, and 1931), India (1913), Peninsular Malaysia (1950), Nepal (1954), The Philippines (1910), Australia (1917), Russia (1917), and Latvia (1935). In contrast, the Ib haplotype was found after 1950 in China on both potato and tomato (1952, 1954, 1956, and 1982) and in India (1968 and 1974). Another migration of a genotype found in Siberia called SIB-1 (Glucose-6-phosphate isomerase [Gpi] 100/100, Peptidase [Pep] 100/100, IIa mtDNA haplotype) was identified using RFLP fingerprints among 72% of the isolates and was widely distributed in the north and south of China and has also been reported in Japan. A new genotype named CN-11 (Gpi 100/111, Pep 100/100, IIb mtDNA haplotype), found only in the south of China, and two additional genotypes (Gpi 100/100, Pep 100/100, Ia mtDNA haplotype) named CN-9 and CN-10 were identified. There were more diverse genotypes among isolates from Yunnan province than elsewhere. The SIB-1 (IIa) genotype is identical to those from Siberia, suggesting later migration of this genotype from either Russia or Japan into China. The widespread predominance of SIB-1 suggests that this genotype has enhanced fitness compared with other genotypes found. Movement of the pathogen into China via infected seed from several sources most likely accounts for the distribution of pathogen genotypes observed. MtDNA haplotype evidence and RFLP data suggest multiple migrations of the pathogen into China after the initial introduction of the Ia haplotype in the 1930s.
  10. Wu D, Shen E, Jiang B, Feng Y, Tang W, Lao S, et al.
    Nat Commun, 2022 02 03;13(1):689.
    PMID: 35115514 DOI: 10.1038/s41467-022-28359-9
    As one of the great survivors of the plant kingdom, barnyard grasses (Echinochloa spp.) are the most noxious and common weeds in paddy ecosystems. Meanwhile, at least two Echinochloa species have been domesticated and cultivated as millets. In order to better understand the genomic forces driving the evolution of Echinochloa species toward weed and crop characteristics, we assemble genomes of three Echinochloa species (allohexaploid E. crus-galli and E. colona, and allotetraploid E. oryzicola) and re-sequence 737 accessions of barnyard grasses and millets from 16 rice-producing countries. Phylogenomic and comparative genomic analyses reveal the complex and reticulate evolution in the speciation of Echinochloa polyploids and provide evidence of constrained disease-related gene copy numbers in Echinochloa. A population-level investigation uncovers deep population differentiation for local adaptation, multiple target-site herbicide resistance mutations of barnyard grasses, and limited domestication of barnyard millets. Our results provide genomic insights into the dual roles of Echinochloa species as weeds and crops as well as essential resources for studying plant polyploidization, adaptation, precision weed control and millet improvements.
  11. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  12. Liu L, Mo Z, Liang Z, Zhang Y, Li R, Ong KC, et al.
    BMC Med, 2015;13:226.
    PMID: 26381232 DOI: 10.1186/s12916-015-0448-7
    To investigate the long-term effects on immunity of an inactivated enterovirus 71 (EV71) vaccine and its protective efficacy.
  13. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
  14. Kou M, Huang L, Yang J, Chiang Z, Chen S, Liu J, et al.
    Cell Death Dis, 2022 Jul 04;13(7):580.
    PMID: 35787632 DOI: 10.1038/s41419-022-05034-x
    Mesenchymal stem cells (MSCs) can be widely isolated from various tissues including bone marrow, umbilical cord, and adipose tissue, with the potential for self-renewal and multipotent differentiation. There is compelling evidence that the therapeutic effect of MSCs mainly depends on their paracrine action. Extracellular vesicles (EVs) are fundamental paracrine effectors of MSCs and play a crucial role in intercellular communication, existing in various body fluids and cell supernatants. Since MSC-derived EVs retain the function of protocells and have lower immunogenicity, they have a wide range of prospective therapeutic applications with advantages over cell therapy. We describe some characteristics of MSC-EVs, and discuss their role in immune regulation and regeneration, with emphasis on the molecular mechanism and application of MSC-EVs in the treatment of fibrosis and support tissue repair. We also highlight current challenges in the clinical application of MSC-EVs and potential ways to overcome the problem of quality heterogeneity.
  15. Chaisson MJP, Sanders AD, Zhao X, Malhotra A, Porubsky D, Rausch T, et al.
    Nat Commun, 2019 04 16;10(1):1784.
    PMID: 30992455 DOI: 10.1038/s41467-018-08148-z
    The incomplete identification of structural variants (SVs) from whole-genome sequencing data limits studies of human genetic diversity and disease association. Here, we apply a suite of long-read, short-read, strand-specific sequencing technologies, optical mapping, and variant discovery algorithms to comprehensively analyze three trios to define the full spectrum of human genetic variation in a haplotype-resolved manner. We identify 818,054 indel variants (<50 bp) and 27,622 SVs (≥50 bp) per genome. We also discover 156 inversions per genome and 58 of the inversions intersect with the critical regions of recurrent microdeletion and microduplication syndromes. Taken together, our SV callsets represent a three to sevenfold increase in SV detection compared to most standard high-throughput sequencing studies, including those from the 1000 Genomes Project. The methods and the dataset presented serve as a gold standard for the scientific community allowing us to make recommendations for maximizing structural variation sensitivity for future genome sequencing studies.
  16. Guo L, Zhu J, Wang K, Cheng KK, Xu J, Dong L, et al.
    Anal Chem, 2023 Jun 27;95(25):9714-9721.
    PMID: 37296503 DOI: 10.1021/acs.analchem.3c02002
    High-resolution reconstruction has attracted increasing research interest in mass spectrometry imaging (MSI), but it remains a challenging ill-posed problem. In the present study, we proposed a deep learning model to fuse multimodal images to enhance the spatial resolution of MSI data, namely, DeepFERE. Hematoxylin and eosin (H&E) stain microscopy imaging was used to pose constraints in the process of high-resolution reconstruction to alleviate the ill-posedness. A novel model architecture was designed to achieve multi-task optimization by incorporating multi-modal image registration and fusion in a mutually reinforced framework. Experimental results demonstrated that the proposed DeepFERE model is able to produce high-resolution reconstruction images with rich chemical information and a detailed structure on both visual inspection and quantitative evaluation. In addition, our method was found to be able to improve the delimitation of the boundary between cancerous and para-cancerous regions in the MSI image. Furthermore, the reconstruction of low-resolution spatial transcriptomics data demonstrated that the developed DeepFERE model may find wider applications in biomedical fields.
  17. Gao X, Guo L, Li J, Thu HE, Hussain Z
    J Control Release, 2018 12 28;292:29-57.
    PMID: 30359665 DOI: 10.1016/j.jconrel.2018.10.024
    Lung cancer (LC) is the second most prevalent type of cancer and primary cause of mortality among both men and women, worldwide. The most commonly employed diagnostic modalities for LC include chest X-ray (CXR), magnetic-resonance-imaging (MRI), computed tomography (CT-scan), and fused-positron-emitting-tomography-CT (PET-CT). Owing to several limitations associated with the use of conventional diagnostic tools such as radiation burden to the patient, misleading diagnosis ("missed lung cancer"), false staging and low sensitivity and resolution, contemporary diagnostic regimen needed to be employed for screening of LC. In recent decades, nanotechnology-guided interventions have been transpired as emerging nanoimaging probes for detection of LC at advanced stages, while producing signal amplification, better resolution for surface and deep tissue imaging, and enhanced translocation and biodistribution of imaging probes within the cancerous tissues. Besides enormous potential of nanoimaging probes, nanotechnology-based advancements have also been evidenced for superior efficacy for treatment of LC and abolishing pulmonary metastasis (PM). The success of nanotherapeutics is due to their ability to maximise translocation and biodistribution of anti-neoplastic agents into the tumor tissues, improve pharmacokinetic profiles of anti-metastatic agents, optimise target-specific drug delivery, and control release kinetics of encapsulated moieties in target tissues. This review aims to overview and critically discuss the superiority of nanoimaging probes and nanotherapeutics over conventional regimen for early detection of LC and abolishing PM. Current challenges to clinical transition of nanoimaging probes and therapeutic viability of nanotherapeutics for treatment for LC and PM have also been pondered.
  18. Wei H, Rahman MA, Hu X, Zhang L, Guo L, Tao H, et al.
    Work, 2021;68(3):845-852.
    PMID: 33612527 DOI: 10.3233/WOR-203418
    BACKGROUND: The selection of orders is the method of gathering the parts needed to assemble the final products from storage sites. Kitting is the name of a ready-to-use package or a parts kit, flexible robotic systems will significantly help the industry to improve the performance of this activity. In reality, despite some other limitations on the complexity of components and component characteristics, the technological advances in recent years in robotics and artificial intelligence allows the treatment of a wide range of items.

    OBJECTIVE: In this article, we study the robotic kitting system with a Robotic Mounted Rail Arm System (RMRAS), which travels narrowly to choose the elements.

    RESULTS: The objective is to evaluate the efficiency of a robotic kitting system in cycle times through modeling of the elementary kitting operations that the robot performs (pick and room, move, change tools, etc.). The experimental results show that the proposed method enhances the performance and efficiency ratio when compared to other existing methods.

    CONCLUSION: This study with the manufacturer can help him assess the robotic area performance in a given design (layout and picking a policy, etc.) as part of an ongoing project on automation of kitting operations.

  19. Song YZ, Zhang ZH, Lin WX, Zhao XJ, Deng M, Ma YL, et al.
    PLoS One, 2013;8(9):e74544.
    PMID: 24069319 DOI: 10.1371/journal.pone.0074544
    The human SLC25A13 gene encodes citrin, the liver-type mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), and SLC25A13 mutations cause citrin deficiency (CD), a disease entity that encompasses different age-dependant clinical phenotypes such as Adult-onset Citrullinemia Type II (CTLN2) and Neonatal Intrahepatic Cholestasis caused by Citrin Deficiency (NICCD). The analyses of SLC25A13 gene and its protein/mRNA products remain reliable tools for the definitive diagnoses of CD patients, and so far, the SLC25A13 mutation spectrum in Chinese CD patients has not been well-characterized yet.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links