Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Wong Tzeling JM, Engku Nur Syafirah EAR, Irekeola AA, Yusof W, Aminuddin Baki NN, Zueter A, et al.
    Anal Chim Acta, 2021 Aug 01;1171:338682.
    PMID: 34112436 DOI: 10.1016/j.aca.2021.338682
    This study highlights the development of a multiplex real-time loop-mediated isothermal amplification assay. The developed assay employed a dual-function oligonucleotide (DFO) which simultaneously monitors the emitted amplification signals and accelerates the amplification process. The DFO was a modification of loop primer (LP); the 5'-end and 3'-end of the LP was tagged with fluorophore and quencher, respectively. The DFO was quenched in its unbound state and fluoresces only when it anneals to the specific target during the amplification process. With the same working mechanism as LP, DFO allowed the detection of target genes in less than 1 h in a real time monitoring system. We demonstrated this detection platform with Burkholderia pseudomallei, the causative agent of melioidosis. An internal amplification control (IAC) was incorporated in the assay to rule out false negative result and to demonstrate that the assay was successfully developed in a multiplex system. The assay was 100% specific when it was evaluated against 96 B. pseudomallei clinical isolates and 48 other bacteria species. The detection limit (sensitivity) of the developed assay was 1 fg/μl of B. pseudomallei genomic DNA and 18.2 CFU/ml at the bacterial cell level. In spiked blood samples, the assay's detection limit was 14 CFU/ml. The assay's diagnostic evaluation showed 100% diagnostic sensitivity, diagnostic specificity, positive predictive value, and negative predictive value. An integrated multiplex LAMP and real-time monitoring system was successfully developed, simplifying the workflow for the rapid and specific nucleic acid diagnostic test.
  2. Alexander MJ, Sinnatamby AS, Rohaimah MJ, Harun AH, Ng JS
    Ann Acad Med Singap, 1990 May;19(3):344-6.
    PMID: 2393233
    Brunei Darussalam has a mixed population with entirely different cultures and religions. The overall incidence of Hepatitis B virus (HBV) infection is 6%. A racial analysis of the incidence of HBV infection in Brunei shows a significantly higher incidence in Chinese compared to the other races. This is consistent with the incidence in the neighbouring countries.
  3. Wada Y, Irekeola AA, E A R ENS, Yusof W, Lih Huey L, Ladan Muhammad S, et al.
    Antibiotics (Basel), 2021 Jan 31;10(2).
    PMID: 33572528 DOI: 10.3390/antibiotics10020138
    Antimicrobial resistance in companion animals is a major public health concern worldwide due to the animals' zoonotic potential and ability to act as a reservoir for resistant genes. We report on the first use of meta-analysis and a systematic review to analyze the prevalence of vancomycin-resistant Enterococcus (VRE) in companion animals. Databases such as MedLib, PubMed, Web of Science, Scopus, and Google Scholar were searched. The information was extracted by two independent reviewers and the results were reviewed by a third. Two reviewers independently assessed the study protocol using the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) checklist and the study quality using the Joanna Briggs Institute (JBI) critical appraisal checklist for prevalence data. OpenMeta analyst and comprehensive meta-analysis (CMA) were used for the meta-analysis. The random effect model was used, and publication bias was assessed using the Eggers test and funnel plot. Between-study heterogeneity was assessed, and the sources were analyzed using the leave-one-out meta-analysis, subgroup analysis and meta-regression. Twenty-two studies met the eligibility criteria, but because some studies reported the prevalence of VRE in more than one companion animal, they were considered as individual studies, and 35 studies were therefore added to the final meta-analysis. Sampling period of the included studies was from 1995-2018. Of the 4288 isolates tested in the included studies, 1241 were VRE. The pooled prevalence of VRE in companion animals was estimated at 14.6% (95% CI; 8.7-23.5%; I2 = 97.10%; p < 0.001). Between-study variability was high (t2 = 2.859; heterogeneity I2 = 97.10% with heterogeneity chi-square (Q) = 1173.346, degrees of freedom (df) = 34, and p < 0.001). The funnel plot showed bias, which was confirmed by Eggers test (t-value = 3.97165; p = 0.00036), and estimates from the leave-one-out forest plot did not affect the pooled prevalence. Pooled prevalence of VRE in dogs and cats were 18.2% (CI = 9.4-32.5%) and 12.3%, CI = 3.8-33.1%), respectively. More studies were reported in Europe than in any other continent, with most studies using feces as the sample type and disc diffusion as the detection method. With the emergence of resistant strains, new antimicrobials are required in veterinary medicine.
  4. Zaidah AR, Mohammad NI, Suraiya S, Harun A
    PMID: 28473912 DOI: 10.1186/s13756-017-0200-5
    BACKGROUND: Infections by multidrug-resistant gram-negative bacteria (MDR-GNB) have been continuously growing and pose challenge to health institution globally. Carbapenem-resistant Enterobacteriacea (CRE) was identified as one of the MDR-GNB which has limited treatment options and higher mortality compared to those of sensitive strains. We report an increased burden of CRE fecal carriage at a hospital in the North-eastern region of Malaysia.

    METHODS: A retrospective descriptive study from August 2013 to December 2015 was conducted in the Medical Microbiology & Parasitology laboratory of Hospital Universiti Sains Malaysia, which is a tertiary teaching hospital with more than 700 beds. This hospital treats patients with various medical and surgical conditions. Suspected CRE from any clinical specimens received by the laboratory was identified and confirmed using standard protocols. Polymerase chain reaction (PCR) assay was performed to determine the genotype.

    RESULTS: Altogether, 8306 Enterobacteriaceae was isolated from various clinical specimens during the study period and 477/8306 (5.74%) were CRE. Majority of the isolated CRE were Klebsiella [408/477, (85.5%)], of which Klebsiella pneumoniae was the predominant species, 388/408 (95%). CRE were mainly isolated from rectal swab (screening), 235/477 (49.3%); urine, 76/477 (15.9%); blood, 46/477 (9.6%) and about 7.1% from tracheal aspirate. One hundred and thirty-six isolates were subjected to genotype determination and., 112/136 (82.4%) showed positive detection of New Delhi metallo-β-lactamase 1 (NDM-1) gene (blaNDM1).

    CONCLUSION: The study noted a high numbers of CRE isolated especially from rectal swabs. Active screening results in significant cost pressures and therefore should be revisited and revised, especially in low resource settings.

  5. Deris ZZ, Shafei MN, Harun A
    Asian Pac J Trop Biomed, 2011 Aug;1(4):313-5.
    PMID: 23569782 DOI: 10.1016/S2221-1691(11)60050-6
    To determine the risk factors and outcomes of imipenem-resistant Acinetobacter baumannii (IRAB) bloodstream infection (BSI) cases, since there is very little publication on Acinetobacter baumannii infections from Malaysia.
  6. Bagudo AI, Obande GA, Harun A, Singh KKB
    Asian Biomed (Res Rev News), 2020 Oct;14(5):177-186.
    PMID: 37551265 DOI: 10.1515/abm-2020-0026
    Acinetobacter species, particularly those within Acinetobacter calcoaceticus-A. baumannii complex (ACB complex), have emerged as clinically relevant pathogens in hospital environments worldwide. Early and quick detection and identification of Acinetobacter infections is challenging, and traditional culture and biochemical methods may not achieve adequate levels of speciation. Moreover, currently available techniques to identify and differentiate closely related Acinetobacter species are insufficient. The objective of this review is to recapitulate the current evolution in phenotypic and automated techniques used to identify the ACB complex. Compared with other automated or semiautomated systems of bacterial identification, matrix-assisted laser desorption-ionization time-of-flight mass spectrometry (MALDI-TOF MS) demonstrates a high level of Acinetobacter species identification and discrimination, including newly discovered species A. seifertii and A. dijkshoorniae.
  7. Harun A, Vidyadaran S, Lim SM, Cole AL, Ramasamy K
    PMID: 26047814 DOI: 10.1186/s12906-015-0685-5
    Excessive production of inflammatory mediators such as nitric oxide (NO) and proinflammatory cytokines like tumour necrosis factor-alpha (TNF-α) from activated microglia contributes to uncontrolled inflammation in neurodegenerative diseases. This study investigated the protective role of five endophytic extracts (HAB16R12, HAB16R13, HAB16R14, HAB16R18 and HAB8R24) against LPS-induced inflammatory events in vitro. These endophytic extracts were previously found to exhibit potent neuroprotective effect against LPS-challenged microglial cells.
  8. Harun A, James RM, Lim SM, Abdul Majeed AB, Cole AL, Ramasamy K
    BMC Complement Altern Med, 2011 Sep 24;11:79.
    PMID: 21943123 DOI: 10.1186/1472-6882-11-79
    BACKGROUND: BACE1 was found to be the major β-secretase in neurons and its appearance and activity were found to be elevated in the brains of AD patients. Fungal endophytic extracts for BACE1 inhibitory activity and cytotoxicity against PC-12 (a rat pheochromocytoma with neuronal properties) and WRL68 (a non-tumorigenic human hepatic) were investigated.

    METHODS: Endophytes were isolated from plants collected from Kuala Pilah, Negeri Sembilan and the National Park, Pahang and the extracts were tested for BACE1 inhibition. For investigation of biological activity, the pure endophytic cultures were cultivated for 14 days on PDA plates at 28°C and underwent semipolar extraction with ethyl acetate.

    RESULTS: Of 212 endophytic extracts (1000 μg/ml), 29 exhibited more than 90% inhibition of BACE1 in the preliminary screening. Four extracts from isolates HAB16R13, HAB16R14, HAB16R18 and HAB8R24 identified as Cytospora rhizophorae were the most active with IC(50(BACE1)) values of less than 3.0 μg/ml. The most active extract HAB16R13 was shown to non-competitively inhibit BACE1 with K(i) value of 10.0 μg/ml. HAB16R13 was considered non-potent against PC-12 and WRL68 (IC(50(CT))) of 60.0 and 40.0 μg/ml, respectively).

    CONCLUSIONS: This first report on endophytic fungal extract with good BACE1 inhibitory activity demonstrates that more extensive study is required to uncover the potential of endophytes.

  9. Zueter A, Yean CY, Abumarzouq M, Rahman ZA, Deris ZZ, Harun A
    BMC Infect Dis, 2016;16:333.
    PMID: 27423906 DOI: 10.1186/s12879-016-1583-2
    Over the last two decades, many epidemiological studies were performed to describe risks and clinical presentations of melioidosis in endemic countries.

    Study site: Hospital Universiti Sains Malaysia (HUSM)
  10. Zueter AR, Rahman ZA, Abumarzouq M, Harun A
    BMC Infect Dis, 2018 01 02;18(1):5.
    PMID: 29291714 DOI: 10.1186/s12879-017-2912-9
    BACKGROUND: Previous studies on the Burkholderia pseudomallei genetic diversity among clinical isolates from melioidosis-endemic areas have identified genetic factors contributing to differential virulence. Although it has been ruled out in Australian and Thai B. pseudomallei populations, it remains unclear whether B. pseudomallei sequence types (STs) correlate with disease in Malaysian patients with melioidosis.

    METHODS: In this study, multi-locus sequence typing (MLST) was performed on clinical B. pseudomallei isolates collected from Kelantan state of Malaysia, patients' clinical data were reviewed and then genotype-risk correlations were investigated.

    RESULTS: Genotyping of 83 B. pseudomallei isolates revealed 32 different STs, of which 13(40%) were novel. The frequencies of the STs among the 83 isolates ranged from 1 to 12 observations, and ST54, ST371 and ST289 were predominant. All non-novel STs reported in this study have also been identified in other Asian countries. Based on the MLST data analysis, the phylogenetic tree showed clustering of the STs with each other, as well as with the STs from Southeast Asia and China. No evidence for associations between any of B. pseudomallei STs and clinical melioidosis presentation was detected. In addition, the bacterial genotype clusters in relation with each clinical outcome were statistically insignificant, and no risk estimate was reported. This study has expanded the data for B. pseudomallei on MLST database map and provided insights into the molecular epidemiology of melioidosis in Peninsular Malaysia.

    CONCLUSION: This study concurs with previous reports concluding that infecting strain type plays no role in determining disease presentation.

  11. Lemlem M, Aklilu E, Mohamed M, Kamaruzzaman NF, Zakaria Z, Harun A, et al.
    BMC Microbiol, 2023 Dec 08;23(1):392.
    PMID: 38062398 DOI: 10.1186/s12866-023-03118-y
    BACKGROUND: Colistin is an antibiotic used as a last-resort to treat multidrug-resistant Gram-negative bacterial infections. Colistin had been used for a long time in veterinary medicine for disease control and as a growth promoter in food-producing animals. This excessive use of colistin in food animals causes an increase in colistin resistance. This study aimed to determine molecular characteristics of colistin-resistant Escherichia coli in broiler chicken and chicken farm environments.

    RESULTS: Four hundred fifty-three cloacal and farm environment samples were collected from six different commercial chicken farms in Kelantan, Malaysia. E. coli was isolated using standard bacteriological methods, and the isolates were tested for antimicrobial susceptibility using disc diffusion and colistin minimum inhibitory concentration (MIC) by broth microdilution. Multiplex PCR was used to detect mcr genes, and DNA sequencing was used to confirm the resistance genes. Virulence gene detection, phylogroup, and multilocus sequence typing (MLST) were done to further characterize the E. coli isolates. Out of the 425 (94%; 425/453) E. coli isolated from the chicken and farm environment samples, 10.8% (48/425) isolates were carrying one or more colistin-resistance encoding genes. Of the 48 colistin-resistant isolates, 54.2% (26/48) of the mcr positive isolates were genotypically and phenotypically resistant to colistin with MIC of colistin ≥ 4 μg/ml. The most prominent mcr gene detected was mcr-1 (47.9%; 23/48), followed by mcr-8 (18.8%; 9/48), mcr-7 (14.5%; 7/48), mcr-6 (12.5%; 6/48), mcr-4 (2.1%; 1/48), mcr-5 (2.1%; 1/48), and mcr-9 (2.1%; 1/48) genes. One E. coli isolate originating from the fecal sample was found to harbor both mcr-4 and mcr-6 genes and another isolate from the drinking water sample was carrying mcr-1 and mcr-8 genes. The majority of the mcr positive isolates were categorized under phylogroup A followed by phylogroup B1. The most prevalent sequence typing (ST) was ST1771 (n = 4) followed by ST206 (n = 3). 100% of the mcr positive E. coli isolates were multidrug resistant. The most frequently detected virulence genes among mcr positive E. coli isolates were ast (38%; 18/48) followed by iss (23%; 11/48). This is the first research to report the prevalence of mcr-4, mcr-5, mcr-6, mcr-7, and mcr-8 genes in E. coli from broiler chickens and farm environments in Malaysia.

    CONCLUSION: Our findings suggest that broiler chickens and broiler farm environments could be reservoirs of colistin-resistant E. coli, posing a risk to public health and food safety.

  12. Aklilu E, Harun A, Singh KKB, Ibrahim S, Kamaruzzaman NF
    Biomed Res Int, 2021;2021:5596502.
    PMID: 34660793 DOI: 10.1155/2021/5596502
    Carbapenem-resistant Enterobacteriaceae (CRE) has been a public health risk in several countries, and recent reports indicate the emergence of CRE in food animals. This study was conducted to investigate the occurrence, resistance patterns, and phylogenetic diversity of carbapenem-resistant E. coli (CREC) from chicken. Routine bacteriology, PCR detection of E. coli species, multiplex PCR to detect carbapenemase-encoding genes, and phylogeny of CRE E. coli were conducted. The results show that 24.36% (19/78) were identified as CREC based on the phenotypic identifications of which 17 were positive for the tested carbapenemases genes. The majority, 57.99% (11/19), of the isolates harbored multiple carbapenemase genes. Four isolates harbored all bla NDM, bla OXA, and bla IMP, and five and two different isolates harbored bla NDM and bla OXA and bla OXA and bla IMP, respectively. The meropenem, imipenem, and ertapenem MIC values for the isolates ranged from 2 μg/mL to ≥256 μg/mL. Phylogenetic grouping showed that the CREC isolates belonged to five different groups: groups A, B1, C, D, and unknown. The detection of CREC in this study shows that it has become an emerging problem in farm animals, particularly, in poultry farms. This also implies the potential public health risks posed by CRE from chicken to the consumers.
  13. Mohd Ali MR, Lih Huey L, Foo PC, Goay YX, Ismail AS, Mustaffa KMF, et al.
    Biomed Res Int, 2019;2019:9451791.
    PMID: 31355287 DOI: 10.1155/2019/9451791
    Melioidosis and leptospirosis, caused by two different bacteria, Burkholderia pseudomallei and Leptospira spp., are potentially fatal infections that share a very similar spectrum of clinical features and cause significant mortality and morbidity in humans and livestock. Early detection is important for better clinical consequences. To our knowledge, there is no diagnostic tool available to simultaneously detect and differentiate melioidosis and leptospirosis in humans and animals. In this study, we described a duplex TaqMan probe-based qPCR for the detection of B. pseudomallei and Leptospira spp. DNA. The performance of the assay was evaluated on 20 B. pseudomallei isolates, 23 Leptospira strains, and 39 other microorganisms, as well as two sets of serially diluted reference strains. The duplex qPCR assay was able to detect 0.02 pg (~ 4 copies) Leptospira spp. DNA and 0.2 pg (~ 25.6 copies) B. pseudomallei DNA. No undesired amplification was observed in other microorganisms. In conclusion, the duplex qPCR assay was sensitive and specific for the detection of B. pseudomallei & Leptospira spp. DNA and is suitable for further analytical and clinical evaluation.
  14. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  15. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Latif MA
    C. R. Biol., 2015 Feb;338(2):83-94.
    PMID: 25553855 DOI: 10.1016/j.crvi.2014.11.003
    Backcross breeding is the most commonly used method for incorporating a blast resistance gene into a rice cultivar. Linkage between the resistance gene and undesirable units can persist for many generations of backcrossing. Marker-assisted backcrossing (MABC) along with marker-assisted selection (MAS) contributes immensely to overcome the main limitation of the conventional breeding and accelerates recurrent parent genome (RPG) recovery. The MABC approach was employed to incorporate (a) blast resistance gene(s) from the donor parent Pongsu Seribu 1, the blast-resistant local variety in Malaysia, into the genetic background of MR219, a popular high-yielding rice variety that is blast susceptible, to develop a blast-resistant MR219 improved variety. In this perspective, the recurrent parent genome recovery was analyzed in early generations of backcrossing using simple sequence repeat (SSR) markers. Out of 375 SSR markers, 70 markers were found polymorphic between the parents, and these markers were used to evaluate the plants in subsequent generations. Background analysis revealed that the extent of RPG recovery ranged from 75.40% to 91.3% and from 80.40% to 96.70% in BC1F1 and BC2F1 generations, respectively. In this study, the recurrent parent genome content in the selected BC2F2 lines ranged from 92.7% to 97.7%. The average proportion of the recurrent parent in the selected improved line was 95.98%. MAS allowed identification of the plants that are more similar to the recurrent parent for the loci evaluated in backcross generations. The application of MAS with the MABC breeding program accelerated the recovery of the RP genome, reducing the number of generations and the time for incorporating resistance against rice blast.
  16. Tanweer FA, Rafii MY, Sijam K, Rahim HA, Ahmed F, Latif MA
    C. R. Biol., 2015 May;338(5):321-34.
    PMID: 25843222 DOI: 10.1016/j.crvi.2015.03.001
    Rice blast caused by Magnaporthe oryzae is one of the most devastating diseases of rice around the world and crop losses due to blast are considerably high. Many blast resistant rice varieties have been developed by classical plant breeding and adopted by farmers in various rice-growing countries. However, the variability in the pathogenicity of the blast fungus according to environment made blast disease a major concern for farmers, which remains a threat to the rice industry. With the utilization of molecular techniques, plant breeders have improved rice production systems and minimized yield losses. In this article, we have summarized the current advanced molecular techniques used for controlling blast disease. With the advent of new technologies like marker-assisted selection, molecular mapping, map-based cloning, marker-assisted backcrossing and allele mining, breeders have identified more than 100 Pi loci and 350 QTL in rice genome responsible for blast disease. These Pi genes and QTLs can be introgressed into a blast-susceptible cultivar through marker-assisted backcross breeding. These molecular techniques provide timesaving, environment friendly and labour-cost-saving ways to control blast disease. The knowledge of host-plant interactions in the frame of blast disease will lead to develop resistant varieties in the future.
  17. Abdullah M, Suraiya S, Mohamad S, Harun A
    Data Brief, 2020 Aug;31:105949.
    PMID: 32671154 DOI: 10.1016/j.dib.2020.105949
    In this dataset, we report the genome assembly and data analysis of Mycobacterium tuberculosis strain SIT745/EAI1-MYS. Previously, this strain was isolated from a Malaysian patient with extra-pulmonary tuberculosis, and identification of this strain is done by spoligotype patterns with fifteen known Shared International Type (SITs). Further analysis showed that this strain has a remarkable phylogeographical specificity for Malaysia. Based on the National Center for Biotechnology Information (NCBI) nucleotide database information, the complete genome consists of 150 contigs with various sequence lengths and was not assembled. In this assembly, the aforementioned contigs along with reference sequence from Mycobacterium tuberculosis strain H37Rv and Mycobacterium bovis strain AF2122/97 was used for gap closures, were assembled into a single circular chromosome length of approximately 4.42 Mega bases (Mb) with an average GC content of 65.6%. The single circular chromosome was shown to contain 4,009 protein-coding sequences, 3 ribosomal RNAs, 45 transfer RNAs, and 12 superclasses distributed with 277 subsystems which constitute nearly 1900 genes, respectively. The genome information will provide fundamental knowledge of this organism as well as insight for understanding genomic and proteomic profiling, phylogenetic relationship.
  18. Rahman ZA, Harun A, Hasan H, Mohamed Z, Noor SS, Deris ZZ, et al.
    Eye Contact Lens, 2013 Sep;39(5):355-60.
    PMID: 23982472 DOI: 10.1097/ICL.0b013e3182a3026b
    Ocular surface infections that include infections of conjunctiva, adnexa, and cornea have the potential risk of causing blindness within a given population. Empirical antibiotic therapy is usually initiated based on epidemiological data of common causative agents. Thus, the aims of this study were to determine the bacterial agents and their susceptibility patterns of isolates from ocular surface specimens in our hospital.
  19. Yahya P, Sulong S, Harun A, Wan Isa H, Ab Rajab NS, Wangkumhang P, et al.
    Forensic Sci Int Genet, 2017 09;30:152-159.
    PMID: 28743033 DOI: 10.1016/j.fsigen.2017.07.005
    Malay, the main ethnic group in Peninsular Malaysia, is represented by various sub-ethnic groups such as Melayu Banjar, Melayu Bugis, Melayu Champa, Melayu Java, Melayu Kedah Melayu Kelantan, Melayu Minang and Melayu Patani. Using data retrieved from the MyHVP (Malaysian Human Variome Project) database, a total of 135 individuals from these sub-ethnic groups were profiled using the Affymetrix GeneChip Mapping Xba 50-K single nucleotide polymorphism (SNP) array to identify SNPs that were ancestry-informative markers (AIMs) for Malays of Peninsular Malaysia. Prior to selecting the AIMs, the genetic structure of Malays was explored with reference to 11 other populations obtained from the Pan-Asian SNP Consortium database using principal component analysis (PCA) and ADMIXTURE. Iterative pruning principal component analysis (ipPCA) was further used to identify sub-groups of Malays. Subsequently, we constructed an AIMs panel for Malays using the informativeness for assignment (In) of genetic markers, and the K-nearest neighbor classifier (KNN) was used to teach the classification models. A model of 250 SNPs ranked by In, correctly classified Malay individuals with an accuracy of up to 90%. The identified panel of SNPs could be utilized as a panel of AIMs to ascertain the specific ancestry of Malays, which may be useful in disease association studies, biomedical research or forensic investigation purposes.
  20. Harun A, Kan A, Schwabenbauer K, Gilgado F, Perdomo H, Firacative C, et al.
    PMID: 35024355 DOI: 10.3389/fcimb.2021.761596
    Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and β-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on "Scedosporium/Pseudallescheria Infections" and "Fungal Respiratory Infections in Cystic Fibrosis".
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links