Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS One, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
  2. Ahmed QU, Alhassan AM, Khatib A, Shah SAA, Hasan MM, Sarian MN
    Antioxidants (Basel), 2018 Oct 08;7(10).
    PMID: 30297618 DOI: 10.3390/antiox7100137
    The objective of the present study was to investigate the antiradical and xanthine oxidase inhibitory effects of Averrhoa bilimbi leaves. Hence, crude methanolic leaves extract and its resultant fractions, namely hexane, chloroform, and n-butanol were evaluated for 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging effect and xanthine oxidase inhibitory activity. The active constituents were tentatively identified through LC-QTOF-MS/MS and molecular docking approaches. The n-butanol fraction of A. bilimbi crude methanolic leaves extract displayed significant DPPH radical scavenging effect with IC50 (4.14 ± 0.21 μg/mL) (p < 0.05), as well as xanthine oxidase inhibitory activity with IC50 (64.84 ± 3.93 μg/mL) (p < 0.05). Afzelechin 3-O-alpha-l-rhamnopyranoside and cucumerin A were tentatively identified as possible metabolites that contribute to the antioxidant activity of the n-butanol fraction.
  3. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
  4. Awuah WA, Kalmanovich J, Mehta A, Huang H, Abdul-Rahman T, Cheng Ng J, et al.
    Curr Top Med Chem, 2023;23(5):389-402.
    PMID: 36593538 DOI: 10.2174/1568026623666230102095836
    Glioblastoma Multiforme (GBM) is a debilitating type of brain cancer with a high mortality rate. Despite current treatment options such as surgery, radiotherapy, and the use of temozolomide and bevacizumab, it is considered incurable. Various methods, such as drug repositioning, have been used to increase the number of available treatments. Drug repositioning is the use of FDA-approved drugs to treat other diseases. This is possible because the drugs used for this purpose have polypharmacological effects. This means that these medications can bind to multiple targets, resulting in multiple mechanisms of action. Antipsychotics are one type of drug used to treat GBM. Antipsychotics are a broad class of drugs that can be further subdivided into typical and atypical classes. Typical antipsychotics include chlorpromazine, trifluoperazine, and pimozide. This class of antipsychotics was developed early on and primarily works on dopamine D2 receptors, though it can also work on others. Olanzapine and Quetiapine are examples of atypical antipsychotics, a category that was created later. These medications have a high affinity for serotonin receptors such as 5- HT2, but they can also act on dopamine and H1 receptors. Antipsychotic medications, in the case of GBM, also have other effects that can affect multiple pathways due to their polypharmacological effects. These include NF-B suppression, cyclin deregulation, and -catenin phosphorylation, among others. This review will delve deeper into the polypharmacological, the multiple effects of antipsychotics in the treatment of GBM, and an outlook for the field's future progression.
  5. Boiko DI, Shkodina AD, Hasan MM, Bardhan M, Kazmi SK, Chopra H, et al.
    Neurochem Res, 2022 Oct;47(10):2909-2924.
    PMID: 35689787 DOI: 10.1007/s11064-022-03646-5
    A complex pathogenesis involving several physiological systems is theorized to underline the development of depressive disorders. Depression is accompanied by circadian regulation disruption and interaction with the functioning of both central and peripheral oscillators. Many aspects of melatonin function unite these systems. The use of drugs for circadian rhythm disorders could inspire a potential treatment strategy for depression. Melatonin plays an essential role in the regulation of circadian rhythms. It exerts effect by activating two types of melatonin receptors, type 1A (MT1) and 1B (MT2). These are G-protein-coupled receptors, predominantly located in the central nervous system. MT1/MT2 agonists could be a useful treatment approach according to all three prevalent theories of the pathogenesis of depression involving either monoamines, synaptic remodeling, or immune/inflammatory events. MT1/MT2 receptors can be a potential target for novel antidepressants with impact on concentrations of neurotrophins or neurotransmitters, and reducing levels of pro-inflammatory cytokines. There is an interesting cross-talk mediated via the physical association of melatonin and serotonin receptors into functional heteromers. The antidepressive and neurogenetic effects of MT1/MT2 agonists can also be caused by the inhibition of the acid sphingomyelinase, leading to reduced ceramide, or increasing monoamine oxidase A levels in the hippocampus. Compounds targeting MT1 and MT2 receptors could have potential for new anti-depressants that may improve the quality of therapeutic interventions in treating depression and relieving symptoms. In particular, a combined effect on MT1 and/or MT2 receptors and neurotransmitter systems may be useful, since the normalization of the circadian rhythm through the melatonergic system will probably contribute to improved treatment. In this review, we discuss melatonergic receptors as a potential additional target for novel drugs for depression.
  6. Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W
    Sci Rep, 2021 Feb 04;11(1):3017.
    PMID: 33542286 DOI: 10.1038/s41598-021-82513-9
    As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
  7. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al.
    Front Bioeng Biotechnol, 2022;10:874742.
    PMID: 35464722 DOI: 10.3389/fbioe.2022.874742
    Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
  8. Chukwu SC, Rafii MY, Ramlee SI, Ismail SI, Hasan MM, Oladosu YA, et al.
    Mol Biol Rep, 2019 Feb;46(1):1519-1532.
    PMID: 30628024 DOI: 10.1007/s11033-019-04584-2
    Breeding for disease resistant varieties remains very effective and economical in controlling the bacterial leaf blight (BLB) of rice. Breeders have played a major role in developing resistant rice varieties against the BLB infection which has been adjudged to be a major disease causing significant yield reduction in rice. It would be difficult to select rice crops with multiple genes of resistance using the conventional approach alone. This is due to masking effect of genes including epistasis. In addition, conventional breeding takes a lot of time before a gene of interest can be introgressed. Linkage drag is also a major challenge in conventional approach. Molecular breeding involving markers has facilitated the characterization and introgression of BLB disease resistance genes. Biotechnology has brought another innovation in form of genetic engineering (transgenesis) of rice. Although, molecular breeding cannot be taken as a substitute for conventional breeding, molecular approach for combating BLB disease in rice is worthwhile given the demand for increased production of rice in a fast growing population of our society. This present article highlights the recent progress from conventional to molecular approach in breeding for BLB disease resistant rice varieties.
  9. Gupta R, Hasan MM, Islam SZ, Yasmin T, Uddin J
    PLoS One, 2023;18(6):e0287342.
    PMID: 37319267 DOI: 10.1371/journal.pone.0287342
    The economic landscape of the United Kingdom has been significantly shaped by the intertwined issues of Brexit, COVID-19, and their interconnected impacts. Despite the country's robust and diverse economy, the disruptions caused by Brexit and the COVID-19 pandemic have created uncertainty and upheaval for both businesses and individuals. Recognizing the magnitude of these challenges, academic literature has directed its attention toward conducting immediate research in this crucial area. This study sets out to investigate key economic factors that have influenced various sectors of the UK economy and have broader economic implications within the context of Brexit and COVID-19. The factors under scrutiny include the unemployment rate, GDP index, earnings, and trade. To accomplish this, a range of data analysis tools and techniques were employed, including the Box-Jenkins method, neural network modeling, Google Trend analysis, and Twitter-sentiment analysis. The analysis encompassed different periods: pre-Brexit (2011-2016), Brexit (2016-2020), the COVID-19 period, and post-Brexit (2020-2021). The findings of the analysis offer intriguing insights spanning the past decade. For instance, the unemployment rate displayed a downward trend until 2020 but experienced a spike in 2021, persisting for a six-month period. Meanwhile, total earnings per week exhibited a gradual increase over time, and the GDP index demonstrated an upward trajectory until 2020 but declined during the COVID-19 period. Notably, trade experienced the most significant decline following both Brexit and the COVID-19 pandemic. Furthermore, the impact of these events exhibited variations across the UK's four regions and twelve industries. Wales and Northern Ireland emerged as the regions most affected by Brexit and COVID-19, with industries such as accommodation, construction, and wholesale trade particularly impacted in terms of earnings and employment levels. Conversely, industries such as finance, science, and health demonstrated an increased contribution to the UK's total GDP in the post-Brexit period, indicating some positive outcomes. It is worth highlighting that the impact of these economic factors was more pronounced on men than on women. Among all the variables analyzed, trade suffered the most severe consequences in the UK. By early 2021, the macroeconomic situation in the country was characterized by a simple dynamic: economic demand rebounded at a faster pace than supply, leading to shortages, bottlenecks, and inflation. The findings of this research carry significant value for the UK government and businesses, empowering them to adapt and innovate based on forecasts to navigate the challenges posed by Brexit and COVID-19. By doing so, they can promote long-term economic growth and effectively address the disruptions caused by these interrelated issues.
  10. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  11. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
  12. Hasan MM, Ahmed QU, Mat Soad SZ, Tunna TS
    Biomed Pharmacother, 2018 May;101:833-841.
    PMID: 29635892 DOI: 10.1016/j.biopha.2018.02.137
    Diabetes mellitus is a chronic disease which has high prevalence. The deficiency in insulin production or impaired insulin function is the underlying cause of this disease. Utilization of plant sources as a cure of diabetes has rich evidence in the history. Recently, the traditional medicinal plants have been investigated scientifically to understand the underlying mechanism behind antidiabetic potential. In this regard, a substantial number of in vivo and in vitro models have been introduced for investigating the bottom-line mechanism of the antidiabetic effect. A good number of methods have been reported to be used successfully to determine antidiabetic effects of plant extracts or isolated compounds. This review encompasses all the possible methods with a list of medicinal plants which may contribute to discovering a novel drug to treat diabetes more efficaciously with the minimum or no side effects.
  13. Hasan MM, Faruque MRI, Islam SS, Islam MT
    Materials (Basel), 2016 Oct 13;9(10).
    PMID: 28773951 DOI: 10.3390/ma9100830
    The aim of this paper is to introduce a compact double-negative (DNG) metamaterial that exhibits a negative refractive index (NRI) bandwidth of more than 3.6 GHz considering the frequency from 2 to 14 GHz. In this framework, two arms of the designed unit cell are split in a way that forms a Modified-Z-shape structure of the FR-4 substrate material. The finite integration technique (FIT)-based Computer Simulation Technology (CST) Microwave Studio is applied for computation, and the experimental setup for measuring the performance is performed inside two waveguide ports. Therefore, the measured data complies well with the simulated data of the unit cell at 0-degree and 90-degree rotation angles. The designed unit cell shows a negative refractive index from 3.482 to 7.096 GHz (bandwidth of 3.61 GHz), 7.876 to 10.047 GHz (bandwidth of 2.171 GHz), and 11.594 to 14 GHz (bandwidth of 2.406 GHz) in the microwave spectra. The design also exhibits almost the same wide negative refractive index bandwidth in the major region of the C-band and X-band if it is rotated 90 degrees. However, the novelty of the proposed structure lies in its effective medium ratio of more than 4, wide bandwidth, and compact size.
  14. Hasan MM, Faruque MRI, Islam MT
    Sci Rep, 2018 01 19;8(1):1240.
    PMID: 29352228 DOI: 10.1038/s41598-018-19705-3
    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
  15. Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, et al.
    Virus Res, 2021 May;297:198390.
    PMID: 33737154 DOI: 10.1016/j.virusres.2021.198390
    Coronavirus Disease 2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations, and pathogenesis. Nearly 0.4 million mutations have been identified so far among the ∼60,000 SARS-CoV-2 genomic sequences. In this study, we compared a total of 371 SARS-CoV-2 published whole genomes reported from different parts of Bangladesh with 467 sequences reported globally to understand the origin of viruses, possible patterns of mutations, and availability of unique mutations. Phylogenetic analyses indicated that SARS-CoV-2 viruses might have transmitted through infected travelers from European countries, and the GR clade was found as predominant in Bangladesh. Our analyses revealed 4604 mutations at the RNA level including 2862 missense mutations, 1192 synonymous mutations, 25 insertions and deletions and 525 other types of mutation. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (98 %) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M, and N were significantly higher (p < 0.001) for sequences containing the G614 variant compared to those having D614. Previously reported frequent mutations, such as R203K, D614G, G204R, P4715L and I300F at protein levels were also prevalent in Bangladeshi isolates. Additionally, 34 unique amino acid changes were revealed and categorized as originating from different cities. These analyses may increase our understanding of variations in SARS-CoV-2 virus genomes, circulating in Bangladesh and elsewhere.
  16. Hasan MM, Islam MT, Samsuzzaman M, Baharuddin MH, Soliman MS, Alzamil A, et al.
    Sci Rep, 2022 Jun 08;12(1):9433.
    PMID: 35676407 DOI: 10.1038/s41598-022-13522-5
    This work proposes a compact metasurface (MS)-integrated wideband multiple-input multiple-output (MIMO) antenna for fifth generation (5G) sub-6 GHz wireless communication systems. The perceptible novelty of the proposed MIMO system is its wide operating bandwidth, high gain, lower interelement gap, and excellent isolation within the MIMO components. The radiating patch of the antenna is truncated diagonally with a partially ground plane, and a metasurface has been employed for enhancing the antenna performance. The suggested MS integrated single antenna prototype has a miniature dimension of 0.58λ × 0.58λ × 0.02λ. The simulated and measured findings demonstrate a wideband characteristic starting from 3.11 to 7.67 GHz including a high realized gain of 8 dBi. The four-element MIMO system has been designed by rendering each single antenna orthogonally to one another while retaining compact size and wideband properties between 3.2 and 7.6 GHz. The suggested MIMO prototype has been designed and fabricated on a low loss Rogers RT5880 substrate with a miniature dimension of 1.05λ × 1.05λ × 0.02λ and its performance is evaluated using a suggested 10 × 10 array of a square enclosed circular split ring resonators within the same substrate material. The inclusion of the proposed metasurface with a backplane significantly reduces antenna backward radiation and manipulates the electromagnetic field, thus improving the bandwidth, gain and isolation of MIMO components. The suggested 4-port MIMO antenna offers a high realized gain of 8.3 dBi compared to existing MIMO antennas with an excellent average total efficiency of 82% in the 5G sub-6 GHz spectrum and is in good accordance with measured results. Furthermore, the developed MIMO antenna exhibits outstanding diversity characteristics in respect of envelope correlation coefficient (ECC) less than 0.004, diversity gain (DG) close to 10 dB (> 9.98 dB) and high isolation between MIMO components (> 15.5 dB). Therefore, the proposed MS-inspired MIMO antenna substantiates its applicability for 5G sub-6 GHz communication networks.
  17. Hasan MM, Islam MT, Rahim SKA, Alam T, Rmili H, Alzamil A, et al.
    Materials (Basel), 2023 Feb 20;16(4).
    PMID: 36837381 DOI: 10.3390/ma16041751
    This article demonstrates a compact wideband four-port multiple-input-multiple-output (MIMO) antenna system integrated with a wideband metamaterial (MM) to reach high gain for sub-6 GHz new radio (NR) 5G communication. The four antennas of the proposed MIMO system are orthogonally positioned to the adjacent antennas with a short interelement edge-to-edge distance (0.19λmin at 3.25 GHz), confirming compact size and wideband characteristics 55.2% (3.25-5.6 GHz). Each MIMO system component consists of a fractal slotted unique patch with a transmission feed line and a metal post-encased defected ground structure (DGS). The designed MIMO system is realized on a low-cost FR-4 printed material with a miniature size of 0.65λmin × 0.65λmin × 0.02λmin. A 6 × 6 array of double U-shaped resonator-based unique mu-near-zero (MNZ) wideband metamaterial reflector (MMR) is employed below the MIMO antenna with a 0.14λmin air gap, improving the gain by 2.8 dBi and manipulating the MIMO beam direction by 60°. The designed petite MIMO system with a MM reflector proposes a high peak gain of 7.1 dBi in comparison to recent relevant antennas with high isolation of 35 dB in the n77/n78/n79 bands. In addition, the proposed wideband MMR improves the MIMO diversity and radiation characteristics with an average total efficiency of 68% over the desired bands. The stated MIMO antenna system has an outstanding envelope correlation coefficient (ECC) of <0.045, a greater diversity gain (DG) of near 10 dB (>9.96 dB), a low channel capacity loss (CCL) of <0.35 b/s/Hz and excellent multiplexing efficiency (ME) of higher than -1.4 dB. The proposed MIMO concept is confirmed by fabricating and testing the developed MIMO structure. In contrast to the recent relevant works, the proposed antenna is compact in size, while maintaining high gain and wideband characteristics, with strong MIMO performance. Thus, the proposed concept could be a potential approach to the 5G MIMO antenna system.
  18. Hasan MM, Madhavan P, Ahmad Noruddin NA, Lau WK, Ahmed QU, Arya A, et al.
    Pharm Biol, 2023 Dec;61(1):1135-1151.
    PMID: 37497554 DOI: 10.1080/13880209.2023.2230251
    CONTEXT: Arjunolic acid (AA) is a triterpenoid saponin found in Terminalia arjuna (Roxb.) Wight & Arn. (Combretaceae). It exerts cardiovascular protective effects as a phytomedicine. However, it is unclear how AA exerts the effects at the molecular level.

    OBJECTIVE: This study investigates the cardioprotective effects of arjunolic acid (AA) via MyD88-dependant TLR4 downstream signaling marker expression.

    MATERIALS AND METHODS: The MTT viability assay was used to assess the cytotoxicity of AA. LPS induced in vitro cardiovascular disease model was developed in H9C2 and C2C12 myotubes. The treatment groups were designed such as control (untreated), LPS control, positive control (LPS + pyrrolidine dithiocarbamate (PDTC)-25 µM), and treatment groups were co-treated with LPS and three concentrations of AA (50, 75, and 100 µM) for 24 h. The changes in the expression of TLR4 downstream signaling markers were evaluated through High Content Screening (HCS) and Western Blot (WB) analysis.

    RESULTS: After 24 h of co-treatment, the expression of TLR4, MyD88, MAPK, JNK, and NF-κB markers were upregulated significantly (2-6 times) in the LPS-treated groups compared to the untreated control in both HCS and WB experiments. Evidently, the HCS analysis revealed that MyD88, NF-κB, p38, and JNK were significantly downregulated in the H9C2 myotube in the AA treated groups. In HCS, the expression of NF-κB was downregulated in C2C12. Additionally, TLR4 expression was downregulated in both H9C2 and C2C12 myotubes in the WB experiment.

    DISCUSSION AND CONCLUSIONS: TLR4 marker expression in H9C2 and C2C12 myotubes was subsequently decreased by AA treatment, suggesting possible cardioprotective effects of AA.

  19. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al.
    BMC Complement Altern Med, 2017 Aug 30;17(1):431.
    PMID: 28854906 DOI: 10.1186/s12906-017-1929-3
    BACKGROUND: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds.

    METHODS: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy.

    RESULTS: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P 

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links