Displaying publications 1 - 20 of 32 in total

Abstract:
Sort:
  1. Siddiquee S, Cheong BE, Taslima K, Kausar H, Hasan MM
    J Chromatogr Sci, 2012 Apr;50(4):358-67.
    PMID: 22407347 DOI: 10.1093/chromsci/bms012
    A simple, fast, repeatable and less laborious sample preparation protocol was developed and applied for the analysis of biocontrol fungus Trichoderma harzianum strain FA1132 by using gas chromatography-mass spectrometry. The match factors for sample spectra with respect to the mass spectra library of fungal volatile compounds were determined and used to study the complex hydrocarbons and other volatile compounds, which were separated by using different capillary columns with nonpolar, medium polar and high polar stationary phases. To date, more than 278 volatile compounds (with spectral match factor at least 90%) such as normal saturated hydrocarbons (C7-C30), cyclohexane, cyclopentane, fatty acids, alcohols, esters, sulfur-containing compounds, simple pyrane and benzene derivatives have been identified. Most of these compounds have not previously been reported. The method described in this paper is a more convenient research tool for the detection of volatile compounds from the cultures of T. harzianum.
  2. Shkodina AD, Tan SC, Hasan MM, Abdelgawad M, Chopra H, Bilal M, et al.
    Ageing Res Rev, 2022 02;74:101554.
    PMID: 34973458 DOI: 10.1016/j.arr.2021.101554
    Parkinson's disease (PD) is a common motor disorder that has become increasingly prevalent in the ageing population. Recent works have suggested that circadian rhythms disruption is a common event in PD patients. Clock genes regulate the circadian rhythm of biological processes in eukaryotic organisms, but their roles in PD remain unclear. Despite this, several lines of evidence point to the possibility that clock genes may have a significant impact on the development and progression of the disease. This review aims to consolidate recent understanding of the roles of clock genes in PD. We first summarized the findings of clock gene expression and epigenetic analyses in PD patients and animal models. We also discussed the potential contributory role of clock gene variants in the development of PD and/or its symptoms. We further reviewed the mechanisms by which clock genes affect mitochondrial dynamics as well as the rhythmic synthesis and secretion of endocrine hormones, the impairment of which may contribute to the development of PD. Finally, we discussed the limitations of the currently available studies, and suggested future potential studies to deepen our understanding of the roles of clock genes in PD pathogenesis.
  3. Nevame AYM, Emon RM, Malek MA, Hasan MM, Alam MA, Muharam FM, et al.
    Biomed Res Int, 2018;2018:1653721.
    PMID: 30065932 DOI: 10.1155/2018/1653721
    Occurrence of chalkiness in rice is attributed to genetic and environmental factors, especially high temperature (HT). The HT induces heat stress, which in turn compromises many grain qualities, especially transparency. Chalkiness in rice is commonly studied together with other quality traits such as amylose content, gel consistency, and protein storage. In addition to the fundamental QTLs, some other QTLs have been identified which accelerate chalkiness occurrence under HT condition. In this review, some of the relatively stable chalkiness, amylose content, and gel consistency related QTLs have been presented well. Genetically, HT effect on chalkiness is explained by the location of certain chalkiness gene in the vicinity of high-temperature-responsive genes. With regard to stable QTL distribution and availability of potential material resources, there is still feasibility to find out novel stable QTLs related to chalkiness under HT condition. A better understanding of those achievements is essential to develop new rice varieties with a reduced chalky grain percentage. Therefore, we propose the pyramiding of relatively stable and nonallelic QTLs controlling low chalkiness endosperm into adaptable rice varieties as pragmatic approach to mitigate HT effect.
  4. Huang H, Awuah WA, Garg T, Ng JC, Mehta A, Ramamoorthy K, et al.
    Ann Med Surg (Lond), 2023 Jun;85(6):2743-2748.
    PMID: 37363524 DOI: 10.1097/MS9.0000000000000743
    The emergence of genome-wide association studies (GWAS) has identified genetic traits and polymorphisms that are associated with the progression of nonalcoholic fatty liver disease (NAFLD). Phospholipase domain-containing 3 and transmembrane 6 superfamily member 2 are genes commonly associated with NAFLD phenotypes. However, there are fewer studies and replicability in lesser-known genes such as LYPLAL1 and glucokinase regulator (GCKR). With the advent of artificial intelligence (AI) in clinical genetics, studies have utilized AI algorithms to identify phenotypes through electronic health records and utilize convolution neural networks to improve the accuracy of variant identification, predict the deleterious effects of variants, and conduct phenotype-to-genotype mapping. Natural language processing (NLP) and machine-learning (ML) algorithms are popular tools in GWAS studies and connect electronic health record phenotypes to genetic diagnoses using a combination of international classification disease (ICD)-based approaches. However, there are still limitations to machine-learning - and NLP-based models, such as the lack of replicability in larger cohorts and underpowered sample sizes, which prevent the accurate prediction of genetic variants that may increase the risk of NAFLD and its progression to advanced-stage liver fibrosis. This may be largely due to the lack of understanding of the clinical consequence in the majority of pathogenic variants. Though the concept of evolution-based AI models and evolutionary algorithms is relatively new, combining current international classification disease -based NLP models with phylogenetic and evolutionary data can improve prediction accuracy and create valuable connections between variants and their pathogenicity in NAFLD. Such developments can improve risk stratification within clinical genetics and research while overcoming limitations in GWAS studies that prevent community-wide interpretations.
  5. Awuah WA, Kalmanovich J, Mehta A, Huang H, Abdul-Rahman T, Cheng Ng J, et al.
    Curr Top Med Chem, 2023;23(5):389-402.
    PMID: 36593538 DOI: 10.2174/1568026623666230102095836
    Glioblastoma Multiforme (GBM) is a debilitating type of brain cancer with a high mortality rate. Despite current treatment options such as surgery, radiotherapy, and the use of temozolomide and bevacizumab, it is considered incurable. Various methods, such as drug repositioning, have been used to increase the number of available treatments. Drug repositioning is the use of FDA-approved drugs to treat other diseases. This is possible because the drugs used for this purpose have polypharmacological effects. This means that these medications can bind to multiple targets, resulting in multiple mechanisms of action. Antipsychotics are one type of drug used to treat GBM. Antipsychotics are a broad class of drugs that can be further subdivided into typical and atypical classes. Typical antipsychotics include chlorpromazine, trifluoperazine, and pimozide. This class of antipsychotics was developed early on and primarily works on dopamine D2 receptors, though it can also work on others. Olanzapine and Quetiapine are examples of atypical antipsychotics, a category that was created later. These medications have a high affinity for serotonin receptors such as 5- HT2, but they can also act on dopamine and H1 receptors. Antipsychotic medications, in the case of GBM, also have other effects that can affect multiple pathways due to their polypharmacological effects. These include NF-B suppression, cyclin deregulation, and -catenin phosphorylation, among others. This review will delve deeper into the polypharmacological, the multiple effects of antipsychotics in the treatment of GBM, and an outlook for the field's future progression.
  6. Boiko DI, Shkodina AD, Hasan MM, Bardhan M, Kazmi SK, Chopra H, et al.
    Neurochem Res, 2022 Oct;47(10):2909-2924.
    PMID: 35689787 DOI: 10.1007/s11064-022-03646-5
    A complex pathogenesis involving several physiological systems is theorized to underline the development of depressive disorders. Depression is accompanied by circadian regulation disruption and interaction with the functioning of both central and peripheral oscillators. Many aspects of melatonin function unite these systems. The use of drugs for circadian rhythm disorders could inspire a potential treatment strategy for depression. Melatonin plays an essential role in the regulation of circadian rhythms. It exerts effect by activating two types of melatonin receptors, type 1A (MT1) and 1B (MT2). These are G-protein-coupled receptors, predominantly located in the central nervous system. MT1/MT2 agonists could be a useful treatment approach according to all three prevalent theories of the pathogenesis of depression involving either monoamines, synaptic remodeling, or immune/inflammatory events. MT1/MT2 receptors can be a potential target for novel antidepressants with impact on concentrations of neurotrophins or neurotransmitters, and reducing levels of pro-inflammatory cytokines. There is an interesting cross-talk mediated via the physical association of melatonin and serotonin receptors into functional heteromers. The antidepressive and neurogenetic effects of MT1/MT2 agonists can also be caused by the inhibition of the acid sphingomyelinase, leading to reduced ceramide, or increasing monoamine oxidase A levels in the hippocampus. Compounds targeting MT1 and MT2 receptors could have potential for new anti-depressants that may improve the quality of therapeutic interventions in treating depression and relieving symptoms. In particular, a combined effect on MT1 and/or MT2 receptors and neurotransmitter systems may be useful, since the normalization of the circadian rhythm through the melatonergic system will probably contribute to improved treatment. In this review, we discuss melatonergic receptors as a potential additional target for novel drugs for depression.
  7. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Rahim HA, Alam MA, et al.
    Biotechnology, biotechnological equipment, 2015 Mar 04;29(2):237-254.
    PMID: 26019637
    The world's population is increasing very rapidly, reducing the cultivable land of rice, decreasing table water, emerging new diseases and pests, and the climate changes are major issues that must be addressed to researchers to develop sustainable crop varieties with resistance to biotic and abiotic stresses. However, recent scientific discoveries and advances particularly in genetics, genomics and crop physiology have opened up new opportunities to reduce the impact of these stresses which would have been difficult if not impossible as recently as the turn of the century. Marker assisted backcrossing (MABC) is one of the most promising approaches is the use of molecular markers to identify and select genes controlling resistance to those factors. Regarding this, MABC can contribute to develop resistant or high-yielding or quality rice varieties by incorporating a gene of interest into an elite variety which is already well adapted by the farmers. MABC is newly developed efficient tool by which using large population sizes (400 or more plants) for the backcross F1 generations, it is possible to recover the recurrent parent genotype using only two or three backcrosses. So far, many high yielding, biotic and abiotic stresses tolerance, quality and fragrance rice varieties have been developed in rice growing countries through MABC within the shortest timeframe. Nowadays, MABC is being used widely in plant breeding programmes to develop new variety/lines especially in rice. This paper reviews recent literature on some examples of variety/ line development using MABC strategy.
  8. Ahamed E, Hasan MM, Faruque MRI, Mansor MFB, Abdullah S, Islam MT
    PLoS One, 2018;13(6):e0199150.
    PMID: 29924859 DOI: 10.1371/journal.pone.0199150
    In this paper, we introduce a new compact left-handed tunable metamaterial structure, inspired by a joint T-D shape geometry on a flexible NiAl2O4 substrate. The designed metamaterial exhibits an extra-large negative refractive index bandwidth of 6.34 GHz, with an operating frequency range from 4 to 18 GHz. We demonstrate the effects of substrate material thickness on the effective properties of metamaterial using two substrate materials: 1) flame retardant 4 and 2) flexible nickel aluminate. A finite integration technique based on the Computer Simulation Technology Microwave Studio electromagnetic simulator was used for our design, simulation, and investigation. A finite element method based on an HFSS (High Frequency Structure Simulator) electromagnetic simulator is also used to simulate results, perform verifications, and compare the measured results. The simulated resonance peaks occurred at 6.42 GHz (C-band), 9.32 GHz (X-band), and 16.90 GHz (Ku-band), while the measured resonance peaks occurred at 6.60 GHz (C-band), 9.16 GHz (X-band) and 17.28 GHz (Ku-band). The metamaterial structure exhibited biaxial tunable properties by changing the electromagnetic wave propagation in the y and z directions and the left-handed characteristics at 11.35 GHz and 13.50 GHz.
  9. Hasan MM, Rafii MY, Ismail MR, Mahmood M, Alam MA, Abdul Rahim H, et al.
    J Sci Food Agric, 2016 Mar 15;96(4):1297-305.
    PMID: 25892666 DOI: 10.1002/jsfa.7222
    Blast caused by the fungus Magnaporthe oryzae is a significant disease threat to rice across the world and is especially prevalent in Malaysia. An elite, early-maturing, high-yielding Malaysian rice variety, MR263, is susceptible to blast and was used as the recurrent parent in this study. To improve MR263 disease resistance, the Pongsu Seribu 1 rice variety was used as donor of the blast resistance Pi-7(t), Pi-d(t)1 and Pir2-3(t) genes and qLN2 quantitative trait locus (QTL). The objective was to introgress these blast resistance genes into the background of MR263 using marker-assisted backcrossing with both foreground and background selection.
  10. Tuz-Zohura F, Shawon ARM, Hasan MM, Aeyas A, Chowdhury FI, Khandaker MU
    Ann Med Surg (Lond), 2023 Jul;85(7):3446-3460.
    PMID: 37427236 DOI: 10.1097/MS9.0000000000000839
    Computer-aided drug design by molecular docking, statistical analysis like multiple linear regression (MLR), principal component analysis (PCA), and molecular dynamics studies can emerge as an efficient approach to designing promising core scaffolds for coronavirus medication. The main protease [3-chymotrypsin-like protease (3CLpro)] of severe acute respiratory syndrome coronavirus (SARS-CoV)-1 and SARS-CoV-2 is one of the critical targets for designing and developing broad-spectrum antiviral therapeutic drugs. The main objective of this study was to investigate potential phytochemicals against SARS-CoV-1 and SARS-CoV-2 to ensure effective natural product-induced therapy. In this evaluation, we have selected 40 reported phytochemicals to design efficient core scaffolds that can act as potent inhibitors against the main proteases of SARS-CoV-2 and SARS-CoV-1. We categorized the selected phytochemicals into a more bioavailable and less bioavailable set, considering phytochemical drug likeliness properties. All the selected phytochemicals vigorously interacted with the catalytic dyads His41 and Cys145. Statistical analysis by MLR confirmed their contribution to structural features on binding affinities and PCA analysis for structural activity relationships for their structural pattern recognition to determine the core scaffold inhibitors. We confirmed that 4'-Hydroxyisolonchocarpin and BrussochalconeA were safe and exhibited excellent pharmacological properties. Because 4'-Hydroxyisolonchocarpin and BrussochalconeA are flavonoid derivatives, they exhibit the chalcone's ring. The presence of the reactive α,β-unsaturated system in the chalcone's rings showed different potential pharmacokinetics with an insignificant toxicological profile. Our comprehensive computational and statistical analysis reveals that these selected phytochemicals (4'-Hydroxyisolonchocarpin, BrussochalconeA) can be used to design potential broad antiviral inhibitors against SARS-CoV-2 and SARS-CoV-1.
  11. Charoenkwan P, Chiangjong W, Lee VS, Nantasenamat C, Hasan MM, Shoombuatong W
    Sci Rep, 2021 Feb 04;11(1):3017.
    PMID: 33542286 DOI: 10.1038/s41598-021-82513-9
    As anticancer peptides (ACPs) have attracted great interest for cancer treatment, several approaches based on machine learning have been proposed for ACP identification. Although existing methods have afforded high prediction accuracies, however such models are using a large number of descriptors together with complex ensemble approaches that consequently leads to low interpretability and thus poses a challenge for biologists and biochemists. Therefore, it is desirable to develop a simple, interpretable and efficient predictor for accurate ACP identification as well as providing the means for the rational design of new anticancer peptides with promising potential for clinical application. Herein, we propose a novel flexible scoring card method (FSCM) making use of propensity scores of local and global sequential information for the development of a sequence-based ACP predictor (named iACP-FSCM) for improving the prediction accuracy and model interpretability. To the best of our knowledge, iACP-FSCM represents the first sequence-based ACP predictor for rationalizing an in-depth understanding into the molecular basis for the enhancement of anticancer activities of peptides via the use of FSCM-derived propensity scores. The independent testing results showed that the iACP-FSCM provided accuracies of 0.825 and 0.910 as evaluated on the main and alternative datasets, respectively. Results from comparative benchmarking demonstrated that iACP-FSCM could outperform seven other existing ACP predictors with marked improvements of 7% and 17% for accuracy and MCC, respectively, on the main dataset. Furthermore, the iACP-FSCM (0.910) achieved very comparable results to that of the state-of-the-art ensemble model AntiCP2.0 (0.920) as evaluated on the alternative dataset. Comparative results demonstrated that iACP-FSCM was the most suitable choice for ACP identification and characterization considering its simplicity, interpretability and generalizability. It is highly anticipated that the iACP-FSCM may be a robust tool for the rapid screening and identification of promising ACPs for clinical use.
  12. Chopra H, Bibi S, Singh I, Hasan MM, Khan MS, Yousafi Q, et al.
    Front Bioeng Biotechnol, 2022;10:874742.
    PMID: 35464722 DOI: 10.3389/fbioe.2022.874742
    Current advancements in nanotechnology and nanoscience have resulted in new nanomaterials, which may pose health and environmental risks. Furthermore, several researchers are working to optimize ecologically friendly procedures for creating metal and metal oxide nanoparticles. The primary goal is to decrease the adverse effects of synthetic processes, their accompanying chemicals, and the resulting complexes. Utilizing various biomaterials for nanoparticle preparation is a beneficial approach in green nanotechnology. Furthermore, using the biological qualities of nature through a variety of activities is an excellent way to achieve this goal. Algae, plants, bacteria, and fungus have been employed to make energy-efficient, low-cost, and nontoxic metallic nanoparticles in the last few decades. Despite the environmental advantages of using green chemistry-based biological synthesis over traditional methods as discussed in this article, there are some unresolved issues such as particle size and shape consistency, reproducibility of the synthesis process, and understanding of the mechanisms involved in producing metallic nanoparticles via biological entities. Consequently, there is a need for further research to analyze and comprehend the real biological synthesis-dependent processes. This is currently an untapped hot research topic that required more investment to properly leverage the green manufacturing of metallic nanoparticles through living entities. The review covers such green methods of synthesizing nanoparticles and their utilization in the scientific world.
  13. James SL, Castle CD, Dingels ZV, Fox JT, Hamilton EB, Liu Z, et al.
    Inj Prev, 2020 10;26(Supp 1):i96-i114.
    PMID: 32332142 DOI: 10.1136/injuryprev-2019-043494
    BACKGROUND: Past research in population health trends has shown that injuries form a substantial burden of population health loss. Regular updates to injury burden assessments are critical. We report Global Burden of Disease (GBD) 2017 Study estimates on morbidity and mortality for all injuries.

    METHODS: We reviewed results for injuries from the GBD 2017 study. GBD 2017 measured injury-specific mortality and years of life lost (YLLs) using the Cause of Death Ensemble model. To measure non-fatal injuries, GBD 2017 modelled injury-specific incidence and converted this to prevalence and years lived with disability (YLDs). YLLs and YLDs were summed to calculate disability-adjusted life years (DALYs).

    FINDINGS: In 1990, there were 4 260 493 (4 085 700 to 4 396 138) injury deaths, which increased to 4 484 722 (4 332 010 to 4 585 554) deaths in 2017, while age-standardised mortality decreased from 1079 (1073 to 1086) to 738 (730 to 745) per 100 000. In 1990, there were 354 064 302 (95% uncertainty interval: 338 174 876 to 371 610 802) new cases of injury globally, which increased to 520 710 288 (493 430 247 to 547 988 635) new cases in 2017. During this time, age-standardised incidence decreased non-significantly from 6824 (6534 to 7147) to 6763 (6412 to 7118) per 100 000. Between 1990 and 2017, age-standardised DALYs decreased from 4947 (4655 to 5233) per 100 000 to 3267 (3058 to 3505).

    INTERPRETATION: Injuries are an important cause of health loss globally, though mortality has declined between 1990 and 2017. Future research in injury burden should focus on prevention in high-burden populations, improving data collection and ensuring access to medical care.

  14. Hasan MM, Das R, Rasheduzzaman M, Hussain MH, Muzahid NH, Salauddin A, et al.
    Virus Res, 2021 May;297:198390.
    PMID: 33737154 DOI: 10.1016/j.virusres.2021.198390
    Coronavirus Disease 2019 (COVID-19) warrants comprehensive investigations of publicly available Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) genomes to gain new insight about their epidemiology, mutations, and pathogenesis. Nearly 0.4 million mutations have been identified so far among the ∼60,000 SARS-CoV-2 genomic sequences. In this study, we compared a total of 371 SARS-CoV-2 published whole genomes reported from different parts of Bangladesh with 467 sequences reported globally to understand the origin of viruses, possible patterns of mutations, and availability of unique mutations. Phylogenetic analyses indicated that SARS-CoV-2 viruses might have transmitted through infected travelers from European countries, and the GR clade was found as predominant in Bangladesh. Our analyses revealed 4604 mutations at the RNA level including 2862 missense mutations, 1192 synonymous mutations, 25 insertions and deletions and 525 other types of mutation. In line with the global trend, D614G mutation in spike glycoprotein was predominantly high (98 %) in Bangladeshi isolates. Interestingly, we found the average number of mutations in ORF1ab, S, ORF3a, M, and N were significantly higher (p < 0.001) for sequences containing the G614 variant compared to those having D614. Previously reported frequent mutations, such as R203K, D614G, G204R, P4715L and I300F at protein levels were also prevalent in Bangladeshi isolates. Additionally, 34 unique amino acid changes were revealed and categorized as originating from different cities. These analyses may increase our understanding of variations in SARS-CoV-2 virus genomes, circulating in Bangladesh and elsewhere.
  15. Hasan MM, Islam MT, Samsuzzaman M, Baharuddin MH, Soliman MS, Alzamil A, et al.
    Sci Rep, 2022 Jun 08;12(1):9433.
    PMID: 35676407 DOI: 10.1038/s41598-022-13522-5
    This work proposes a compact metasurface (MS)-integrated wideband multiple-input multiple-output (MIMO) antenna for fifth generation (5G) sub-6 GHz wireless communication systems. The perceptible novelty of the proposed MIMO system is its wide operating bandwidth, high gain, lower interelement gap, and excellent isolation within the MIMO components. The radiating patch of the antenna is truncated diagonally with a partially ground plane, and a metasurface has been employed for enhancing the antenna performance. The suggested MS integrated single antenna prototype has a miniature dimension of 0.58λ × 0.58λ × 0.02λ. The simulated and measured findings demonstrate a wideband characteristic starting from 3.11 to 7.67 GHz including a high realized gain of 8 dBi. The four-element MIMO system has been designed by rendering each single antenna orthogonally to one another while retaining compact size and wideband properties between 3.2 and 7.6 GHz. The suggested MIMO prototype has been designed and fabricated on a low loss Rogers RT5880 substrate with a miniature dimension of 1.05λ × 1.05λ × 0.02λ and its performance is evaluated using a suggested 10 × 10 array of a square enclosed circular split ring resonators within the same substrate material. The inclusion of the proposed metasurface with a backplane significantly reduces antenna backward radiation and manipulates the electromagnetic field, thus improving the bandwidth, gain and isolation of MIMO components. The suggested 4-port MIMO antenna offers a high realized gain of 8.3 dBi compared to existing MIMO antennas with an excellent average total efficiency of 82% in the 5G sub-6 GHz spectrum and is in good accordance with measured results. Furthermore, the developed MIMO antenna exhibits outstanding diversity characteristics in respect of envelope correlation coefficient (ECC) less than 0.004, diversity gain (DG) close to 10 dB (> 9.98 dB) and high isolation between MIMO components (> 15.5 dB). Therefore, the proposed MS-inspired MIMO antenna substantiates its applicability for 5G sub-6 GHz communication networks.
  16. Hasan MM, Ahmed QU, Soad SZM, Latip J, Taher M, Syafiq TMF, et al.
    BMC Complement Altern Med, 2017 Aug 30;17(1):431.
    PMID: 28854906 DOI: 10.1186/s12906-017-1929-3
    BACKGROUND: Tetracera indica Merr. (Family: Dilleniaceae), known to the Malay as 'Mempelas paya', is one of the medicinal plants used in the treatment of diabetes in Malaysia. However, no proper scientific study has been carried out to verify the traditional claim of T. indica as an antidiabetic agent. Hence, the aims of the present study were to determine the in vitro antidiabetic potential of the T. indica stems ethanol extract, subfractions and isolated compounds.

    METHODS: The ethanol extract and its subfractions, and isolated compounds from T. indica stems were subjected to cytotoxicity test using MTT viability assay on 3T3-L1 pre-adipocytes. Then, the test groups were subjected to the in vitro antidiabetic investigation using 3T3-L1 pre-adipocytes and differentiated adipocytes to determine the insulin-like and insulin sensitizing activities. Rosiglitazone was used as a standard antidiabetic agent. All compounds were also subjected to fluorescence glucose (2-NBDG) uptake test on differentiated adipocytes. Test solutions were introduced to the cells in different safe concentrations as well as in different adipogenic cocktails, which were modified by the addition of compounds to be investigated and in the presence or absence of insulin. Isolation of bioactive compounds from the most effective subfraction (ethyl acetate) was performed through repeated silica gel and sephadex LH-20 column chromatographies and their structures were elucidated through (1)H-and (13)C-NMR spectroscopy.

    RESULTS: Four monoflavonoids, namely, wogonin, norwogonin, quercetin and techtochrysin were isolated from the T. indica stems ethanol extract. Wogonin, norwogonin and techtochrysin induced significant (P 

  17. Alam MA, Juraimi AS, Rafii MY, Abdul Hamid A, Aslani F, Hasan MM, et al.
    Biomed Res Int, 2014;2014:296063.
    PMID: 24579078 DOI: 10.1155/2014/296063
    The methanolic extracts of 13 accessions of purslane were analyzed for their total phenol content (TPC), total flavonoid contents (TFC), and total carotenoid contents (TCC) and antioxidant activity of extracts was screened using FRAP assay and DPPH radical scavenging methods. The TPC, TFC, and TCC ranged from 0.96 ± 0.04 to 9.12 ± 0.29 mg GAE/g DW, 0.13 ± 0.04 to 1.44 ± 0.08 mg RE/g DW, and 0.52 ± 0.06 to 5.64 ± 0.09 mg (β-carotene equivalent) BCE/g DW, respectively. The DPPH scavenging (IC50) activity varied between 2.52 ± 0.03 mg/mL and 3.29 ± 0.01 mg/mL and FRAP ranged from 7.39 ± 0.08 to 104.2 ± 6.34  μmol TE/g DW. Among all the measured micro- and macrominerals K content was the highest followed by N, Na, Ca, Mg, P, Fe, Zn, and Mn. The overall findings proved that ornamental purslane was richer in antioxidant properties, whereas common purslane possesses more mineral contents than ornamental ones.
  18. Gupta R, Hasan MM, Islam SZ, Yasmin T, Uddin J
    PLoS One, 2023;18(6):e0287342.
    PMID: 37319267 DOI: 10.1371/journal.pone.0287342
    The economic landscape of the United Kingdom has been significantly shaped by the intertwined issues of Brexit, COVID-19, and their interconnected impacts. Despite the country's robust and diverse economy, the disruptions caused by Brexit and the COVID-19 pandemic have created uncertainty and upheaval for both businesses and individuals. Recognizing the magnitude of these challenges, academic literature has directed its attention toward conducting immediate research in this crucial area. This study sets out to investigate key economic factors that have influenced various sectors of the UK economy and have broader economic implications within the context of Brexit and COVID-19. The factors under scrutiny include the unemployment rate, GDP index, earnings, and trade. To accomplish this, a range of data analysis tools and techniques were employed, including the Box-Jenkins method, neural network modeling, Google Trend analysis, and Twitter-sentiment analysis. The analysis encompassed different periods: pre-Brexit (2011-2016), Brexit (2016-2020), the COVID-19 period, and post-Brexit (2020-2021). The findings of the analysis offer intriguing insights spanning the past decade. For instance, the unemployment rate displayed a downward trend until 2020 but experienced a spike in 2021, persisting for a six-month period. Meanwhile, total earnings per week exhibited a gradual increase over time, and the GDP index demonstrated an upward trajectory until 2020 but declined during the COVID-19 period. Notably, trade experienced the most significant decline following both Brexit and the COVID-19 pandemic. Furthermore, the impact of these events exhibited variations across the UK's four regions and twelve industries. Wales and Northern Ireland emerged as the regions most affected by Brexit and COVID-19, with industries such as accommodation, construction, and wholesale trade particularly impacted in terms of earnings and employment levels. Conversely, industries such as finance, science, and health demonstrated an increased contribution to the UK's total GDP in the post-Brexit period, indicating some positive outcomes. It is worth highlighting that the impact of these economic factors was more pronounced on men than on women. Among all the variables analyzed, trade suffered the most severe consequences in the UK. By early 2021, the macroeconomic situation in the country was characterized by a simple dynamic: economic demand rebounded at a faster pace than supply, leading to shortages, bottlenecks, and inflation. The findings of this research carry significant value for the UK government and businesses, empowering them to adapt and innovate based on forecasts to navigate the challenges posed by Brexit and COVID-19. By doing so, they can promote long-term economic growth and effectively address the disruptions caused by these interrelated issues.
  19. Mehta A, Cheng Ng J, Andrew Awuah W, Huang H, Kalmanovich J, Agrawal A, et al.
    Ann Med Surg (Lond), 2022 Dec;84:104803.
    PMID: 36582867 DOI: 10.1016/j.amsu.2022.104803
    Robotic surgery has applications in many medical specialties, including urology, general surgery, and surgical oncology. In the context of a widespread resource and personnel shortage in Low- and Middle-Income Countries (LMICs), the use of robotics in surgery may help to reduce physician burnout, surgical site infections, and hospital stays. However, a lack of haptic feedback and potential socioeconomic factors such as high implementation costs and a lack of trained personnel may limit its accessibility and application. Specific improvements focused on improved financial and technical support to LMICs can help improve access and have the potential to transform the surgical experience for both surgeons and patients in LMICs. This review focuses on the evolution of robotic surgery, with an emphasis on challenges and recommendations to facilitate wider implementation and improved patient outcomes.
  20. Hasan MM, Faruque MRI, Islam MT
    Sci Rep, 2018 01 19;8(1):1240.
    PMID: 29352228 DOI: 10.1038/s41598-018-19705-3
    A compact metamaterial inspired antenna operate at LTE, Bluetooth and WiMAX frequency band is introduced in this paper. For the lower band, the design utilizes an outer square metallic strip forcing the patch to radiate as an equivalent magnetic-current loop. For the upper band, another magnetic current loop is created by adding metamaterial structure near the feed line on the patch. The metamaterial inspired antenna dimension of 42 × 32 mm2 compatible to wireless devices. Finite integration technique based CST Microwave Studio simulator has been used to design and numerical investigation as well as lumped circuit model of the metamaterial antenna is explained with proper mathematical derivation. The achieved measured dual band operation of the conventional antenna are sequentially, 0.561~0.578 GHz, 2.346~2.906 GHz, and 2.91~3.49 GHz, whereas the metamaterial inspired antenna shows dual-band operation from 0.60~0.64 GHz, 2.67~3.40 GHz and 3.61~3.67 GHz, respectively. Therefore, the metamaterial antenna is applicable for LTE and WiMAX applications. Besides, the measured metamaterial antenna gains of 0.15~3.81 dBi and 3.47~3.75 dBi, respectively for the frequency band of 2.67~3.40 GHz and 3.61~3.67 GHz.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links