Displaying publications 1 - 20 of 56 in total

Abstract:
Sort:
  1. Nahar, M.K., Hashim, U., Zakaria, Z.
    MyJurnal
    This work was investigated the protein solubility properties of meat from chicken in different
    body part. The effects of fresh and freezing condition were studied on the protein solubility as
    a functional property of slaughter and non slaughtering chicken meat. Solubility of proteins
    was significantly reduced for slaughtering fresh meat and in contrast, non slaughtering fresh
    meat shows the higher protein solubility. On the other hand, frozen storage meat showed the
    difference amount of protein solubility between slaughtering and non slaughtering condition
    meat. Freezing condition also showed that the different solubility of different body part meat.
    The protein solubility of some parts was significantly increased and some were decreased
    between the slaughtering and non slaughtering condition.
  2. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    PMID: 34554606 DOI: 10.1002/bab.2260
    The E6 region has higher protuberant probability annealing than consensus probe focusing on another region in the human papillomavirus (HPV) genome in terms of detection and screening method. Here, we designed the first multiple virus single-stranded deoxyribonucleic acid (ssDNA) for multiple detections in an early phase of screening for cervical cancer in the E6 region and became a fundamental evolution of detection electrochemical HPV biosensor. Gene profiling of the virus ssDNA sequences has been carried by high-end bioinformatics tools such as GenBank, Basic Local Alignment Searching Tools (BLAST), and Clustal OMEGA in a row. The output from bioinformatics tools resulted in 100% of similarities between our virus ssDNA probe and HPV complete genome in the databases. The cross-validation between HPV genome and our designed virus ssDNA provided high specificity and selectivity during screening methods compared with Pap smear. The DNA probe for HPV 18, 5' COOH-GAT CCA GAA GGT ACA GAC GGG GAG GGC ACG 3', while 5'COOH-GGG CGC TGT GCA GTG TGT TGG AGA CCC CGA3' as DNA probe for HPV 58 designed with 66.77% guanine (G) and cytosine (C) content for both. Our virus ssDNA probe for the HPV biosensor promises high sensitivity, specificity, selectivity, repeatability, low fluid consumption, and will be useful in mini-size diagnostic devices for cervical cancer detection.
  3. Foo KL, Hashim U, Muhammad K, Voon CH
    Nanoscale Res Lett, 2014;9(1):429.
    PMID: 25221458 DOI: 10.1186/1556-276X-9-429
    Nanostructured zinc oxide (ZnO) nanorods (NRs) with hexagonal wurtzite structures were synthesized using an easy and low-cost bottom-up hydrothermal growth technique. ZnO thin films were prepared with the use of four different solvents, namely, methanol, ethanol, isopropanol, and 2-methoxyethanol, and then used as seed layer templates for the subsequent growth of the ZnO NRs. The influences of the different solvents on the structural and optical properties were investigated through scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, ultraviolet-visible spectroscopy, and photoluminescence. The obtained X-ray diffraction patterns showed that the synthesized ZnO NRs were single crystals and exhibited a preferred orientation along the (002) plane. In addition, the calculated results from the specific models of the refractive index are consistent with the experimental data. The ZnO NRs that grew from the 2-methoxyethanol seeded layer exhibited the smallest grain size (39.18 nm), largest diffracted intensities on the (002) plane, and highest bandgap (3.21 eV).
  4. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Iqbal Omar M, et al.
    PLoS One, 2015;10(9):e0137891.
    PMID: 26368287 DOI: 10.1371/journal.pone.0137891
    Human chorionic gonadotropin (hCG), a glycoprotein hormone secreted from the placenta, is a key molecule that indicates pregnancy. Here, we have designed a cost-effective, label-free, in situ point-of-care (POC) immunosensor to estimate hCG using a cuneated 25 nm polysilicon nanogap electrode. A tiny chip with the dimensions of 20.5 × 12.5 mm was fabricated using conventional lithography and size expansion techniques. Furthermore, the sensing surface was functionalized by (3-aminopropyl)triethoxysilane and quantitatively measured the variations in hCG levels from clinically obtained human urine samples. The dielectric properties of the present sensor are shown with a capacitance above 40 nF for samples from pregnant women; it was lower with samples from non-pregnant women. Furthermore, it has been proven that our sensor has a wide linear range of detection, as a sensitivity of 835.88 μA mIU(-1) ml(-2) cm(-2) was attained, and the detection limit was 0.28 mIU/ml (27.78 pg/ml). The dissociation constant Kd of the specific antigen binding to the anti-hCG was calculated as 2.23 ± 0.66 mIU, and the maximum number of binding sites per antigen was Bmax = 22.54 ± 1.46 mIU. The sensing system shown here, with a narrow nanogap, is suitable for high-throughput POC diagnosis, and a single injection can obtain triplicate data or parallel analyses of different targets.
  5. Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Rejali Z, Afzan A, et al.
    Int J Biol Macromol, 2019 Apr 01;126:877-890.
    PMID: 30597241 DOI: 10.1016/j.ijbiomac.2018.12.235
    Prognosis of early cancer detection becomes one of the tremendous issues in the medical health system. Medical debates among specialist doctor and researcher in therapeutic approaches became a hot concern for cervix cancer deficiencies early screening, risk factors cross-reaction, portability device, rapid and free labeling system. The electrical biosensing based system showed credibility in higher specificity and selectivity due to hybridization of DNA duplex between analyte target and DNA probes. Electrical DNA sensor for cervix cancer has attracted too many attentions to researcher notification based on high performance, easy to handle, rapid system and possible to miniaturize. This review explores the current progression and future insignificant for HPV E6 genobiosensing for early Detection Strategies of Cervical Cancer.
  6. Uddin SM, Ibrahim F, Sayad AA, Thiha A, Pei KX, Mohktar MS, et al.
    Sensors (Basel), 2015 Mar 05;15(3):5376-89.
    PMID: 25751077 DOI: 10.3390/s150305376
    In recent years, many improvements have been made in foodborne pathogen detection methods to reduce the impact of food contamination. Several rapid methods have been developed with biosensor devices to improve the way of performing pathogen detection. This paper presents an automated endpoint detection system for amplicons generated by loop mediated isothermal amplification (LAMP) on a microfluidic compact disk platform. The developed detection system utilizes a monochromatic ultraviolet (UV) emitter for excitation of fluorescent labeled LAMP amplicons and a color sensor to detect the emitted florescence from target. Then it processes the sensor output and displays the detection results on liquid crystal display (LCD). The sensitivity test has been performed with detection limit up to 2.5 × 10(-3) ng/µL with different DNA concentrations of Salmonella bacteria. This system allows a rapid and automatic endpoint detection which could lead to the development of a point-of-care diagnosis device for foodborne pathogens detection in a resource-limited environment.
  7. Fathil MF, Md Arshad MK, Gopinath SC, Hashim U, Adzhri R, Ayub RM, et al.
    Biosens Bioelectron, 2015 Aug 15;70:209-20.
    PMID: 25841117 DOI: 10.1016/j.bios.2015.03.037
    Acute myocardial infarction or myocardial infarction (MI) is a major health problem, due to diminished flow of blood to the heart, leads to higher rates of mortality and morbidity. Data from World Health Organization (WHO) accounted 30% of global death annually and expected more than 23 million die annually by 2030. This fatal effects trigger the need of appropriate biomarkers for early diagnosis, thus countermeasure can be taken. At the moment, the most specific markers for cardiac injury are cardiac troponin I (cTnI) and cardiac troponin T (cTnT) which have been considered as 'gold standard'. Due to higher specificity, determination of the level of cardiac troponins became a predominant indicator for MI. Several ways of diagnostics have been formulated, which include enzyme-linked immunosorbent assay, chemiluminescent, fluoro-immunoassays, electrical detections, surface plasmon resonance, and colorimetric protein assay. This review represents and elucidates the strategies, methods and detection levels involved in these diagnostics on cardiac superior biomarkers. The advancement, sensitivity, and limitations of each method are also discussed. In addition, it concludes with a discussion on the point-of care (POC) assay for a fast, accurate and ability of handling small sample measurement of cardiac biomarker.
  8. Nuzaihan M N M, Hashim U, Md Arshad MK, Kasjoo SR, Rahman SF, Ruslinda AR, et al.
    Biosens Bioelectron, 2016 Sep 15;83:106-14.
    PMID: 27107147 DOI: 10.1016/j.bios.2016.04.033
    In this paper, a silicon nanowire biosensor with novel molecular gate control has been demonstrated for Deoxyribonucleic acid (DNA) detection related to dengue virus (DENV). The silicon nanowire was fabricated using the top-down nanolithography approach, through nanostructuring of silicon-on-insulator (SOI) layers achieved by combination of the electron-beam lithography (EBL), plasma dry etching and size reduction processes. The surface of the fabricated silicon nanowire was functionalized by means of a three-step procedure involving surface modification, DNA immobilization and hybridization. This procedure acts as a molecular gate control to establish the electrical detection for 27-mers base targets DENV DNA oligomer. The electrical detection is based on the changes in current, resistance and conductance of the sensor due to accumulation of negative charges added by the immobilized probe DNA and hybridized target DNA. The sensitivity of the silicon nanowire biosensors attained was 45.0µAM(-1), which shows a wide-range detection capability of the sensor with respect to DNA. The limit of detection (LOD) achieved was approximately 2.0fM. The demonstrated results show that the silicon nanowire has excellent properties for detection of DENV with outstanding repeatability and reproducibility performances.
  9. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Liu WW, Poopalan P, et al.
    PLoS One, 2015;10(12):e0144964.
    PMID: 26694656 DOI: 10.1371/journal.pone.0144964
    The creation of an appropriate thin film is important for the development of novel sensing surfaces, which will ultimately enhance the properties and output of high-performance sensors. In this study, we have fabricated and characterized zinc oxide (ZnO) thin films on silicon substrates, which were hybridized with gold nanoparticles (AuNPs) to obtain ZnO-Aux (x = 10, 20, 30, 40 and 50 nm) hybrid structures with different thicknesses. Nanoscale imaging by field emission scanning electron microscopy revealed increasing film uniformity and coverage with the Au deposition thickness. Transmission electron microscopy analysis indicated that the AuNPs exhibit an increasing average diameter (5-10 nm). The face center cubic Au were found to co-exist with wurtzite ZnO nanostructure. Atomic force microscopy observations revealed that as the Au content increased, the overall crystallite size increased, which was supported by X-ray diffraction measurements. The structural characterizations indicated that the Au on the ZnO crystal lattice exists without any impurities in a preferred orientation (002). When the ZnO thickness increased from 10 to 40 nm, transmittance and an optical bandgap value decreased. Interestingly, with 50 nm thickness, the band gap value was increased, which might be due to the Burstein-Moss effect. Photoluminescence studies revealed that the overall structural defect (green emission) improved significantly as the Au deposition increased. The impedance measurements shows a decreasing value of impedance arc with increasing Au thicknesses (0 to 40 nm). In contrast, the 50 nm AuNP impedance arc shows an increased value compared to lower sputtering thicknesses, which indicated the presence of larger sized AuNPs that form a continuous film, and its ohmic characteristics changed to rectifying characteristics. This improved hybrid thin film (ZnO/Au) is suitable for a wide range of sensing applications.
  10. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Poopalan P, Liu WW, et al.
    Biosens Bioelectron, 2016 Apr 15;78:14-22.
    PMID: 26584078 DOI: 10.1016/j.bios.2015.10.083
    Creating novel nanostructures is a primary step for high-performance analytical sensing. Herein, a new worm like nanostructure with Zinc Oxide-gold (ZnO/Au) hybrid was fabricated through an aqueous hydrothermal method, by doping Au-nanoparticle (AuNP) on the growing ZnO lattice. During ZnO growth, fine tuning the solution temperature expedites random curving of ZnO nanorods and forms nano-worms. The nano-worms which were evidenced by morphological, physical and structural analyses, revealed elongated structures protruding from the surface (length: 1 µm; diameter: ~100 nm). The appropriate peaks for the face centred cubic gold were (111) and (200), as seen from X-ray diffractogram. The strong interrelation between Au and ZnO was manifested by X-ray photoelectron spectroscopy. The combined surface area increment from the nanoparticle radii and ZnO nanorod random curving gives raise an enhancement in detection sensitivity by increasing bio-loading. 'Au-decorated hybrid nano-worm' was immobilized with a probe DNA from Vibrio Cholera and duplexed with a target which was revealed by Fourier Transform Infrared Spectroscopy. Our novel Au-decorated hybrid nano-worm is suitable for high-performance bio-sensing, as evidenced by impedance spectroscopy, having higher-specificity and attained femtomolar (10 fM) sensitivity. Further, higher stability, reproducibility and regeneration on this sensing surface were demonstrated.
  11. Balakrishnan SR, Hashim U, Gopinath SC, Poopalan P, Ramayya HR, Veeradasan P, et al.
    Biosens Bioelectron, 2016 Oct 15;84:44-52.
    PMID: 26560969 DOI: 10.1016/j.bios.2015.10.075
    Rationally designed biosensing system supports multiplex analyses is warranted for medical diagnosis to determine the level of analyte interaction. The chemically functionalized novel multi-electrode polysilicon nanogap (PSNG) lab-on-chip is designed in this study, facilitates multiplex analyses for a single analyte. On the fabricated 69nm PSNG, biocompatibility and structural characteristics were verified for the efficient binding of Human Chorionic Gonadotropin (hCG). With the assistance of microfluidics, hCG sample was delivered via single-injection to 3-Aminopropyl(triethoxy)silane (APTES) and Glycidoxypropyl(trimethoxy)silane (GPMS) modified PSNG electrodes and the transduced signal was used to investigate the dielectric mechanisms for multiplex analyses. The results from amperometric response and impedance measurement delivered the scale of interaction between anti-hCG antibody and hCG that exhibited 6.5 times higher sensitivity for the chemical linker, APTES than GPMS. Under optimized experimental conditions, APTES and GPMS modified immunosensor has a limit of detection as 0.56mIU/ml and 2.93mIU/ml (at S/N=3), with dissociation constants (Kd) of 5.65±2.5mIU/ml and 7.28±2.6mIU/ml, respectively. These results suggest that multiplex analysis of single target could enhance the accuracy of detection and reliable for real-time comparative analyses. The designed PSNG is simple, feasible, requires low sample consumption and could be applied for any given multiplex analyses.
  12. Jaapar FN, Parmin NA, Halim NHA, Hashim U, Gopinath SCB, Halim FS, et al.
    Int J Biol Macromol, 2023 Dec 31;253(Pt 2):126745.
    PMID: 37689297 DOI: 10.1016/j.ijbiomac.2023.126745
    Genosensor-based electrodes mediated with nanoparticles (NPs) have tremendously developed in medical diagnosis. Herein, we report a facile, rapid, low cost and highly sensitive biosensing strategy for early detection of HPV 18 using gold-nanoparticles (AuNPs) deposited on micro-IDEs. This study represents surface charge transduction of micro-interdigitated electrodes (micro-IDE) alumina insulated with silica, independent and mini genosensor modified with colloidal gold NPs (AuNPs), and determination of gene hybridization for early detection of cervical cancer. The surface of AuNPs deposited micro-IDE functionalized with optimized 3-aminopropyl-triethoxysilane (APTES) followed by hybridization with deoxyribonucleic acid (DNA) virus to develop DNA genosensor. The results of ssDNA hybridization with the ssDNA target of human papillomavirus (HPV) 18 have affirmed that micro-IDE functionalized with colloidal AuNPs resulted in the lowest detection at 0.529 aM. Based on coefficient regression, micro-IDE functionalized with AuNPs produces better results in the sensitivity test (R2 = 0.99793) than unfunctionalized micro-IDE.
  13. Parmin NA, Hashim U, Gopinath SCB, Nadzirah S, Rejali Z, Afzan A, et al.
    Mikrochim Acta, 2019 05 08;186(6):336.
    PMID: 31069542 DOI: 10.1007/s00604-019-3445-2
    A gene sensor for rapid detection of the Human Papillomavirus 16 (HPV 16) which is associated with the appearance of cervical cancer was developed. The assay is based on voltammetric determination of HPV 16 DNA by using interdigitated electrodes modified with titanium dioxide nanoparticles. Titanium dioxide nanoparticles (NPs) were used to modify a semiconductor-based interdigitated electrode (IDE). The surface of the NPs was then functionalized with a commercial 24-mer oligomer DNA probe for HPV 16 that was modified at the 5' end with a carboxyl group. If the probe interacts with the HPV 16 ssDNA, the current, best measured at a working voltage of 1.0 V, increases. The gene sensor has has a ∼ 0.1 fM limit of detection which is comparable to other sensors. The dielectric voltammetry analysis was carried out from 0 V to 1 V. The electrochemical sensitivity of the IDE is 2.5 × 10-5 μA·μM-1·cm-2. Graphical abstract Schematic of an interdigitated electrode (IDE) modified with titanium dioxide nanoparticles for voltammetric determination of HPV 16 DNA by using an appropriate DNA probe.
  14. Perumal V, Hashim U, Gopinath SC, Rajintra Prasad H, Wei-Wen L, Balakrishnan SR, et al.
    Nanoscale Res Lett, 2016 Dec;11(1):31.
    PMID: 26787050 DOI: 10.1186/s11671-016-1245-8
    Generation of hybrid nanostructures has been attested as a promising approach to develop high-performance sensing substrates. Herein, hybrid zinc oxide (ZnO) nanorod dopants with different gold (Au) thicknesses were grown on silicon wafer and studied for their impact on physical, optical and electrical characteristics. Structural patterns displayed that ZnO crystal lattice is in preferred c-axis orientation and proved the higher purities. Observations under field emission scanning electron microscopy revealed the coverage of ZnO nanorods by Au-spots having diameters in the average ranges of 5-10 nm, as determined under transmission electron microscopy. Impedance spectroscopic analysis of Au-sputtered ZnO nanorods was carried out in the frequency range of 1 to 100 MHz with applied AC amplitude of 1 V RMS. The obtained results showed significant changes in the electrical properties (conductance and dielectric constant) with nanostructures. A clear demonstration with 30-nm thickness of Au-sputtering was apparent to be ideal for downstream applications, due to the lowest variation in resistance value of grain boundary, which has dynamic and superior characteristics.
  15. Humayun Q, Kashif M, Hashim U, Qurashi A
    Nanoscale Res Lett, 2014;9(1):29.
    PMID: 24423232 DOI: 10.1186/1556-276X-9-29
    Selective area growth of ZnO nanorods is accomplished on microgap electrodes (spacing of 6 μm) by using a facile wet chemical etching process. The growth of ZnO nanorods on a selected area of microgap electrode is carried out by hydrothermal synthesis forming nanorod bridge between two electrodes. This is an attractive, genuine, direct, and highly reproducible technique to grow nanowire/nanorod onto the electrodes on selected area. The ZnO nanorods were grown at 90°C on the pre-patterned electrode system without destroying the electrode surface structure interface and geometry. The ZnO nanorods were tested for their application in ultraviolet (UV) sensors. The photocurrent-to-dark (Iph/Id) ratio was 3.11. At an applied voltage of 5 V, the response and recovery time was 72 and 110 s, respectively, and the response reached 2 A/W. The deposited ZnO nanorods exhibited a UV photoresponse that is promising for future cost-effective and low-power electronic UV-sensing applications.
  16. Haarindraprasad R, Hashim U, Gopinath SC, Kashif M, Veeradasan P, Balakrishnan SR, et al.
    PLoS One, 2015;10(7):e0132755.
    PMID: 26167853 DOI: 10.1371/journal.pone.0132755
    The performance of sensing surfaces highly relies on nanostructures to enhance their sensitivity and specificity. Herein, nanostructured zinc oxide (ZnO) thin films of various thicknesses were coated on glass and p-type silicon substrates using a sol-gel spin-coating technique. The deposited films were characterized for morphological, structural, and optoelectronic properties by high-resolution measurements. X-ray diffraction analyses revealed that the deposited films have a c-axis orientation and display peaks that refer to ZnO, which exhibits a hexagonal structure with a preferable plane orientation (002). The thicknesses of ZnO thin films prepared using 1, 3, 5, and 7 cycles were measured to be 40, 60, 100, and 200 nm, respectively. The increment in grain size of the thin film from 21 to 52 nm was noticed, when its thickness was increased from 40 to 200 nm, whereas the band gap value decreased from 3.282 to 3.268 eV. Band gap value of ZnO thin film with thickness of 200 nm at pH ranging from 2 to 10 reduces from 3.263eV to 3.200 eV. Furthermore, to evaluate the transducing capacity of the ZnO nanostructure, the refractive index, optoelectric constant, and bulk modulus were analyzed and correlated. The highest thickness (200 nm) of ZnO film, embedded with an interdigitated electrode that behaves as a pH-sensing electrode, could sense pH variations in the range of 2-10. It showed a highly sensitive response of 444 μAmM-1cm-2 with a linear regression of R2 =0.9304. The measured sensitivity of the developed device for pH per unit is 3.72μA/pH.
  17. Perumal V, Hashim U, Gopinath SC, Haarindraprasad R, Foo KL, Balakrishnan SR, et al.
    Sci Rep, 2015 Jul 16;5:12231.
    PMID: 26178973 DOI: 10.1038/srep12231
    Hybrid gold nanostructures seeded into nanotextured zinc oxide (ZnO) nanoflowers (NFs) were created for novel biosensing applications. The selected 'spotted NFs' had a 30-nm-thick gold nanoparticle (AuNP) layer, chosen from a range of AuNP thicknesses, sputtered onto the surface. The generated nanohybrids, characterized by morphological, physical and structural analyses, were uniformly AuNP-seeded onto the ZnO NFs with an average length of 2-3 μm. Selective capture of molecular probes onto the seeded AuNPs was evidence for the specific interaction with DNA from pathogenic Leptospirosis-causing strains via hybridization and mis-match analyses. The attained detection limit was 100 fM as determined via impedance spectroscopy. High levels of stability, reproducibility and regeneration of the sensor were obtained. Selective DNA immobilization and hybridization were confirmed by nitrogen and phosphorus peaks in an X-ray photoelectron spectroscopy analysis. The created nanostructure hybrids illuminate the mechanism of generating multiple-target, high-performance detection on a single NF platform, which opens a new avenue for array-based medical diagnostics.
  18. Ten ST, Hashim U, Gopinath SC, Liu WW, Foo KL, Sam ST, et al.
    Biosens Bioelectron, 2017 Jul 15;93:146-154.
    PMID: 27660016 DOI: 10.1016/j.bios.2016.09.035
    Surface acoustic wave mediated transductions have been widely used in the sensors and actuators applications. In this study, a shear horizontal surface acoustic wave (SHSAW) was used for the detection of food pathogenic Escherichia coli O157:H7 (E.coli O157:H7), a dangerous strain among 225 E. coli unique serotypes. A few cells of this bacterium are able to cause young children to be most vulnerable to serious complications. Presence of higher than 1cfu E.coli O157:H7 in 25g of food has been considered as a dangerous level. The SHSAW biosensor was fabricated on 64° YX LiNbO3 substrate. Its sensitivity was enhanced by depositing 130.5nm thin layer of SiO2 nanostructures with particle size lesser than 70nm. The nanostructures act both as a waveguide as well as a physical surface modification of the sensor prior to biomolecular immobilization. A specific DNA sequence from E. coli O157:H7 having 22 mers as an amine-terminated probe ssDNA was immobilized on the thin film sensing area through chemical functionalization [(CHO-(CH2)3-CHO) and APTES; NH2-(CH2)3-Si(OC2H5)3]. The high-performance of sensor was shown with the specific oligonucleotide target and attained the sensitivity of 0.6439nM/0.1kHz and detection limit was down to 1.8femto-molar (1.8×10(-15)M). Further evidence was provided by specificity analysis using single mismatched and complementary oligonucleotide sequences.
  19. Azizah N, Hashim U, Gopinath SCB, Nadzirah S
    Int J Biol Macromol, 2017 Jan;94(Pt A):571-575.
    PMID: 27771413 DOI: 10.1016/j.ijbiomac.2016.10.060
    Nanoparticles have been investigated as flagging tests for the sensitive DNA recognition that can be utilized as a part of field applications to defeat restrictions. Gold nanoparticles (AuNPs) have been widely utilized due to its optical property and capacity to get functionalized with a mixed bag of biomolecules. This study exhibits the utilization of AuNPs functionalized with single-stranded oligonucleotide (AuNP-oligo test) for fast the identification of Human Papillomavirus (HPV). This test is displayed on interdigitated electrode sensor and supported by colorimetric assay. DNA conjugated AuNP has optical property that can be controlled for the applications in diagnostics. With its identification abilities, this methodology incorporates minimal effort, strong reagents and basic identification of HPV.
  20. Lakshmipriya T, Gopinath SCB, Hashim U, Murugaiyah V
    Int J Biol Macromol, 2017 Dec;105(Pt 1):796-800.
    PMID: 28732727 DOI: 10.1016/j.ijbiomac.2017.07.115
    Enzyme Linked Immunosorbent Assay (ELISA) is a standard assay that has been used widely to validate the presence of analyte in the solution. With the advancement of ELISA, different strategies have shown and became a suitable immunoassay for a wide range of analytes. Herein, we attempted to provide additional evidence with ELISA, to show its suitability for multi-analyte detection. To demonstrate, three clinically relevant targets have been chosen, which include 16kDa protein from Mycobacterium tuberculosis, human blood clotting Factor IXa and a tumour marker Squamous Cell Carcinoma antigen. Indeed, we adapted the routine steps from the conventional ELISA to validate the occurrence of analytes both in homogeneous and heterogeneous solutions. With the homogeneous and heterogeneous solutions, we could attain the sensitivity of 2, 8 and 1nM for the targets 16kDa protein, FIXa and SSC antigen, respectively. Further, the specific multi-analyte validations were evidenced with the similar sensitivities in the presence of human serum. ELISA assay in this study has proven its applicability for the genuine multiple target validation in the heterogeneous solution, can be followed for other target validations.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links