Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Arip MN, Heng LY, Ahmad M, Ujang S
    Talanta, 2013 Nov 15;116:776-81.
    PMID: 24148473 DOI: 10.1016/j.talanta.2013.07.065
    The characteristics of a potentiometric biosensor for the determination of permethrin in treated wood based on immobilised cells of the fungus Lentinus sajor-caju on a potentiometric transducer are reported this paper. The potentiometric biosensor was prepared by immobilisation of the fungus in alginate gel deposited on a pH-sensitive transducer employing a photocurable acrylic matrix. The biosensor gave a good response in detecting permethrin over the range of 1.0-100.0 µM. The slope of the calibration curve was 56.10 mV/decade with detection limit of 1.00 µM. The relative standard deviation for the sensor reproducibility was 4.86%. The response time of the sensor was 5 min at optimum pH 8.0 with 1.00 mg/electrode of fungus L. sajor-caju. The permethrin biosensor performance was compared with the conventional method for permethrin analysis using high performance liquid chromatography (HPLC), and the analytical results agreed well with the HPLC method (at 95% confidence limit). There was no interference from commonly used organophosphorus pesticides such as diazinon, parathion, paraoxon, and methyl parathion.
  2. Hassan RA, Heng LY, Tan LL
    Sensors (Basel), 2020 Sep 04;20(18).
    PMID: 32899886 DOI: 10.3390/s20185043
    Carrageenans are linear sulphated polysaccharides that are commonly added into confectionery products but may exert a detrimental effect to human health. A new and simpler way of carrageenan determination based on an optical sensor utilizing a methylcellulose/poly(n-butyl acrylate) (Mc/PnBA) composite membrane with immobilized methylene blue (MB) was developed. The hydrophilic Mc polymer membrane was successfully modified with a more hydrophobic acrylic polymer. This was to produce an insoluble membrane at room temperature where MB reagent could be immobilized to build an optical sensor for carrageenan analysis. The fluorescence intensity of MB in the composite membrane was found to be proportional to the carrageenan concentrations in a linear manner (1.0-20.0 mg L-1, R2 = 0.992) and with a detection limit at 0.4 mg L-1. Recovery of spiked carrageenan into commercial fruit juice products showed percentage recoveries between 90% and 102%. The optical sensor has the advantages of improved sensitivity and better selectivity to carrageenan when compared to other types of hydrocolloids. Its sensitivity was comparable to most sophisticated techniques for carageenan analysis but better than other types of optical sensors. Thus, this sensor provides a simple, rapid, and sensitive means for carageenan analysis.
  3. Hassan RA, Heng LY, Tan LL
    Sci Rep, 2019 04 23;9(1):6379.
    PMID: 31015498 DOI: 10.1038/s41598-019-42757-y
    A novel disposable electrochemical biosensor based on immobilized calf thymus double-stranded DNA (dsDNA) on the carbon-based screen-printed electrode (SPE) is developed for rapid biorecognition of carrageenan by using methylene blue (MB) redox indicator. The biosensor protocol for the detection of carrageenan is based on the concept of competitive binding of positively charged MB to the negatively charged dsDNA and carrageenan. The decrement in the MB cathodic peak current (ipc) signal as a result of the released MB from the immobilized dsDNA, and attracted to the carrageenan can be monitored via differential pulse voltammetry (DPV). The biosensor showed high sensitivity and selectivity to carrageenan at low concentration without interference from other polyanions such as alginate, gum arabic and starch. Calibration of the biosensor with carrageenan exhibited an excellent linear dependence from 1-10 mg L-1 (R2 = 0.98) with a detection limit of 0.08 mg L-1. The DNA-based carrageenan biosensor showed satisfactory reproducibility with 5.6-6.9% (n = 3) relative standard deviations (RSD), and possessing several advantages such as simplicity, fast and direct application to real sample analysis without any prior extensive sample treatments, particularly for seaweeds and food analyses.
  4. Nurlely, Ahmad M, Heng LY, Tan LL
    Spectrochim Acta A Mol Biomol Spectrosc, 2022 Feb 15;267(Pt 2):120535.
    PMID: 34749257 DOI: 10.1016/j.saa.2021.120535
    Optical biosensor for the detection of formaldehyde has been developed based on the transparent enzymatic stacked membranes system on the glass substrate, and employing optical absorption transducer with H+ ion-selective Nile Blue chromoionophore (NBCM) dye-doped methacrylic acrylic (MB28) copolymer membrane as the optode membrane. Alcohol oxidase (AOx) enzymes were entrapped within the biocompatible sol-gel matrix and deposited on top of the pH optode membrane. As the uppermost catalytic membrane catalyzes the oxidative conversion of formaldehyde to formic acid and hydrogen peroxide, the immobilized NBCM undergoes protonation reaction and forms HNBCM+, the dark blue ion-chromoionophore complex via H+ ion transfer reaction within the soft and flexible MB28 polymeric membrane. This rendered the enzymatic optode membrane absorbed a high yellow light intensity from the light source and exhibited maximum absorption peaks at 610 and 660 nm. Optical evaluation of formaldehyde by means on UV-vis absorption transduction of the enzymatic stacked membranes demonstrated rapid response time of 10 min with high sensitivity, good linearity and high reproducibility across a wide formaldehyde concentration range of 1 × 10-3-1 × 103 mM (R2 = 0.9913), and limit of detection (LOD) at 1 × 10-3 mM, which could be useful for formaldehyde assay in industrial, agricultural, environmental, food and beverages as well as medical samples. The formaldehyde concentration in snapper fish, pomfret fish and threadfin fish samples determined by the proposed optical enzymatic biosensor were very much close to the formaldehyde concentration values determined by the UV-vis spectrophotometric NASH standard method based on the statistical t-test. This suggests that the optical biosensor can be used as a reliable method for quantitative determination of formaldehyde levels in food samples.
  5. Hassan RA, Heng LY, Ahmad A, Tan LL
    PLoS One, 2019;14(4):e0214580.
    PMID: 30990847 DOI: 10.1371/journal.pone.0214580
    A potentiometric whole cell biosensor based on immobilized marine bacterium, Pseudomonas carrageenovora producing κ-carrageenase and glycosulfatase enzymes for specific and direct determination of κ-carrageenan, is described. The bacterial cells were immobilized on the self-plasticized hydrogen ion (H+)-selective acrylic membrane electrode surface to form a catalytic layer. Hydrogen ionophore I was incorporated in the poly(n-butyl acrylate) [poly(nBA)] as a pH ionophore. Catalytic decomposition of κ-carrageenan by the bienzymatic cascade reaction produced neoagarobiose, an inorganic sulfate ion and a proton. The latter was detectable by H+ ion transducer for indirect potentiometric quantification of κ-carrageenan concentration. The use of a disposable screen-printed Ag/AgCl electrode (SPE) provided no cleaning requirement and enabled κ-carrageenan detection to be carried out conveniently without cross contamination in a complex food sample. The SPE-based microbial biosensor response was found to be reproducible with high reproducibility and relative standard deviation (RSD) at 2.6% (n = 3). The whole cell biosensor demonstrated a broad dynamic linear response range to κ-carrageenan from 0.2-100 ppm in 20 mM phosphate buffer saline (PBS) at pH 7.5 with a detection limit at 0.05 ppm and a Nernstian sensitivity of 58.78±0.87 mV/decade (R2 = 0.995). The biosensor showed excellent selectivity towards κ-carrageenan compared to other types of carrageenans tested e.g. ι-carrageenan and λ-carrageenan. No pretreatment to the food sample was necessary when the developed whole cell biosensor was employed for direct assay of κ-carrageenan in dairy product.
  6. Noor NS, Tan LL, Heng LY, Chong KF, Tajuddin SN
    Food Chem, 2016 Sep 15;207:132-8.
    PMID: 27080889 DOI: 10.1016/j.foodchem.2016.03.088
    A new optosensor for visual quantitation of nitrite (NO2(-)) ion has been fabricated by physically immobilizing Safranine O (SO) reagent onto a self-adhesive poly(n-butyl acrylate) [poly(nBA)] microspheres matrix, which was synthesized via facile microemulsion UV lithography technique. Evaluation and optimization of the optical NO2(-) ion sensor was performed with a fiber optic reflectance spectrophotometer. Scanning electron micrograph showed well-shaped and smooth spherical morphology of the poly(nBA) microspheres with a narrow particles size distribution from 0.6μm up to 1.8μm. The uniform size distribution of the acrylic microspheres promoted homogeneity of the immobilized SO reagent molecules on the microspheres' surfaces, thereby enhanced the sensing response reproducibility (<5% RSD) with a linear range obtained from 10 to 100ppm NO2(-) ion. The micro-sized acrylic immobilization matrix demonstrated no significant barrier for diffusion of reactant and product, and served as a good solid state ion transport medium for reflectometric nitrite determination in food samples.
  7. Jeningsih, Tan LL, Ulianas A, Heng LY, Mazlan NF, Jamaluddin ND, et al.
    Sensors (Basel), 2020 Mar 25;20(7).
    PMID: 32218202 DOI: 10.3390/s20071820
    A DNA micro-optode for dengue virus detection was developed based on the sandwich hybridization strategy of DNAs on succinimide-functionalized poly(n-butyl acrylate) (poly(nBA-NAS)) microspheres. Gold nanoparticles (AuNPs) with an average diameter of ~20 nm were synthesized using a centrifugation-based method and adsorbed on the submicrometer-sized polyelectrolyte-coated poly(styrene-co-acrylic acid) (PSA) latex particles via an electrostatic method. The AuNP-latex spheres were attached to the thiolated reporter probe (rDNA) by Au-thiol binding to functionalize as an optical gold-latex-rDNA label. The one-step sandwich hybridization recognition involved a pair of a DNA probe, i.e., capture probe (pDNA), and AuNP-PSA reporter label that flanked the target DNA (complementary DNA (cDNA)). The concentration of dengue virus cDNA was optically transduced by immobilized AuNP-PSA-rDNA conjugates as the DNA micro-optode exhibited a violet hue upon the DNA sandwich hybridization reaction, which could be monitored by a fiber-optic reflectance spectrophotometer at 637 nm. The optical genosensor showed a linear reflectance response over a wide cDNA concentration range from 1.0 × 10-21 M to 1.0 × 10-12 M cDNA (R2 = 0.9807) with a limit of detection (LOD) of 1 × 10-29 M. The DNA biosensor was reusable for three consecutive applications after regeneration with mild sodium hydroxide. The sandwich-type optical biosensor was well validated with a molecular reverse transcription polymerase chain reaction (RT-PCR) technique for screening of dengue virus in clinical samples, e.g., serum, urine, and saliva from dengue virus-infected patients under informed consent.
  8. Shing WL, Heng LY, Surif S
    Sensors (Basel), 2013;13(5):6394-404.
    PMID: 23673679 DOI: 10.3390/s130506394
    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 µg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 µg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 µg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability.
  9. Budi S, Suliasih BA, Othman MS, Heng LY, Surif S
    Waste Manag, 2016 Sep;55:231-7.
    PMID: 26459190 DOI: 10.1016/j.wasman.2015.09.022
    The first phase of toxicity identification evaluation (TIE) method comprised of physic-chemical fractionation steps of pH adjustment, pH adjustment followed by filtration, aeration, extraction with solid phase C18 column (SPE), oxidant reduction with sodium thiosulphate and EDTA chelation was conducted to characterize the toxicants of a Malaysian landfill leachate. The battery of organisms test chosen were freshwater fish (Rasbora sumatrana), freshwater prawn (Macrobrachium lanchesteri) and tomato seed (Lycoperson esculentum). Toxicity reductions at each step were comparable for all test organisms. The major toxicants present in the leachate were found to be mostly basic in nature and precipitable under acidic conditions as well as containing non-polar organic compounds. A small reduction in toxicity was observed when leachate was treated with sodium thiosulphate in oxidant reduction test indicating the presence of oxidizers. The EDTA chelating step did not significantly reduce toxicity in the test organisms suggesting insignificant level of (toxic) metals.
  10. Nasher E, Heng LY, Zakaria Z, Surif S
    ScientificWorldJournal, 2013;2013:858309.
    PMID: 24163633 DOI: 10.1155/2013/858309
    Tourism-related activities such as the heavy use of boats for transportation are a significant source of petroleum hydrocarbons that may harm the ecosystem of Langkawi Island. The contamination and toxicity levels of polycyclic aromatic hydrocarbon (PAH) in the sediments of Langkawi were evaluated using sediment quality guidelines (SQGs) and toxic equivalent factors. Ten samples were collected from jetties and fish farms around the island in December 2010. A gas chromatography/flame ionization detector (GC/FID) was used to analyse the 18 PAHs. The concentration of total PAHs was found to range from 869 ± 00 to 1637 ± 20 ng g⁻¹ with a mean concentration of 1167.00 ± 24 ng g⁻¹, lower than the SQG effects range-low (3442 ng g⁻¹). The results indicated that PAHs may not cause acute biological damage. Diagnostic ratios and principal component analysis suggested that the PAHs were likely to originate from pyrogenic and petrogenic sources. The toxic equivalent concentrations of the PAHs ranged from 76.3 to 177 ng TEQ/g d.w., which is lower compared to similar studies. The results of mean effects range-median quotient of the PAHs were lower than 0.1, which indicate an 11% probability of toxicity effect. Hence, the sampling sites were determined to be the low-priority sites.
  11. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Talanta, 2006 Oct 15;70(3):527-32.
    PMID: 18970803 DOI: 10.1016/j.talanta.2005.12.061
    The development of an optical biosensor based on immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and tyrosinase in chitosan film for the detection of phenolic compounds has been described. Tyrosinase was immobilized in chitosan film deposited on the hybrid nafion/sol-gel silicate film containing MBTH. The enzymatic oxidation product of phenolic compounds were stabilized through formation of adduct with MBTH to produce a maroon color adduct. The color intensity of adduct was found to increase proportionally with the increase of the substrate concentrations after 5min exposure. The linearity of the biosensor towards phenol, catechol and m-cresol were in the respective concentration range of 0.5-7.0, 0.5-10.0 and 1.0-13.0mg/L with detection limit of 0.18, 0.23 and 0.43mg/L, respectively. The biosensor shows a good stability for at least 3 months.
  12. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Anal Bioanal Chem, 2006 Nov;386(5):1285-92.
    PMID: 17031625
    The stacked-film immobilization of 3-methyl-2-benzothiazolinone hydrazone (MBTH) in hybrid nafion/sol-gel silicate film and horseradish peroxidase (HRP) in chitosan, performed in order to allow the determination of phenolic compounds, was investigated via an optical method. The stacked films were deposited onto a microscope glass slide by a spin-coating technique. The quinone or free radical product formed by the enzymatic reactions of phenolic compounds interacts with MBTH to form azo-dye products, which can be measured spectrophotometrically at a wavelength of 500 nm. The color intensity of the product was found to increase in proportion to the phenolic concentration after 5 min of exposure. The response of the biosensor was linear over concentration ranges of 0.025-0.500, 0.010-0.070 and 0.050-0.300 mM for guaiacol, resorcinol and o-cresol, respectively, and gave detection limits of 0.010, 0.005 and 0.012 mM. The sensor exhibited good sensitivity and stability for at least two months.
  13. Abdullah J, Ahmad M, Heng LY, Karuppiah N, Sidek H
    Sensors (Basel), 2007 Oct 11;7(10):2238-2250.
    PMID: 28903224 DOI: 10.3390/s7102238
    The fabrication of an optical biosensor by using stacked films where 3-methyl-2-benzothiazolinone hydrazone (MBTH) was immobilized in a hybrid nafion/sol-gelsilicate film and laccase in a chitosan film for the detection of phenolic compounds wasdescribed. Quinone and/or phenoxy radical product from the enzymatic oxidation ofphenolic compounds was allowed to couple with MBTH to form a colored azo-dye productfor spectrophometric detection. The biosensor demonstrated a linear response to catecholconcentration range of 0.5-8.0 mM with detection limit of 0.33 mM and response time of10 min. The reproducibility of the fabricated biosensor was good with RSD value of 5.3 %(n = 8) and stable for at least 2 months. The use of the hybrid materials of nafion/sol-gelsilicate to immobilize laccase has altered the selectivity of the enzyme to various phenoliccompounds such as catechol, guaicol, o-cresol and m-cresol when compared to the non-immobilized enzyme. When immobilized in this hybrid film, the biosensor response onlyto catechol and not other phenolic compounds investigated. Immobilization in this hybridmaterial has enable the biosensor to be more selective to catechol compared with the non-immobilized enzyme. This shows that by a careful selection of different immobilizationmatrices, the selectivity of an enzyme can be modified to yield a biosensor with goodselectivity towards certain targeted analytes.
  14. Saeedfar K, Heng LY, Ling TL, Rezayi M
    Sensors (Basel), 2013;13(12):16851-66.
    PMID: 24322561 DOI: 10.3390/s131216851
    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
  15. Sani NDM, Heng LY, Marugan RSPM, Rajab NF
    Food Chem, 2018 Dec 15;269:503-510.
    PMID: 30100466 DOI: 10.1016/j.foodchem.2018.07.035
    The presence of carcinogens in food is a major food safety concern. A nanocomposite-based electrochemical DNA biosensor was constructed for potential carcinogen detection in food samples by immobilizing amine terminated single stranded DNA onto silica nanospheres deposited onto a screen-printed electrode modified using gold nanoparticles. The effect of three different DNA sequences: 15-base guanine, 24-base guanine and 24-base adenine-thymine rich DNA on carcinogen (formaldehyde and acrylamide) detection was evaluated. The competitive binding of the DNA with the carcinogen and electroactive indicator, Methylene blue (MB) was measured using differential pulse voltammetry. Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, buffer concentration, pH and ionic strength. Overall, the 24-base guanine rich DNA yielded the best results with a detection limit of 0.0001 ppm, linear range between 0.0001 ppm and 0.1 ppm and reproducibility below 5% R.S.D. Finally, the results obtained using the biosensor were validated using Ames test.
  16. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
  17. Tan TL, Kang CW, Ooi KS, Tan ST, Ahmad NS, Nasuruddin DN, et al.
    Sci Rep, 2021 05 31;11(1):11369.
    PMID: 34059757 DOI: 10.1038/s41598-021-90894-0
    Early bacterial infection (BI) identification in resource-limiting Emergency Departments (ED) is challenging, especially in low- and middle-income counties (LMIC). Misdiagnosis predisposes to antibiotic overuse and propagates antimicrobial resistance. This study evaluates new emerging biomarkers, secretory phospholipase A2 group IIA (sPLA2-IIA) and compares with other biomarkers on their performance characteristic of BI detection in Malaysia, an LMIC. A prospective cohort study was conducted involving 151 consecutive patients admitted to the ED. A single measurement was taken upon patient arrival in ED and was analysed for serum levels of sPLA2-IIA, high-sensitive C-reactive protein (CRP), procalcitonin (PCT), neutrophil percentage (N%), and lactate. All biomarkers' performance was compared for the outcomes using area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. The performance of sPLA2-IIA (AUROC 0.93 [95% CI: 0.89-0.97]; Sn 80% [95% CI: 72-87]; Sp 94% [95% CI: 81-89]) was the highest among all. It was comparable with high-sensitive CRP (AUROC 0.93 [95% CI: 0.88-0.97]; Sn 75% [95% CI: 66-83]; Sp 91 [95% CI: 77-98]) but had a higher Sn and Sp. The sPLA2-IIA was also found superior to N%, PCT, and lactate. This finding suggested sPLA2-IIA was recommended biomarkers for BI detection in LMIC.
  18. See WP, Heng LY, Nathan S
    Anal Sci, 2015;31(10):997-1003.
    PMID: 26460363 DOI: 10.2116/analsci.31.997
    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links