Displaying publications 1 - 20 of 62 in total

Abstract:
Sort:
  1. Yuhana Ariffin E, Heng LY, Tan LL, Abd Karim NH, Hasbullah SA
    Sensors (Basel), 2020 Feb 26;20(5).
    PMID: 32111092 DOI: 10.3390/s20051279
    A novel label-free electrochemical DNA biosensor was constructed for the determination of Escherichia coli bacteria in environmental water samples. The aminated DNA probe was immobilized onto hollow silica microspheres (HSMs) functionalized with 3-aminopropyltriethoxysilane and deposited onto a screen-printed electrode (SPE) carbon paste with supported gold nanoparticles (AuNPs). The biosensor was optimized for higher specificity and sensitivity. The label-free E. coli DNA biosensor exhibited a dynamic linear response range of 1 × 10-10 µM to 1 × 10-5 µM (R2 = 0.982), with a limit of detection at 1.95 × 10-15 µM, without a redox mediator. The sensitivity of the developed DNA biosensor was comparable to the non-complementary and single-base mismatched DNA. The DNA biosensor demonstrated a stable response up to 21 days of storage at 4 ℃ and pH 7. The DNA biosensor response was regenerable over three successive regeneration and rehybridization cycles.
  2. Ying KS, Heng LY, Hassan NI, Hasbullah SA
    Sensors (Basel), 2020 Dec 03;20(23).
    PMID: 33287113 DOI: 10.3390/s20236898
    An all-solid-state potentiometric electrode system for aluminium ion determination was developed with a new aluminium ion sensor as the working electrode based on a new ionophore for aluminium ion, 1,1'-[(methylazanediyl)bis(ethane-2,1-diyl)]bis[3-(naphthalen-1-yl)thiourea] (ACH). The reference electrode was a potassium ion sensor, which acts as a pseudo-reference. Both electrodes were made from Ag/AgCl screen-print electrodes fabricated from a non-plasticized and photocurable poly(n-butyl acrylate) membrane that contained various other membrane components. The pseudo-reference potential based on the potassium ion sensor was fixed in 0.050 M KNO3, and such concentration of K+ ion did not interfere with the measurement of the Al3+ ion using the aluminium sensor. With such a pseudo-reference and in the presence of 0.050 M KNO3 as a background medium, the aluminium sensor measured changes of aluminium ion concentrations linearly from 10-6 to 10-2 M Al3+ ion with a Nernstian response of 17.70 ± 0.13 mV/decade. A low detection limit of 2.45 × 10-7 M was achieved with this all-solid-state potentiometric system. The aluminium sensor was insensitive to pH effects from 2.0 to 8.0 with a response time of less than 50 s. Under optimum conditions, a lifetime of 49 days was achieved with good sensor selectivity, reversibility, repeatability, and reproducibility. The all-solid-state electrode system was applied to analyze the Al3+ ion content of water samples from a water treatment plant. Compared with the conventional potentiometric detection system for aluminium ions, the new all-solid-state aluminium ion sensor incorporating a pseudo-reference from the potassium sensor demonstrated similar analytical performance. It thus provided a convenient means of aluminium content analysis in water treatment plants.
  3. Wong FC, Ahmad M, Heng LY, Peng LB
    Talanta, 2006 Jun 15;69(4):888-93.
    PMID: 18970653 DOI: 10.1016/j.talanta.2005.11.034
    An optical biosensor consisting of a chromoionophore (ETH5294) (CM) doped sol-gel film interfaced with another sol-gel film immobilized with acetylcholinesterase (AChE) was employed to detect the insecticide dichlorvos. The main advantage of this optical biosensor is the use of a sol-gel layer with immobilized CM that possesses lipophilic property. The highly lipophilic nature of the CM and its compatibility with the sol-gel matrix has prevented leaching, which is frequently a problem in optical sensor construction based on pH indicator dyes. The immobilization of the indicator and enzyme was simple and need no chemical modification. The CM layer is pH sensitive and detects the pH changes of the acetylcholine chloride (AChCl) substrate when hydrolyzed by AChE layer deposited above. In the absence of the AChE layer, the pH response of the CM layer is linear from pH 6 to 8 (R(2)=0.98, n=3) and it showed no leaching of the lipophilic chromoionophore. When the AChE layer is deposited on top, the optical biosensor responds to AChCl with a linear dynamic range of 40-90mM AChCl (R(2)=0.984, n=6). The response time of the biosensor is 12min. Based on the optimum incubation time of 15min, a linear calibration curve of dichlorvos against the percentage inhibition of AChE was obtained from 0.5 to 7mg/L of dichlorvos (17-85% inhibition, R(2)=0.991, n=9). The detection limit for dichlorvos was 0.5mg/L. The results of the analysis of 1.7-6.0mg/L of dichlorvos using this optical biosensor agreed well with a gas chromatography-mass spectrometry detection method.
  4. Ulianas A, Heng LY, Abu Hanifah S, Ling TL
    Sensors (Basel), 2012;12(5):5445-60.
    PMID: 22778594 DOI: 10.3390/s120505445
    An electrochemical microbiosensor for DNA has been fabricated based on new acrylic microspheres modified with reactive N-acryloxysuccinimide (NAS) functional groups. Hydrophobic poly(n-butylacrylate-N-acryloxysuccinimide) microspheres were synthesized in an emulsion form with a simple one-step photopolymerization technique. Aminated DNA probe was attached to the succinimde functional group of the acrylic microspheres via covalent bonding. The hybridization of the immobilized DNA probe with the complementary DNA was studied by differential pulse voltametry using anthraquninone-2-sulfonic acid monohydrate sodium salt (AQMS) as the electroactive hybridization label. The influences of many factors such as duration of DNA probe immobilization and hybridization, pH, type of ions, buffer concentrations, ionic strength, operational temperature and non-complementary DNA on the biosensor performance were evaluated. Under optimized conditions, the DNA microbiosensor demonstrated a linear response range to target DNA over a wide concentration range of 1.0 × 10(-16) and 1.0 × 10(-8) M with a lower limit of detection (LOD) of 9.46 × 10(-17) M (R(2) = 0.97). This DNA microbiosensor showed good reproducibility with 2.84% RSD (relative standard deviation) (n = 3). Application of the NAS-modified acrylic microspheres in the construction of DNA microbiosensor had improved the overall analytical performance of the resultant DNA microbiosensor when compared with other reported DNA biosensors using other nano-materials for membranes and microspheres as DNA immobilization matrices.
  5. Ulianas A, Heng LY, Ahmad M
    Sensors (Basel), 2011;11(9):8323-38.
    PMID: 22164078 DOI: 10.3390/s110908323
    New acrylic microspheres were synthesised by photopolymerisation where the succinimide functional group was incorporated during the microsphere preparation. An optical biosensor for urea based on reflectance transduction with a large linear response range to urea was successfully developed using this material. The biosensor utilized succinimide-modified acrylic microspheres immobilized with a Nile blue chromoionophore (ETH 5294) for optical detection and urease enzyme was immobilized on the surface of the microspheres via the succinimide groups. No leaching of the enzyme or chromoionophore was observed. Hydrolysis of the urea by urease changes the pH and leads to a color change of the immobilized chromoionophore. When the color change was monitored by reflectance spectrophotometry, the linear response range of the biosensor to urea was from 0.01 to 1,000 mM (R2 = 0.97) with a limit of detection of 9.97 μM. The biosensor response showed good reproducibility (relative standard deviation = 1.43%, n = 5) with no interference by major cations such as Na+, K+, NH4+ and Mg2+. The use of reflectance as a transduction method led to a large linear response range that is better than that of many urea biosensors based on other optical transduction methods.
  6. Tan TL, Kang CW, Ooi KS, Tan ST, Ahmad NS, Nasuruddin DN, et al.
    Sci Rep, 2021 05 31;11(1):11369.
    PMID: 34059757 DOI: 10.1038/s41598-021-90894-0
    Early bacterial infection (BI) identification in resource-limiting Emergency Departments (ED) is challenging, especially in low- and middle-income counties (LMIC). Misdiagnosis predisposes to antibiotic overuse and propagates antimicrobial resistance. This study evaluates new emerging biomarkers, secretory phospholipase A2 group IIA (sPLA2-IIA) and compares with other biomarkers on their performance characteristic of BI detection in Malaysia, an LMIC. A prospective cohort study was conducted involving 151 consecutive patients admitted to the ED. A single measurement was taken upon patient arrival in ED and was analysed for serum levels of sPLA2-IIA, high-sensitive C-reactive protein (CRP), procalcitonin (PCT), neutrophil percentage (N%), and lactate. All biomarkers' performance was compared for the outcomes using area under the receiver operating characteristic curve (AUROC), sensitivity, and specificity. The performance of sPLA2-IIA (AUROC 0.93 [95% CI: 0.89-0.97]; Sn 80% [95% CI: 72-87]; Sp 94% [95% CI: 81-89]) was the highest among all. It was comparable with high-sensitive CRP (AUROC 0.93 [95% CI: 0.88-0.97]; Sn 75% [95% CI: 66-83]; Sp 91 [95% CI: 77-98]) but had a higher Sn and Sp. The sPLA2-IIA was also found superior to N%, PCT, and lactate. This finding suggested sPLA2-IIA was recommended biomarkers for BI detection in LMIC.
  7. Taib M, Tan LL, Abd Karim NH, Ta GC, Heng LY, Khalid B
    Talanta, 2020 Jan 15;207:120321.
    PMID: 31594568 DOI: 10.1016/j.talanta.2019.120321
    An optical aptasensor-based sensing platform for rapid insulin detection was fabricated. Aminated porous silica microparticles (PSiMPs) were synthesized via a facile mini-emulsion method to provide large surface area for covalent immobilization of insulin-binding DNA aptamer (IGA3) by glutaraldehyde cross-linking protocol. A Nickel-salphen type complex with piperidine side chain [Ni(II)-SP] was synthesized with a simple one-pot reaction, and functionalized as an optical label due to strong π-π interaction between aromatic carbons of G-quadruplex DNA aptamer and planar aromatic groups of Ni(II)-SP to form the immobilized IGA3-Ni(II)-SP complex, i.e. the dye-labeled aptamer, thereby bringing yellow colouration to the immobilized G-quartet plane. Optical characterization of aptasensor towards insulin binding was carried out with a fiber optic reflectance spectrophotometer. The maximum reflectance intensity of the immobilized IGA3-Ni(II)-SP complex at 656 nm decreased upon binding with insulin as aptasensor changed to brownish orange colouration in the background. This allows optical detection of insulin as the colour change of aptasensor is dependent on the insulin concentration. The linear detection range of the aptasensor is obtained from 10 to 50 μIU mL-1 (R2 = 0.9757), which conformed to the normal fasting insulin levels in human with a limit of detection (LOD) at 3.71 μIU mL-1. The aptasensor showed fast response time of 40 min and long shelf life stability of >3 weeks. Insulin detection using healthy human serums with informed consent provided by participants suggests the DNA aptamer biosensor was in good agreement with ELISA standard method using BIOMATIK Human INS (Insulin) ELISA Kit.
  8. Suhud K, Heng LY, Hasbullah SA, Ahmad M, Kassim MB
    Acta Crystallogr E Crystallogr Commun, 2015 Apr 1;71(Pt 4):o225-6.
    PMID: 26029426 DOI: 10.1107/S2056989015003813
    In the title compound, C13H16N2O2S, the pyrrolidine ring has a twisted conformation on the central -CH2-CH2- bond. Its mean plane is inclined to the 4-meth-oxy-benzoyl ring by 72.79 (15)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds to the same O-atom acceptor, forming chains along [001]. The chains are linked via slipped parallel π-π inter-actions [inter-centroid distance = 3.7578 (13) Å], forming undulating slabs parallel to (100).
  9. Suhud K, Hasbullah SA, Ahmad M, Heng LY, Kassim MB
    Acta Crystallogr E Crystallogr Commun, 2017 Oct 01;73(Pt 10):1530-1533.
    PMID: 29250374 DOI: 10.1107/S2056989017013317
    In the title compound, C14H18N2O2S, the piperidine ring has a chair conformation. Its mean plane is twisted with respect to the 4-meth-oxy-benzoyl ring, with a dihedral angle of 63.0 (3)°. The central N-C(=S)-N(H)-C(=O) bridge is twisted with an N-C-N-C torsion angle of 74.8 (6)°. In the crystal, mol-ecules are linked by N-H⋯O and C-H⋯O hydrogen bonds, forming chains along the c-axis direction. Adjacent chains are linked by C-H⋯π inter-actions, forming layers parallel to the ac plane. The layers are linked by offset π-π inter-actions [inter-centroid distance = 3.927 (3) Å], forming a supra-molecular three-dimensional structure.
  10. Suah FB, Ahmad M, Heng LY
    PMID: 25748985 DOI: 10.1016/j.saa.2015.02.068
    A novel approach for the determination of Al(3+) from aqueous samples was developed using an optode membrane produced by physical inclusion of Al(3+) selective reagent, which is morin into a plasticized poly(vinyl chloride). The inclusion of Triton X-100 was found to be valuable and useful for enhancing the sorption of Al(3+) ions from liquid phase into the membrane phase, thus increasing the intensity of optode's absorption. The optode showed a linear increase in the absorbance at λ(max)=425 nm over the concentration range of 1.85×10(-6)-1.1×10(-4) mol L(-1) (0.05-3 μg mL(-1)) of Al(3+) ions in aqueous solution after 5 min. The limit of detection was determined to be 1.04×10(-6) mol L(-1) (0.028 μg mL(-1)). The optode developed in the present work was easily prepared and found to be stable, has good mechanical strength, sensitive and reusable. In addition, the optode was tested for Al(3+) determination in lake water, river water and pharmaceutical samples, which the result was satisfactory.
  11. Suah FB, Ahmad M, Heng LY
    J Fluoresc, 2014 Jul;24(4):1235-43.
    PMID: 24871034 DOI: 10.1007/s10895-014-1406-z
    This paper reports the use of a polymer inclusion membranes (PIMs) for direct determination of Al(III) ions in natural water by using a fluorescence based optode. The best composition of the PIMs consisted of 60 wt.% (m/m) poly (vinyl chloride) (PVC) as the base polymer, 20 wt.% (m/m) triton X-100 as an extractant, 20 wt.% (m/m) dioctyl phthalate (DOP) as plasticizer and morin as the reagent, was used in this study. The inclusion of triton X-100 was used for enhancing the sorption of Al(III) ions from liquid phase into the membrane phase, thus increasing the optode fluorescence intensity. The optimized optode was characterized by a linear calibration curve in the range from 7.41 × 10(-7) to 1.00 × 10(-4) molL(-1) of Al(III), with a detection limit of 5.19 × 10(-7) molL(-1). The response of the optode was 4 min and reproducible results were obtained for eight different membranes demonstrated good membrane stability. The optode was applied to the determination of Al(III) in natural water samples. The result obtained is comparable to atomic absorption spectrometry method.
  12. Siddiquee S, Yusof NA, Salleh AB, Abu Bakar F, Heng LY
    Bioelectrochemistry, 2010 Aug;79(1):31-6.
    PMID: 19945357 DOI: 10.1016/j.bioelechem.2009.10.004
    A new electrochemical biosensor is described for voltammetric detection of gene sequence related to Trichoderma harzianum. The sensor involves immobilization of a 20 base single-stranded probe (ssDNA), which is complementary to a specific gene sequence related to T. harzianum on a gold electrode through specific adsorption. The DNA probe was used to determine the amount of target gene in solution using methylene blue (MB) as the electrochemical indicator. The covalently immobilized probe could selectively hybridize with the target DNA to form a hybrid on the surface despite the bases being attached to the electrode. The changes in the peak currents of methylene blue (MB), an electroactive label, were observed upon hybridization of probe with the target. Peak currents were found to increase in the following order: hybrid-modified AuE and the probe-modified AuE which localized to the affinity of MB. Control experiments with the non-complementary oligonucleotides were performed to assess whether the DNA biosensor responds selectively, via hybridization, to the target. DNA biosensor also able to detect microorganism at the species levels without nucleic acid amplification. The redox current was linearly related to the concentration of target oligonucleotide DNA, ranged from 1-20 ppm. Numerous factors, affecting the probe immobilization, target hybridization and indicator binding reactions are optimized to maximize the sensitivity and reduce the assay time.
  13. Shing WL, Heng LY, Surif S
    Sensors (Basel), 2013;13(5):6394-404.
    PMID: 23673679 DOI: 10.3390/s130506394
    Whole cell biosensors always face the challenge of low stability of biological components and short storage life. This paper reports the effects of poly(2-hydroxyethyl methacrylate) (pHEMA) immobilization on a whole cell fluorescence biosensor for the detection of heavy metals (Cu, Pb, Cd), and pesticides (dichlorophenoxyacetic acid (2,4-D), and chlorpyrifos). The biosensor was produced by entrapping the cyanobacterium Anabaena torulosa on a cellulose membrane, followed by applying a layer of pHEMA, and attaching it to a well. The well was then fixed to an optical probe which was connected to a fluorescence spectrophotometer and an electronic reader. The optimization of the biosensor using several factors such as amount of HEMA and drying temperature were undertaken. The detection limits of biosensor without pHEMA for Cu, Cd, Pb, 2,4-D and chlorpyrifos were 1.195, 0.027, 0.0100, 0.025 and 0.025 µg/L respectively. The presence of pHEMA increased the limits of detection to 1.410, 0.250, 0.500, 0.235 and 0.117 µg/L respectively. pHEMA is known to enhance the reproducibility of the biosensor with average relative standard deviation (RSD) of ±1.76% for all the pollutants tested, 48% better than the biosensor without pHEMA (RSD = ±3.73%). In storability test with Cu 5 µg/L, the biosensor with pHEMA performed 11.5% better than the test without pHEMA on day-10 and 5.2% better on day-25. pHEMA is therefore a good candidate to be used in whole cell biosensors as it increases reproducibility and enhances biosensor storability.
  14. See WP, Heng LY, Nathan S
    Anal Sci, 2015;31(10):997-1003.
    PMID: 26460363 DOI: 10.2116/analsci.31.997
    A new approach for the development of a highly sensitive aluminium(III) ion sensor via the preconcentration of aluminium(III) ion with a self-assembled monolayer on a gold nanoparticles modified screen-printed carbon electrode and current mediation by potassium ferricyanide redox behavior during aluminium(III) ion binding has been attempted. A monolayer of mercaptosuccinic acid served as an effective complexation ligand for the preconcentration of trace aluminium; this led to an enhancement of aluminium(III) ion capture and thus improved the sensitivity of the sensor with a detection limit of down to the ppb level. Under the optimum experimental conditions, the sensor exhibited a wide linear dynamic range from 0.041 to 12.4 μM. The lower detection limit of the developed sensor was 0.037 μM (8.90 ppb) using a 10 min preconcentration time. The sensor showed excellent selectivity towards aluminium(III) ion over other interference ions.
  15. Sani NDM, Heng LY, Marugan RSPM, Rajab NF
    Food Chem, 2018 Dec 15;269:503-510.
    PMID: 30100466 DOI: 10.1016/j.foodchem.2018.07.035
    The presence of carcinogens in food is a major food safety concern. A nanocomposite-based electrochemical DNA biosensor was constructed for potential carcinogen detection in food samples by immobilizing amine terminated single stranded DNA onto silica nanospheres deposited onto a screen-printed electrode modified using gold nanoparticles. The effect of three different DNA sequences: 15-base guanine, 24-base guanine and 24-base adenine-thymine rich DNA on carcinogen (formaldehyde and acrylamide) detection was evaluated. The competitive binding of the DNA with the carcinogen and electroactive indicator, Methylene blue (MB) was measured using differential pulse voltammetry. Optimization studies were conducted for MB concentration and accumulation time, DNA concentration, buffer concentration, pH and ionic strength. Overall, the 24-base guanine rich DNA yielded the best results with a detection limit of 0.0001 ppm, linear range between 0.0001 ppm and 0.1 ppm and reproducibility below 5% R.S.D. Finally, the results obtained using the biosensor were validated using Ames test.
  16. Saeedfar K, Heng LY, Ling TL, Rezayi M
    Sensors (Basel), 2013;13(12):16851-66.
    PMID: 24322561 DOI: 10.3390/s131216851
    A novel method for the rapid modification of fullerene for subsequent enzyme attachment to create a potentiometric biosensor is presented. Urease was immobilized onto the modified fullerene nanomaterial. The modified fullerene-immobilized urease (C60-urease) bioconjugate has been confirmed to catalyze the hydrolysis of urea in solution. The biomaterial was then deposited on a screen-printed electrode containing a non-plasticized poly(n-butyl acrylate) (PnBA) membrane entrapped with a hydrogen ionophore. This pH-selective membrane is intended to function as a potentiometric urea biosensor with the deposition of C60-urease on the PnBA membrane. Various parameters for fullerene modification and urease immobilization were investigated. The optimal pH and concentration of the phosphate buffer for the urea biosensor were 7.0 and 0.5 mM, respectively. The linear response range of the biosensor was from 2.31 × 10-3 M to 8.28 × 10-5 M. The biosensor's sensitivity was 59.67 ± 0.91 mV/decade, which is close to the theoretical value. Common cations such as Na+, K+, Ca2+, Mg2+ and NH4+ showed no obvious interference with the urea biosensor's response. The use of a fullerene-urease bio-conjugate and an acrylic membrane with good adhesion prevented the leaching of urease enzyme and thus increased the stability of the urea biosensor for up to 140 days.
  17. Saeedfar K, Heng LY, Chiang CP
    Bioelectrochemistry, 2017 Dec;118:106-113.
    PMID: 28780443 DOI: 10.1016/j.bioelechem.2017.07.012
    Multi-wall carbon nanotubes (MWCNTs) were modified to design a new DNA biosensor. Functionalized MWCNTs were equipped with gold nanoparticles (GNPs) (~15nm) (GNP-MWCNTCOOH) to construct DNA biosensors based on carbon-paste screen-printed (SPE) electrodes. GNP attachment onto functionalized MWCNTs was carried out by microwave irradiation and was confirmed by spectroscopic studies and surface analysis. DNA biosensors based on differential pulse voltammetry (DPV) were constructed by immobilizing thiolated single-stranded DNA probes onto GNP-MWCNTCOOH. Ruthenium (III) chloride hexaammoniate [Ru(NH3)6,2Cl(-)] (RuHex) was used as hybridization redox indicator. RuHex and MWCNT interaction was low in compared to other organic redox hybridization indicators. The linear response range for DNA determination was 1×10(-21) to 1×10(-9)M with a lower detection limit of 1.55×10(-21)M. Thus, the attachment of GNPs onto functionalized MWCNTs yielded sensitive DNA biosensor with low detection limit and stability more than 30days. Constructed electrode was used to determine gender of arowana fish.
  18. Rezayi M, Heng LY, Kassim A, Ahmadzadeh S, Abdollahi Y, Jahangirian H
    Sensors (Basel), 2012;12(7):8806-14.
    PMID: 23012518
    Novel ionophores comprising various hydroxide and amine structures were immobilized onto poly(vinyl chloride) (PVC) matrices, and these were examined to determine Ti(III) selectivity. To predict the selectivity of Ti(III), a PVC membrane was used to investigate the binding of Ti(III) to c-methylcalix[4]resorcinarene (CMCR). The study showed that the chelating ligand, CMCR, was coordinated selectively to Ti(III) at eight coordination sites involving the oxygen atoms at the interface of the membrane/solution. The membrane was prepared, based on CMCR as an ionophore, sodium tetrakis(4-fluorophenyl) borate (NaTFPB) as a lipophilic ionic additive, and dioctylphthalate (DOP) as a plasticizer. The immobilization of the ionophore and surface characterization studies revealed that the performance of CMCR-immobilized PVC was equivalent to that of mobile ionophores in supported liquid membranes (SLMs). The strengths of the ion-ionophore (CMCR-Ti(OH)(OH(2))(5) (2+)) interactions and the role of ionophores on membranes were studied via UV-Vis, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM) and and X-ray diffraction (XRD).
  19. Rezayi M, Heng LY, Kassim A, Ahmadzadeh S, Abdollahi Y, Jahangirian H
    Chem Cent J, 2012;6(1):40.
    PMID: 22564322 DOI: 10.1186/1752-153X-6-40
    Due to the increasing industrial use of titanium compounds, its determination is the subject of considerable efforts. The ionophore or membrane active recognition is the most important component of any polymeric membrane sensor. The sensor's response depends on the ionophore and bonding between the ionophore and the target ion. Ionophores with molecule-sized dimensions containing cavities or semi-cavities can surround the target ion. The bond between the ionophore and target ion gives different selectivity and sensitivity toward the other ions. Therefore, ionophores with different binding strengths can be used in the sensor.
  20. Raja Jamaluddin RZA, Tan LL, Chong KF, Heng LY
    Nanotechnology, 2020 Nov 27;31(48):485501.
    PMID: 32748805 DOI: 10.1088/1361-6528/abab2e
    Graphene decorated with graphitic nanospheres functionalized with pyrene butyric acid (PBA) is used for the first time to fabricate a DNA biosensor. The electrode was formed by attaching a DNA probe onto PBA, which had been stacked onto a graphene material decorated with graphene nanospheres (GNSs). The nanomaterial was drop-coated onto a carbon screen-printed electrode (SPE) to create the GNS-PBA modified electrode (GNS-PBA/SPE). A simple method was used to produce GNS by annealing graphene oxide (GO) solution at high temperature. Field emission scanning electron micrographs confirmed the presence of a spherical shape of GNS with a diameter range of 40-80 nm. A stable and uniform PBA-modified GNS (GNS-PBA) was obtained with a facile ultrasonication step. Thus allowing aminated DNA probes of genetically modified (GM) soybean to be attached to the nanomaterials to form the DNA biosensor. The GNS-PBA/SPE exhibited excellent electrical conductivity via cyclic voltammetry (CV) and differential pulse voltammetry (DPV) tests using potassium ferricyanide (K3[Fe(CN)6]) as the electroactive probe. By employing an anthraquinone monosulfonic acid (AQMS) redox intercalator as the DNA hybridization indicator, the biosensor response was evaluated using the DPV electrochemical method. A good linear relationship between AQMS oxidation peak current and target DNA concentrations from 1.0 × 10-16 to 1.0 × 10-8 M with a limit of detection (LOD) of less than 1.0 × 10-16 M was obtained. Selectivity experiments revealed that the voltammetric GM DNA biosensor could discriminate complementary sequences of GM soybean from non-complementary sequences and hence good recoveries were obtained for real GM soybean sample analysis. The main advantage of using GNS is an improvement of the DNA biosensor analytical performance.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links