Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  2. Aji G, Huang Y, Ng ML, Wang W, Lan T, Li M, et al.
    Proc Natl Acad Sci U S A, 2020 09 29;117(39):24434-24442.
    PMID: 32917816 DOI: 10.1073/pnas.2007856117
    Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
  3. Chen L, Xu YY, Lin JY, Ji ZP, Yang F, Tan S, et al.
    Asian J Psychiatr, 2024 Mar;93:103958.
    PMID: 38364597 DOI: 10.1016/j.ajp.2024.103958
    BACKGROUND AND AIM: Suicide is nearly always associated with underlying mental disorders. Risk factors for suicide attempts (SAs) in patients with bipolar disorder (BD) misdiagnosed with major depressive disorder (MDD) remain unelucidated. This study was to evaluate the prevalence and clinical risk factors of SAs in Chinese patients with BD misdiagnosed with MDD.

    METHODS: A total of 1487 patients with MDD from 13 mental health institutions in China were enrolled. Mini International Neuropsychiatric Interview (MINI) was used to identify patients with BD who are misdiagnosed as MDD. The general sociodemographic and clinical data of the patients were collected and MINI suicide module was used to identify patients with SAs in these misdiagnosed patients.

    RESULTS: In China, 20.6% of patients with BD were incorrectly diagnosed as having MDD. Among these misdiagnosed patients, 26.5% had attempted suicide. These patients tended to be older, had a higher number of hospitalizations, and were more likely to experience frequent and seasonal depressive episodes with atypical features, psychotic symptoms, and suicidal thoughts. Frequent depressive episodes and suicidal thoughts during depression were identified as independent risk factors for SAs. Additionally, significant sociodemographic and clinical differences were found between individuals misdiagnosed with MDD in BD and patients with MDD who have attempted suicide.

    CONCLUSIONS: This study highlights the importance of accurate diagnosis in individuals with BD and provide valuable insights for the targeted identification and intervention of individuals with BD misdiagnosed as having MDD and those with genuine MDD, particularly in relation to suicidal behavior.

  4. Chen LT, Martinelli E, Cheng AL, Pentheroudakis G, Qin S, Bhattacharyya GS, et al.
    Ann Oncol, 2020 03;31(3):334-351.
    PMID: 32067677 DOI: 10.1016/j.annonc.2019.12.001
    The most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of hepatocellular carcinoma (HCC) was published in 2018, and covered the diagnosis, management, treatment and follow-up of early, intermediate and advanced disease. At the ESMO Asia Meeting in November 2018 it was decided by both the ESMO and the Taiwan Oncology Society (TOS) to convene a special guidelines meeting immediately after the Taiwan Joint Cancer Conference (TJCC) in May 2019 in Taipei. The aim was to adapt the ESMO 2018 guidelines to take into account both the ethnic and the geographic differences in practice associated with the treatment of HCC in Asian patients. These guidelines represent the consensus opinions reached by experts in the treatment of patients with intermediate and advanced/relapsed HCC representing the oncology societies of Taiwan (TOS), China (CSCO), India (ISMPO) Japan (JSMO), Korea (KSMO), Malaysia (MOS) and Singapore (SSO). The voting was based on scientific evidence, and was independent of the current treatment practices, the drug availability and reimbursement situations in the individual participating Asian countries.
  5. Cheng CK, Bakar HA, Gollasch M, Huang Y
    Cardiovasc Drugs Ther, 2018 10;32(5):481-502.
    PMID: 30171461 DOI: 10.1007/s10557-018-6820-z
    Perivascular adipose tissue (PVAT) refers to the local aggregate of adipose tissue surrounding the vascular tree, exhibiting phenotypes from white to brown and beige adipocytes. Although PVAT has long been regarded as simply a structural unit providing mechanical support to vasculature, it is now gaining reputation as an integral endocrine/paracrine component, in addition to the well-established modulator endothelium, in regulating vascular tone. Since the discovery of anti-contractile effect of PVAT in 1991, the use of multiple rodent models of reduced amounts of PVAT has revealed its regulatory role in vascular remodeling and cardiovascular implications, including atherosclerosis. PVAT does not only release PVAT-derived relaxing factors (PVRFs) to activate multiple subsets of endothelial and vascular smooth muscle potassium channels and anti-inflammatory signals in the vasculature, but it does also provide an interface for neuron-adipocyte interactions in the vascular wall to regulate arterial vascular tone. In this review, we outline our current understanding towards PVAT and attempt to provide hints about future studies that can sharpen the therapeutic potential of PVAT against cardiovascular diseases and their complications.
  6. Choy KW, Mustafa MR, Lau YS, Liu J, Murugan D, Lau CW, et al.
    Biochem Pharmacol, 2016 09 15;116:51-62.
    PMID: 27449753 DOI: 10.1016/j.bcp.2016.07.013
    Endoplasmic reticulum (ER) stress in endothelial cells often leads to endothelial dysfunction which underlies the pathogenesis of cardiovascular diseases. Paeonol, a major phenolic component extracted from Moutan Cortex, possesses various medicinal benefits which have been used extensively in traditional Chinese medicine. The present study investigated the protective mechanism of paeonol against tunicamycin-induced ER stress in isolated mouse aortas and human umbilical vein endothelial cells (HUVECs). Vascular reactivity in aorta was measured using a wire myograph. The effects of paeonol on protein expression of ER stress markers, reactive oxygen species (ROS) production, nitric oxide (NO) bioavailability and peroxisome proliferator-activated receptor δ (PPARδ) activity in the vascular wall were assessed by Western blot, dihydroethidium fluorescence (DHE) or lucigenin enhanced-chemiluminescence, 4-amino-5-methylamino-2',7'-difluorofluorescein (DAF-FM DA) and dual luciferase reporter assay, respectively. Ex vivo treatment with paeonol (0.1μM) for 16h reversed the impaired endothelium-dependent relaxations in C57BJ/6J and PPARδ wild type (WT) mouse aortas following incubation with tunicamycin (0.5μg/mL). Elevated ER stress markers, oxidative stress and reduction of NO bioavailability induced by tunicamycin in HUVECs, C57BJ/6J and PPARδ WT mouse aortas were reversed by paeonol treatment. These beneficial effects of paeonol were diminished in PPARδ knockout (KO) mouse aortas. Paeonol increased the expression of 5' adenosine monophosphate-activated protein kinase (AMPK) and PPARδ expression and activity while restoring the decreased phosphorylation of eNOS. The present study delineates that paeonol protects against tunicamycin-induced vascular endothelial dysfunction by inhibition of ER stress and oxidative stress, thus elevating NO bioavailability via the AMPK/PPARδ signaling pathway.
  7. Gao Q, Zhu J, Zhao W, Huang Y, An R, Zheng H, et al.
    Clin Cancer Res, 2022 Jun 01;28(11):2278-2285.
    PMID: 35131903 DOI: 10.1158/1078-0432.CCR-21-3023
    PURPOSE: In patients with platinum-sensitive relapsed (PSR) ovarian cancer, olaparib maintenance monotherapy significantly improves progression-free survival (PFS) versus placebo. However, evidence in the Asian population is lacking. This is the first study to evaluate olaparib efficacy and tolerability exclusively in Asian patients with PSR ovarian cancer.

    PATIENTS AND METHODS: Considering the limited placebo effect and significant clinical benefit of olaparib in previous trials, and the rapid approval of olaparib in China, this phase III study was designed as an open-label, single-arm trial. Patients with high-grade epithelial PSR ovarian cancer were enrolled from country-wide clinical centers across China and Malaysia. Patients received oral olaparib (300 mg) twice daily until disease progression or unacceptable toxicity. Primary endpoint was median PFS (mPFS). Primary analysis of PFS using the Kaplan-Meier method was performed when data reached 60% maturity (clinicaltrials.gov NCT03534453).

    RESULTS: Between 2018 and 2020, 225 patients were enrolled, and 224 received olaparib; 35.7% had received ≥3 lines of chemotherapy, 35.3% had achieved complete response to their last line of platinum-based chemotherapy, and 41.1% had a platinum-free interval ≤12 months. At primary data cut-off (December 25, 2020), overall mPFS was 16.1 months; mPFS was 21.2 and 11.0 months in BRCA-mutated and wild-type BRCA subgroups, respectively. Adverse events (AE) occurred in 99.1% of patients (grade ≥3, 48.7%); 9.4% discontinued therapy due to treatment-related AEs.

    CONCLUSIONS: Olaparib maintenance therapy was highly effective and well tolerated in Asian patients with PSR ovarian cancer, regardless of BRCA status. This study highlights the promising efficacy of olaparib in this Asian population. See related commentary by Nicum and Blagden, p. 2201.

  8. Guo W, Banerjee AK, Wu H, Ng WL, Feng H, Qiao S, et al.
    Front Plant Sci, 2021;12:637009.
    PMID: 34249031 DOI: 10.3389/fpls.2021.637009
    Mangroves are ecologically important forest communities in tropical and subtropical coasts, the effective management of which requires understanding of their phylogeographic patterns. However, these patterns often vary among different species, even among ecologically similar taxa or congeneric species. Here, we investigated the levels and patterns of genetic variation within Lumnitzera consisting of two species (L. racemosa and L. littorea) with nearly sympatric ranges across the Indo-West Pacific (IWP) region by sequencing three chloroplast DNA regions (for both species) and genotyping 11 nuclear microsatellite loci (for L. littorea). Consistent with findings in studies on other mangrove species, we found that both L. racemosa and L. littorea showed relatively high genetic variation among populations but low genetic variation within populations. Haplotype network and genetic clustering analyses indicated two well-differentiated clades in both L. racemosa and L. littorea. The relationship between geographic and genetic distances and divergence time estimates of the haplotypes indicated that limited dispersal ability of the propagules, emergence of land barriers during ancient sea-level changes, and contemporary oceanic circulation pattern in the IWP influenced the current population structure of the two species. However, the position of genetic break was found to vary between the two species: in L. racemosa, strong divergence was observed between populations from the Indian Ocean and the Pacific Ocean possibly due to land barrier effect of the Malay Peninsula; in L. littorea, the phylogeographic pattern was created by a more eastward genetic break along the biogeographic barrier identified as the Huxley's line. Overall, our findings strongly supported previous hypothesis of mangrove species divergence and revealed that the two Lumnitzera species have different phylogeographic patterns despite their close genetic relationship and similar current geographic distribution. The findings also provided references for the management of Lumnitzera mangroves, especially for the threatened L. littorea.
  9. Guo X, Sun C, Lin R, Xia A, Huang Y, Zhu X, et al.
    J Hazard Mater, 2020 11 15;399:122830.
    PMID: 32937692 DOI: 10.1016/j.jhazmat.2020.122830
    Stimulating direct interspecies electron transfer with conductive materials is a promising strategy to overcome the limitation of electron transfer efficiency in syntrophic methanogenesis of industrial wastewater. This paper assessed the impact of conductive foam nickel (FN) supplementation on syntrophic methanogenesis and found that addition of 2.45 g/L FN in anaerobic digestion increased the maximum methane production rate by 27.4 % (on day 3) while decreasing the peak production time by 33 % as compared to the control with no FN. Cumulative methane production from day 2 to 6 was 14.5 % higher with addition of 2.45 g/L FN than in the control. Levels of FN in excess of 2.45 g/L did not show benefits. Cyclic voltammetry results indicated that the biofilm formed on the FN could generate electrons. The dominant bacterial genera in suspended sludge were Dechlorobacter and Rikenellaceae DMER64, whereas that in the FN biofilm was Clostridium sensu stricto 11. The dominant archaea Methanosaeta in the FN biofilm was enriched by 14.1 % as compared to the control.
  10. He L, Gong H, Zhang J, Zhong C, Huang Y, Zhang C, et al.
    Saudi J Biol Sci, 2016 Jul;23(4):531-41.
    PMID: 27298588 DOI: 10.1016/j.sjbs.2016.02.021
    The effects of differences in smoke concentration and exposure duration in Sprague Dawley rats to determine variation in type and severity of the testis apoptosis were evaluated. The daily dosages were 10, 20 and 30 non-filter cigarettes for a period of 2, 4, 6, 8 and 12 weeks. Mainstream smoke exposure suppressed body weight gain in all regimens. A dose-related increase in plasma nicotine concentration was observed in smoke-exposed groups for 4, 6, 8 and 12 week regimens. Histopathological examination of the exposed groups showed disturbances in the stages of spermatogenesis, tubules atrophying and these appeared to be dose-related. Cytoplasmic caspase-3 immunostaining was detected both in Sertoli cells and germ cells in smoke-exposure groups. An increase in TUNEL-positive cells of testicular cells was observed after 6 weeks of cigarette exposure. The results indicate that cigarette exposure concentration and duration have interaction effect to induce apoptosis in the rat testes.
  11. Huang Y, Li J, Xu Y, Xu W, Cheng Z, Liu J, et al.
    Mar Pollut Bull, 2014 Mar 15;80(1-2):194-9.
    PMID: 24462236 DOI: 10.1016/j.marpolbul.2014.01.007
    Nineteen pairs of air and seawater samples collected from the equatorial Indian Ocean onboard the Shiyan I from 4/2011 to 5/2011 were analyzed for PCBs and HCB. Gaseous concentrations of ∑(ICES)PCBs (ICES: International Council for the Exploration of the Seas) and HCB were lower than previous data over the study area. Air samples collected near the coast had higher levels of PCBs relative to those collected in the open ocean, which may be influenced by proximity to source regions and air mass origins. Dissolved concentrations of ∑(ICES)PCBs and HCB were 1.4-14 pg L⁻¹ and 0.94-13 pg L⁻¹, with the highest concentrations in the sample collected from Strait of Malacca. Fugacity fractions suggest volatilization of PCBs and HCB from the seawater to air during the cruise, with fluxes of 0.45-34 ng m⁻² d⁻¹ and 0.36-18 ng m⁻² d⁻¹, respectively.
  12. Huang Y, Xu Y, Li J, Xu W, Zhang G, Cheng Z, et al.
    Environ Sci Technol, 2013;47(23):13395-403.
    PMID: 24251554 DOI: 10.1021/es403138p
    Nineteen pairs of gaseous and surface seawater samples were collected along the cruise from Malaysia to the south of Bay of Bengal passing by Sri Lanka between April 12 and May 4, 2011 on the Chinese research vessel Shiyan I to investigate the latest OCP pollution status over the equatorial Indian Ocean. Significant decrease of α-HCH and γ-HCH was found in the air and dissolved water phase owing to global restriction for decades. Substantially high levels of p,p'-DDT, o,p'-DDT, trans-chlordane (TC), and cis-chlordane (CC) were observed in the water samples collected near Sri Lanka, indicating fresh continental riverine input of these compounds. Fugacity fractions suggest equilibrium of α-HCH at most sampling sites, while net volatilization for DDT isomers, TC and CC in most cases. Enantiomer fractions (EFs) of α-HCH and o,p'-DDT in the air and water samples were determined to trace the source of these compounds in the air. Racemic or close to racemic composition was found for atmospheric α-HCH and o,p'-DDT, while significant depletion of (+) enantiomer was found in the water phase, especially for o,p'-DDT (EFs = 0.310 ± 0.178). 24% of α-HCH in the lower air over the open sea of the equatorial Indian Ocean is estimated to be volatilized from local seawater, indicating that long-range transport is the main source.
  13. Huang Y, Zhang L, Li Z, Gopinath SCB, Chen Y, Xiao Y
    Biotechnol Appl Biochem, 2021 Aug;68(4):881-888.
    PMID: 33245588 DOI: 10.1002/bab.2008
    17β-Estradiol-E2 (17β-E2) is a steroid hormone that plays a major role in the reproductive endocrine system and is involved in various processes, such as pregnancy, fertility, and menopause. In this study, the performance of an enzyme-linked immunosorbent assay (ELISA) for 17β-E2 quantification was enhanced by using a gold nanoparticle (GNP)-conjugated aptamer. An anti-17β-E2-aptamer-GNP antibody was immobilized on an amine-modified ELISA surface. Then, 17β-E2 was allowed to interact with and be sandwiched by antibodies. Aptamer-GNP conjugation was confirmed by colorimetric assays via the naked eye and UV-visible light spectroscopy. The detection limit based on a signal-to-noise ratio (S/N) of 3 was estimated to be 1.5 nM (400 pg/mL), and the linear range was 1.5-50 nM. Control experiments (without 17β-E2/with a complementary aptamer sequence/with a nonimmune antibody) confirmed the specific detection of 17β-E2. Moreover, 17β-E2 spiking of human serum did not interrupt the interaction between 17β-E2 and its antibody and aptamer. Thus, the developed ELISA can be used as an alternate assay for quantification of 17β-E2 and assessment of endocrine-related gynecological problems.
  14. Huang Y, Li Y, Wu M, Wang HQ, Yuan X, Gholam T, et al.
    J Synchrotron Radiat, 2020 Jan 01;27(Pt 1):83-89.
    PMID: 31868740 DOI: 10.1107/S160057751901381X
    Surface polarity with different crystal orientations has been demonstrated as a crucial parameter in determining the physical properties and device applications in many transition metal oxide and semiconductor compound systems. The influences of surface polarity on electronic structures in nitrogen-incorporated ZnO lattices have been investigated in the present work. The successful doping of nitrogen atoms in ZnO lattices is suggested by the existence of N-related chemical bonds obtained from X-ray photoelectron spectroscopy analysis where a pronounced N-Zn peak intensity has been observed in the (000\bar 1)-terminated polar ZnO compound compared with the (10\bar 10)-terminated nonpolar ZnO compound. An energy shift of the valence band maximum towards the Fermi level has been resolved for both polar and nonpolar ZnO lattices, whereas a charge redistribution of the O 2p hybridized states is only resolved for o-plane ZnO with a polar surface. Angular-dependent X-ray absorption analyses at the O K-edge reveal enhanced surface-state contributions and asymmetric O 2p orbital occupations in the (000\bar 1)-terminated o-plane ZnO compound. The results shed light on the efficient nitrogen doping in ZnO lattices with polar surfaces. The comprehensive electronic structure investigations of correlations between impurity doping and surface polarity in ZnO lattices may also offer guidance for the material design in other transition metal oxide and semiconductor systems.
  15. Huang Y, Liu S, Zhang J, Syed-Hassan SSA, Hu X, Sun H, et al.
    Bioresour Technol, 2020 Jul;307:123192.
    PMID: 32220819 DOI: 10.1016/j.biortech.2020.123192
    This study investigated the interactions between volatile and char during biomass pyrolysis at 400 °C, employing a β-5 lignin dimer and amino-modified graphitized carbon nanotube (CNT-NH2) as their models, respectively. The results demonstrated that both -NH2 and its carrier (CNT) facilitated the conversion of the β-5 dimer, which significantly increased from 9.7% (blank run), to 61.6% (with CNT), and to 96.6% (with CNT-NH2). CNT mainly favored the breakage of C-O bond in the feedstock to produce dimers with a yield of 55.5%, while CNT-NH2 promoted the cleavage of both C-O and C-C bonds to yield monomers with a yield up to 63.4%. Such significant changes in the pyrolysis behaviors of the β-5 lignin dimer after the introduction of CNT-NH2 were considered to be mainly caused by hydrogen-bond formations between -NH2 and the dimeric feedstock/products, in addition to the π-π stacking between CNT and aromatic rings.
  16. Huang Y, Ting PY, Yao TM, Homma T, Brooks D, Katayama Rangel IA, et al.
    J Endocrinol, 2018 Nov 01.
    PMID: 30400034 DOI: 10.1530/JOE-18-0247
    Human risk allele carriers of Lysine-Specific Demethylase 1 (LSD1) and LSD1 deficient mice have salt sensitive hypertension for unclear reasons. We hypothesized that LSD1 deficiency causes dysregulation of aldosterone's response to salt intake resulting in increased cardiovascular risk factors [blood pressure and microalbumin]. Furthermore, we determined the effect of biological sex on these potential abnormalities. To test our hypotheses, LSD1 male and female heterozygote knockout (LSD1+/-) and wild type (WT) mice were assigned to two age groups: 18 weeks and 36 weeks. Plasma aldosterone levels and aldosterone production from zona glomerulosa cells studied ex vivo were greater in both male and female LSD1+/- mice consuming a liberal salt diet as compared to WT mice consuming the same diet. However, salt sensitive blood pressure elevation and increased microalbuminuria were only observed in male LSD1+/- mice. These data suggest that LSD1 interacts with aldosterone's secretory response to salt intake. Lack of LSD1 causes inappropriate aldosterone production on a liberal salt diet; males appear to be more sensitive to this aldosterone increase as males, but not females, develop salt sensitivity of blood pressure and increased microalbuminuria. The mechanism responsible for the cardiovascular protective effect in females is uncertain but may be related to estrogen modulating the effect of mineralocorticoid receptor activation.
  17. Huang Y, Jia L, Wang Q, Mosbrugger V, Utescher T, Su T, et al.
    Plant Divers, 2016 Dec;38(6):271-282.
    PMID: 30159478 DOI: 10.1016/j.pld.2016.11.004
    Yunnan in southwestern China is renowned for its high plant diversity. To understand how this modern botanical richness formed, it is critical to investigate the past biodiversity throughout the geological time. In this review, we present a summary on plant diversity, floristics and climates in the Cenozoic of Yunnan and document their changes, by compiling published palaeobotanical sources. Our review demonstrates that thus far a total of 386 fossil species of ferns, gymnosperms and angiosperms belonging to 170 genera within 66 families have been reported from the Cenozoic, particularly the Neogene, of Yunnan. Angiosperms display the highest richness represented by 353 species grouped into 155 genera within 60 families, with Fagaceae, Fabaceae, Lauraceae and Juglandaceae being the most diversified. Most of the families and genera recorded as fossils still occur in Yunnan, but seven genera have disappeared, including Berryophyllum, Cedrelospermum, Cedrus, Palaeocarya, Podocarpium, Sequoia and Wataria. The regional extinction of these genera is commonly referred to an aridification of the dry season associated with Asian monsoon development. Floristic analyses indicate that in the late Miocene, Yunnan had three floristic regions: a northern subtropical floristic region in the northeast, a subtropical floristic region in the east, and a tropical floristic region in the southwest. In the late Pliocene, Yunnan saw two kinds of floristic regions: a subalpine floristic region in the northwest, and two subtropical floristic regions separately in the southwest and the eastern center. These floristic concepts are verified by results from our areal type analyses which suggest that in the Miocene southwestern Yunnan supported the most Pantropic elements, while in the Pliocene southwestern Yunnan had abundant Tropical Asia (Indo-Malaysia) type and East Asia and North America disjunct type that were absent from northwestern Yunnan. From the late Miocene to late Pliocene through to the present, floristic composition and vegetation types changed markedly, presumably in response to altitude changes and coeval global cooling. An integration of palaeoclimate data suggests that during the Neogene Yunnan was warmer and wetter than today. Moreover, northern Yunnan witnessed a pronounced temperature decline, while southern Yunnan experienced only moderate temperature changes. Summer precipitation was consistently higher than winter precipitation, suggesting a rainfall seasonality. This summary on palaeoclimates helps us to understand under what conditions plant diversity occurred and evolved in Yunnan throughout the Cenozoic.
  18. Huang Y, Rahman SU, Meo MS, Ali MSE, Khan S
    Environ Sci Pollut Res Int, 2024 Feb;31(7):10579-10593.
    PMID: 38198084 DOI: 10.1007/s11356-023-31471-y
    Climate change repercussions such as temperature shifts and more severe weather occurrences are felt globally. It contributes to larger-scale challenges, such as climate change and biodiversity loss in food production. As a result, the purpose of this research is to develop strategies to grow the economy without harming the environment. Therefore, we revisit the environmental Kuznets curve (EKC) hypothesis, considering the impact of climate policy uncertainty along with other control variables. We investigated yearly panel data from 47 Belt and Road Initiative (BRI) nations from 1998 to 2021. Pooled regression, fixed effect, and the generalized method of moment (GMM) findings all confirmed the presence of inverted U-shaped EKC in BRI counties. Findings from this paper provide policymakers with actionable ideas, outlining a framework for bringing trade and climate agendas into harmony in BRI countries. The best way to promote economic growth and reduce carbon dioxide emissions is to push for trade and climate policies to be coordinated. Moreover, improving institutional quality is essential for strong environmental governance, as it facilitates the adoption of environmentally friendly industrialization techniques and the efficient administration of climate policy uncertainties.
  19. Huang Y, Guo L, Xie L, Shang N, Wu D, Ye C, et al.
    Gigascience, 2024 Jan 02;13.
    PMID: 38486346 DOI: 10.1093/gigascience/giae006
    Commelinales belongs to the commelinids clade, which also comprises Poales that includes the most important monocot species, such as rice, wheat, and maize. No reference genome of Commelinales is currently available. Water hyacinth (Pontederia crassipes or Eichhornia crassipes), a member of Commelinales, is one of the devastating aquatic weeds, although it is also grown as an ornamental and medical plant. Here, we present a chromosome-scale reference genome of the tetraploid water hyacinth with a total length of 1.22 Gb (over 95% of the estimated size) across 8 pseudochromosome pairs. With the representative genomes, we reconstructed a phylogeny of the commelinids, which supported Zingiberales and Commelinales being sister lineages of Arecales and shed lights on the controversial relationship of the orders. We also reconstructed ancestral karyotypes of the commelinids clade and confirmed the ancient commelinids genome having 8 chromosomes but not 5 as previously reported. Gene family analysis revealed contraction of disease-resistance genes during polyploidization of water hyacinth, likely a result of fitness requirement for its role as a weed. Genetic diversity analysis using 9 water hyacinth lines from 3 continents (South America, Asia, and Europe) revealed very closely related nuclear genomes and almost identical chloroplast genomes of the materials, as well as provided clues about the global dispersal of water hyacinth. The genomic resources of P. crassipes reported here contribute a crucial missing link of the commelinids species and offer novel insights into their phylogeny.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links