Displaying publications 1 - 20 of 87 in total

Abstract:
Sort:
  1. Amin F, Khan S, Shah SMH, Rahim H, Hussain Z, Sohail M, et al.
    Drug Des Devel Ther, 2018;12:3855-3866.
    PMID: 30510401 DOI: 10.2147/DDDT.S183534
    Background: The obnoxious bitter taste of orally taken antibiotics is one of the biggest problems in the treatment of children. The pediatric population cannot tolerate the bitter taste of drugs and vomit out which ultimately leads to suboptimal therapeutic value, grimace and mental stress so it is the challenging task for the formulation scientists to formulate a palatable formulation particularly to overcome address the issue.

    Purpose of study: The study aimed to mask and evaluate the unpleasant bitter taste of azithro-mycin (AZ) in the dry suspension dosage form by physisorption technique.

    Materials and methods: AZ was selected as an adsorbent and titanium dioxide nanoparticles as adsorbate. The AZ nanohybrids (AZN) were prepared by treating fixed amount of adsorbent with a varied amount of adsorbate, prepared separately by dispersing it in an aqueous medium. The mixture was sonicated, stirred followed by filtration and drying. The AZN produced were characterized by various techniques including scanning electron microscopy (SEM), energy dispersive X-rays (EDX), powder X-ray diffraction (PXRD), HPLC and Fourier-transformed infrared (FTIR). The optimized nanohybrid was blended with other excipients to get stable and taste masked dry suspension dosage form.

    Results: The results confirmed the adsorption of titanium dioxide nanoparticles on the surface of AZ. The fabricated optimized formulation was subjected for taste masking by panel testing and accelerated stability studies. The results showed a remarkable improvement in bitter taste masking, inhibiting throat bite without affecting the dissolution rate. The product showed an excellent stability both in dry and reconstituted suspension. The optimized formulation of AZN and was found stable when subjected to physical and chemical stability studies, this is because of short and single step process which interns limits the exposure of the product to various environmental factors that could potentially affect the stability of the product. The dissolution rate of the optimized formulation of AZN was compared with its marketed counterpart, showing the same dissolution rate compared to its marketed formulation.

    Conclusion: The current study concludes that, by fabricating AZ-titanium nanohybrids using physisorption can effectively mask the bitter taste of the drug. The palatability and stability of azithromycin formulation was potentially enhanced without affecting its dissolution rate.

  2. Ali HS, Khan S, York P, Shah SM, Khan J, Hussain Z, et al.
    Pak J Pharm Sci, 2017 Sep;30(5):1635-1643.
    PMID: 29084684
    Drug nanosuspensions have gained tremendous attraction as a platform in drug delivery. In the present work, a nanosuspension was prepared by a wet milling approach in order to increase saturation solubility and dissolution of the water insoluble drug, hydrocortisone. Size of the generated particeles was 290 nm ± 9 nm having a zeta potential of -1.9 mV ± 0.6 mV. Nanosized particles were found to have a rod shape with a narrow particle size distribution (PDI =0.17). Results of differential scanning calorimetry and X-ray diffraction analyses revealed minor modifications of crystallinity of hydrocortisone following the milling process. Solubility of hydrocortisone was enhanced by nanonization to 875µg/ml ±2.5, an almost 2.9-fold compared to the raw hydrocortisone. Moreover, the nanosuspension formulation substabtially enhanced the dissolution rate of hydrocortisone where >97% of the hydrocortisone was dissolved within 10 minutes opposed to 22.3% for the raw 50% for the raw hydrocortisone and the commercial tablet, respectively. The bioavailability study resulted in AUC 0-9h for HC nanosuspensions (31.50±2.50), which is significantly (p<0.05) higher compared to the AUC 0-9h (14.85±3.25) resulted for HC solution. The nanosuspension was physically stable at room temperature for 24 months.
  3. Hussain Z, Yusoff ZM, Sulaiman SA
    Prim Care Diabetes, 2015 Aug;9(4):275-82.
    PMID: 25457621 DOI: 10.1016/j.pcd.2014.10.002
    AIMS: The aim of this study was to evaluate attitude and treatment satisfaction of women suffering from GDM and their association with glycaemic level.
    METHODS: A cross sectional study was conducted in antenatal clinic of Hospital Pulau Pinang, Malaysia from June to December 2013 on the sample of 175 patients. Data was collected through modified version of Diabetes Integration Scale (ATT-19) and Diabetes Treatment Satisfaction Questionnaires (DSTQs). Glycaemic level was evaluated in terms of Fasting Plasma Glucose (FPG). Three most recent values of FPG (mmol/l) were taken from patients medical profiles and their mean was calculated. Descriptive and inferential statistics were used for data analysis.
    RESULTS: A total of 166 patients were included in final analysis. Only 35 (21.1%) patients had positive attitude and 122 (73.5%) of patients had adequate treatment satisfaction. There was no significant association of total mean ATT-19 score with age, ethnicity, educational level, occupational status, family history and type of therapy. For treatment satisfaction statistically significant association was present only between total mean treatment satisfaction score and educational level. Patients with negative attitude and inadequate treatment satisfaction had higher mean glycaemic level.
    CONCLUSIONS: It is concluded that more than two folds of patients were satisfied with their ongoing treatment but majority of the patients were feeling difficulty in active coping measures for the management of GDM.
    KEYWORDS: Attitude; GDM; Glycaemic level; Treatment satisfaction

    Study site: antenatal clinic of Hospital Pulau Pinang
  4. Rahim H, Sadiq A, Khan S, Khan MA, Shah SMH, Hussain Z, et al.
    Drug Des Devel Ther, 2017;11:2443-2452.
    PMID: 28860715 DOI: 10.2147/DDDT.S140626
    This study was aimed to enhance the dissolution rate, oral bioavailability and analgesic potential of the aceclofenac (AC) in the form of nanosuspension using cost-effective simple precipitation-ultrasonication approach. The nanocrystals were produced using the optimum conditions investigated for AC. The minimum particle size (PS) and polydispersity index was found to be 112±2.01 nm and 0.165, respectively, using hydroxypropyl methylcellulose (1%, w/w), polyvinylpyrrolidone K30 (1%, w/w) and sodium lauryl sulfate (0.12%, w/w). The characterization of AC was performed using zeta sizer, scanning electron microscopy, transmission electron microscopy, powder X-ray diffraction and differential scanning calorimetry. The saturation solubility of the AC nanocrystals was substantially increased 2.6- and 4.5-fold compared to its unprocessed active pharmaceutical ingredient in stabilizer solution and unprocessed drug. Similarly, the dissolution rate of the AC nanocrystals was substantially enhanced compared to its other counterpart. The results showed that >88% of AC nanocrystals were dissolved in first 10 min compared to unprocessed AC (8.38%), microsuspension (66.65%) and its marketed tablets (17.65%). The in vivo studies of the produced stabilized nanosuspension demonstrated that the Cmax were 4.98- and 2.80-fold while area under curve from time of administration to 24 h (AUC0→24 h) were found 3.88- and 2.10-fold greater when compared with unprocessed drug and its marketed formulation, respectively. The improved antinociceptive activity of AC nanocrystals was shown at much lower doses as compared to unprocessed drug, which is purely because of nanonization which may be attributed to improved solubility and dissolution rate of AC, ultimately resulting in its faster rate of absorption.
  5. Hussain Z, Katas H, Amin MC, Kumulosasi E, Sahudin S
    J Pharm Sci, 2013 Mar;102(3):1063-75.
    PMID: 23303620 DOI: 10.1002/jps.23446
    The aim of this study to administer hydrocortisone (HC) percutaneously in the form of polymeric nanoparticles (NPs) to alleviate its transcutaneous absorption, and to derive additional wound-healing benefits of chitosan. HC-loaded NPs had varied particle sizes, zeta potentials, and entrapment efficiencies, when drug-to-polymer mass ratios increased from 1:1 to 1:8. Ex vivo permeation analysis showed that the nanoparticulate formulation of HC significantly reduced corresponding flux [∼24 µg/(cm(2) h)] and permeation coefficient (∼4.8 × 10(-3) cm/h) of HC across the full thickness NC/Nga mouse skin. The nanoparticulate formulation also exhibited a higher epidermal (1610 ± 42 µg/g of skin) and dermal (910 ± 46 µg/g of skin) accumulation of HC than those associated with control groups. An in vivo assessment using an NC/Nga mouse model further revealed that mice treated with the nanoparticulate system efficiently controlled transepidermal water loss [15 ± 2 g/(m(2) h)], erythema intensity (232 ± 12), dermatitis index (mild), and thickness of skin (456 ± 27 µm). Taken together, histopathological examination predicted that the nanoparticulate system showed a proficient anti-inflammatory and antifibrotic activity against atopic dermatitic (AD) lesions. Our results strongly suggest that HC-loaded NPs have promising potential for topical/transdermal delivery of glucocorticoids in the treatment of AD.
  6. Hussain Z, Man A, Othman AS
    Trop Life Sci Res, 2011 Dec;22(2):1-11.
    PMID: 24575213 MyJurnal
    Weedy rice (WR) is the most significant weed in direct-seeded fields. It has morphological characteristics similar to those of cultivated rice varieties. WR is more difficult to control than other weeds. We collected WR accessions from four sites within the Pulau Pinang rice growing areas. Thirty six different accessions were collected from each site: B, the northern site; P, the central site; A, the southern site; and N, the southwestern site. Wild rice (Oryza rufipogon), which grows in the sampled areas, was also collected together with four varieties (MR84, MR185, MR211 and MR219) that have been widely planted in these areas for a long period of time. The objective of this study was to compare the morphological characteristics of the WR accessions and cultivated rice. Twenty characteristics were observed for the comparison of WR accessions and rice cultivars. Morpho-matrix analyses allowed the specimens to be grouped to two main groups (A and B), based on a 95% dissimilarity matrix. Group A was subdivided into 7 subgroups consisting of a few WR accessions, wild rice and MR211 (control), and group B was subdivided to 10 subgroups consisting of other WR accessions and the 3 other control varieties. Dendrogram analysis indicated that the morphological traits used in this study were able to differentiate among the WR accessions and the cultivars, except for rice cultivar MR211 and WRA8, which grouped together in subgroup A2. STRUCTURE program analysis indicated that all individuals were distinguishable and were divided into 18 clusters. These results suggest that some genes of the WR accessions have been influenced by commercial varieties. The information gained from this study will be useful to develop rice weed management protocols and good agricultural practices to control WR in the future.
  7. Zha GF, Zhang CP, Qin HL, Jantan I, Sher M, Amjad MW, et al.
    Bioorg Med Chem, 2016 05 15;24(10):2352-9.
    PMID: 27083471 DOI: 10.1016/j.bmc.2016.04.015
    A series of new α,β-unsaturated carbonyl-based cyclohexanone derivatives was synthesized by simple condensation method and all compounds were characterized by using various spectroscopic techniques. New compounds were evaluated for their effects on acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). These compounds were also screened for in vitro cytotoxicity and for inhibitory activity for self-induced Aβ1-42 aggregation. The effect of these compounds against amyloid β-induced cytotoxicity was also investigated. The findings of in vitro experiment revealed that most of these compounds exhibited potent inhibitory activity against AChE and self-induced Aβ1-42 aggregation. The compound 3o exhibited best AChE (IC50=0.037μM) inhibitory potential. Furthermore, compound 3o disassembled the Aβ fibrils produced by self-induced Aβ aggregation by 76.6%. Compounds containing N-methyl-4-piperidone linker, showed high acetylcholinesterase and self-induced Aβ aggregation inhibitory activities as compared to reference drug donepezil. The pre-treatment of cells with synthetic compounds protected them against Aβ-induced cell death by up to 92%. Collectively, these findings suggest that some compounds from this series have potential to be promising multifunctional agents for AD treatment and our study suggest the cyclohexanone derivatives as promising new inhibitors for AChE and BuChE, potentially useful to treat neurodegenerative diseases.
  8. Gorain B, Choudhury H, Pandey M, Kesharwani P, Abeer MM, Tekade RK, et al.
    Biomed Pharmacother, 2018 Aug;104:496-508.
    PMID: 29800914 DOI: 10.1016/j.biopha.2018.05.066
    Myocardial infarction (cardiac tissue death) is among the most prevalent causes of death among the cardiac patients due to the inability of self-repair in cardiac tissues. Myocardial tissue engineering is regarded as one of the most realistic strategies for repairing damaged cardiac tissue. However, hindrance in transduction of electric signals across the cardiomyocytes due to insulating properties of polymeric materials worsens the clinical viability of myocardial tissue engineering. Aligned and conductive scaffolds based on Carbon nanotubes (CNT) have gained remarkable recognition due to their exceptional attributes which provide synthetic but viable microenvironment for regeneration of engineered cardiomyocytes. This review presents an overview and critical analysis of pharmaceutical implications and therapeutic feasibility of CNT based scaffolds in improving the cardiac tissue regeneration and functionality. The expository analysis of the available evidence revealed that inclusion of single- or multi-walled CNT into fibrous, polymeric, and elastomeric scaffolds results in significant improvement in electrical stimulation and signal transduction through cardiomyocytes. Moreover, incorporation of CNT in engineering scaffolds showed a greater potential of augmenting cardiomyocyte proliferation, differentiation, and maturation and has improved synchronous beating of cardiomyocytes. Despite promising ability of CNT in promoting functionality of cardiomyocytes, their presence in scaffolds resulted in substantial improvement in mechanical properties and structural integrity. Conclusively, this review provides new insight into the remarkable potential of CNT aligned scaffolds in improving the functionality of engineered cardiac tissue and signifies their feasibility in cardiac tissue regenerative medicines and stem cell therapy.
  9. Hussain Z, Rahim MA, Jan N, Shah H, Rawas-Qalaji M, Khan S, et al.
    J Control Release, 2021 07 10;335:130-157.
    PMID: 34015400 DOI: 10.1016/j.jconrel.2021.05.018
    Despite enormous advancements in the field of oncology, the innocuous and effectual treatment of various types of malignancies remained a colossal challenge. The conventional modalities such as chemotherapy, radiotherapy, and surgery have been remained the most viable options for cancer treatment, but lacking of target-specificity, optimum safety and efficacy, and pharmacokinetic disparities are their impliable shortcomings. Though, in recent decades, numerous encroachments in the field of onco-targeted drug delivery have been adapted but several limitations (i.e., short plasma half-life, early clearance by reticuloendothelial system, immunogenicity, inadequate internalization and localization into the onco-tissues, chemoresistance, and deficient therapeutic efficacy) associated with these onco-targeted delivery systems limits their clinical viability. To abolish the aforementioned inadequacies, a promising approach has been emerged in which stealthing of synthetic nanocarriers has been attained by cloaking them into the natural cell membranes. These biomimetic nanomedicines not only retain characteristics features of the synthetic nanocarriers but also inherit the cell-membrane intrinsic functionalities. In this review, we have summarized preparation methods, mechanism of cloaking, and pharmaceutical and therapeutic superiority of cell-membrane camouflaged nanomedicines in improving the bio-imaging and immunotherapy against various types of malignancies. These pliable adaptations have revolutionized the current drug delivery strategies by optimizing the plasma circulation time, improving the permeation into the cancerous microenvironment, escaping the immune evasion and rapid clearance from the systemic circulation, minimizing the immunogenicity, and enabling the cell-cell communication via cell membrane markers of biomimetic nanomedicines. Moreover, the preeminence of cell-membrane cloaked nanomedicines in improving the bio-imaging and theranostic applications, alone or in combination with phototherapy or radiotherapy, have also been pondered.
  10. Ahmad U, Sohail M, Ahmad M, Minhas MU, Khan S, Hussain Z, et al.
    Int J Biol Macromol, 2019 May 15;129:233-245.
    PMID: 30738157 DOI: 10.1016/j.ijbiomac.2019.02.031
    Oral drug delivery is natural, most acceptable and desirable route for nearly all drugs, but many drugs like NSAIDs when delivered by this route cause gastrointestinal irritation, gastric bleeding, ulcers, and many undesirable effects which limits their usage by oral delivery. Moreover, it is almost impossible to control the release of a drug in a targeted location in body. We developed thermo-responsive chitosan-co-poly(N-isopropyl-acrylamide) injectable hydrogel as an alternative for the gastro-protective and controlled delivery of loxoprofen sodium as a model drug. A free radical polymerization technique was used to synthesize thermo-responsive hydrogel by cross-linking chitosan HCl with NIPAAM using glutaraldehyde as cross-linker. Confirmation of crosslinked hydrogel structure was done by Fourier transform infrared spectra (FTIR). The thermal stability of hydrogel was confirmed through thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). The scanning electron microscopy (SEM) was performed to evaluate the structural morphology of cross-linked hydrogel. To evaluate the rheological behavior of hydrogel with increasing temperature, rheological study was performed. Swelling and in vitro drug release studies were carried out under various temperature and pH conditions. The swelling study revealed that maximum swelling was observed at low pH (pH 1.2) and low temperature (25 °C) compared to the high range of pH and temperature and it resulted in quick release of the drug. The high range of pH (7.4) and temperature (37 °C) however caused controlled release of the drug. The in vivo evaluation of the developed hydrogel in rabbits demonstrated the controlled release behavior of fabricated system.
  11. Ming LC, Hussain Z, Yeoh SF, Koh D, Lee KS
    Global Health, 2020 07 16;16(1):63.
    PMID: 32677974 DOI: 10.1186/s12992-020-00594-z
    The World Health Organisation Western Pacific Region countries were declared free of polio in 2000 until a polio outbreak involving 305 cases occurred in Indonesia in 2006. It was not until 2014 that the World Health Organisation South East Asia region was officially declared polio-free again. However, in February 2019, the Global Polio Eradication Initiative announced a new circulating vaccine-derived poliovirus outbreak in the Papua province of Indonesia. To make matter worse, the outbreak responses were tardy and led to transmission among migrating communities to other cities. The pressing regional issues of polio outbreak caused by circulating vaccine-derived poliovirus and use of oral polio vaccine have not been well presented. Our letter highlighted the suboptimal outbreak responses as well as the necessity of cross-border vaccination to curb continued poliovirus transmission.
  12. Lee YH, Hussain ZA, Choong FP
    PMID: 2125616
    The in-vitro activity of cefotaxime and cefoperazone were compared using clinically isolated Escherichia coli, Klebsiella spp and Pseudomonas aeruginosa. Cefotaxime was found on a weight to weight basis, to be much more active than cefoperazone. All the three species studied show the presence of cefoperazone-resistant population which were sensitive to cefotaxime. The possible mechanisms of resistance to these antibiotics were discussed.
  13. Asghar N, Naqvi SA, Hussain Z, Rasool N, Khan ZA, Shahzad SA, et al.
    Chem Cent J, 2016;10:5.
    PMID: 26848308 DOI: 10.1186/s13065-016-0149-0
    Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C. papaya with seven major solvents i.e. water, ethanol, methanol, n-butanol, dichloromethane, ethyl acetate, and n-hexane.
  14. Khan A, Hussain S, Ahmad S, Suleman M, Bukhari I, Khan T, et al.
    Comput Biol Med, 2022 02;141:105163.
    PMID: 34979405 DOI: 10.1016/j.compbiomed.2021.105163
    The spike protein of SARS-CoV-2 and the host ACE2 receptor plays a vital role in the entry to the cell. Among which the hotspot residue 501 is continuously subjected to positive selection pressure and induces unusual virulence. Keeping in view the importance of the hot spot residue 501, we predicted the potentially emerging structural variants of 501 residue. We analyzed the binding pattern of wild type and mutants (Spike RBD) to the ACE2 receptor by deciphering variations in the amino acids' interaction networks by graph kernels along with evolutionary, network metrics, and energetic information. Our analysis revealed that N501I, N501T, and N501V increase the binding affinity and alter the intra and inter-residue bonding networks. The N501T has shown strong positive selection and fitness in other animals. Docking results and repeated simulations (three times) confirmed the structural stability and tighter binding of these three variants, correlated with the previous results following the global stability trend. Consequently, we reported three variants N501I, N501T, and N501V could worsen the situation further if they emerged. The relations between the viral fitness and binding affinity is a complicated game thus the emergence of high affinity mutations in the SARS-CoV-2 RBD brings up the question of whether or not positive selection favours these mutations or not?
  15. Johnson A, Mbonu J, Hussain Z, Loh WS, Fun HK
    Acta Crystallogr E Crystallogr Commun, 2015 Jun 1;71(Pt 6):m139-40.
    PMID: 26090171 DOI: 10.1107/S2056989015010014
    The asymmetric unit of the title compound, [Co(C2H6N5)2(H2O)4][Co(C7H3NO4)2]2·2H2O, features 1.5 Co(II) ions (one anionic complex and one half cationic complex) and one water mol-ecule. In the cationic complex, the Co(II) atom is located on an inversion centre and is coordinated by two triazolium cations and four water mol-ecules, adopting an octa-hedral geometry where the N atoms of the two triazolium cations occupy the axial positions and the O atoms of the four water mol-ecules the equatorial positions. The two triazole ligands are parallel offset (with a distance of 1.38 Å between their planes). In the anionic complex, the Co(II) ion is six-coordinated by two N and four O atoms of the two pyridine-2,6-di-carboxyl-ate anions, exhibiting a slightly distorted octa-hedral coordination geometry in which the mean plane of the two pyridine-2,6-di-carboxyl-ate anions are almost perpendicular to each other, making a dihedral angle of 85.87 (2)°. In the crystal, mol-ecules are linked into a three-dimensional network via C-H⋯O, C-H⋯N, O-H⋯O and N-H⋯O hydrogen bonds.
  16. Shah SA, Sohail M, Minhas MU, Khan S, Hussain Z, Mahmood A, et al.
    Int J Biol Macromol, 2021 Aug 31;185:350-368.
    PMID: 34171251 DOI: 10.1016/j.ijbiomac.2021.06.119
    Injectable hydrogel with multifunctional tunable properties comprising biocompatibility, anti-oxidative, anti-bacterial, and/or anti-infection are highly preferred to efficiently promote diabetic wound repair and its development remains a challenge. In this study, we report hyaluronic acid and Pullulan-based injectable hydrogel loaded with curcumin that could potentiate reepithelization, increase angiogenesis, and collagen deposition at wound microenvironment to endorse healing cascade compared to other treatment groups. The physical interaction and self-assembly of hyaluronic acid-Pullulan-grafted-pluronic F127 injectable hydrogel were confirmed using nuclear magnetic resonance (1H NMR) and Fourier transformed infrared spectroscopy (FT-IR), and cytocompatibility was confirmed by fibroblast viability assay. The CUR-laden hyaluronic acid-Pullulan-g-F127 injectable hydrogel promptly undergoes a sol-gel transition and has proved to potentiate wound healing in a streptozotocin-induced diabetic rat model by promoting 93% of wound closure compared to other groups having 35%, 38%, and 62%. The comparative in vivo study and histological examination was conducted which demonstrated an expeditious recovery rate by significantly reducing the wound healing days i.e. 35 days in a control group, 33 days in the CUR suspension group, 21 days in unloaded injectable, and 13 days was observed in CUR loaded hydrogel group. Furthermore, we suggest that the injectable hydrogel laden with CUR showed a prompt wound healing potential by increasing the cell proliferation and serves as a drug delivery platform for sustained and targeted delivery of hydrophobic moieties.
  17. Li G, Li P, Chen Q, Thu HE, Hussain Z
    Curr Drug Deliv, 2019;16(2):94-110.
    PMID: 30360738 DOI: 10.2174/1567201815666181024142354
    BACKGROUND: Owing to their great promise in the spinal surgeries, bone graft substitutes have been widely investigated for their safety and clinical potential. By the current advances in the spinal surgery, an understanding of the precise biological mechanism of each bone graft substitute is mandatory for upholding the induction of solid spinal fusion.

    OBJECTIVE: The aim of the present review is to critically discuss various surgical implications and level of evidence of most commonly employed bone graft substitutes for spinal fusion.

    METHOD: Data was collected via electronic search using "PubMed", "SciFinder", "ScienceDirect", "Google Scholar", "Web of Science" and a library search for articles published in peer-reviewed journals, conferences, and e-books.

    RESULTS: Despite having exceptional inherent osteogenic, osteoinductive, and osteoconductive features, clinical acceptability of autografts (patient's own bone) is limited due to several perioperative and postoperative complications i.e., donor-site morbidities and limited graft supply. Alternatively, allografts (bone harvested from cadaver) have shown great promise in achieving acceptable bone fusion rate while alleviating the donor-site morbidities associated with implantation of autografts. As an adjuvant to allograft, demineralized bone matrix (DBM) has shown remarkable efficacy of bone fusion, when employed as graft extender or graft enhancer. Recent advances in recombinant technologies have made it possible to implant growth and differentiation factors (bone morphogenetic proteins) for spinal fusion.

    CONCLUSION: Selection of a particular bone grafting biotherapy can be rationalized based on the level of spine fusion, clinical experience and preference of orthopaedic surgeon, and prevalence of donor-site morbidities.

  18. Dong J, Tao L, Abourehab MAS, Hussain Z
    Int J Biol Macromol, 2018 Sep;116:1268-1281.
    PMID: 29782984 DOI: 10.1016/j.ijbiomac.2018.05.116
    Osteoporosis is a medical condition of fragile bones with an increased susceptibility to fracture. Despite having availability of a wide range of pharmacological agents, prevalence of osteoporosis is continuously escalating. Owing to excellent biomedical achievements of nanomedicines in the last few decades, we aimed combo-delivery of bone anti-resorptive agent, alendronate (ALN), and bone density enhancing drug, curcumin (CUR) in the form of polymeric nanoparticles. To further optimize the therapeutic efficacy, the prepared ALN/CUR nanoparticles (NPs) were decorated with hyaluronic acid (HA) which is a well-documented biomacromolecule having exceptional bone regenerating potential. The optimized nanoformulation was then evaluated for bone regeneration efficacy by assessing time-mannered modulation in the proliferation, differentiation, and mineralization of MC3T3-E1 cells, a pre-osteoblastic model. Moreover, the time-mannered expression of various bone-forming protein biomarkers such as bone morphogenetic protein, runt related transcription factor 2, and osteocalcin were assessed in the cell lysates. Results revealed that HA-ALN/CUR NPs provoke remarkable increase in the proliferation, differentiation, and mineralization in the ECM of MC3T3-E1 cells which ultimately leads to enhanced bone formation. This new strategy of employing simultaneous delivery of anti-resorptive and bone forming agents would open new horizons for scientists as an efficient alternative pharmacotherapy for the management of osteoporosis.
  19. Noorsal E, Arof S, Yahaya SZ, Hussain Z, Kho D, Mohd Ali Y
    Micromachines (Basel), 2021 Aug 16;12(8).
    PMID: 34442590 DOI: 10.3390/mi12080968
    Functional electrical stimulation (FES) device has been widely used by spinal cord injury (SCI) patients in their rehab exercises to restore motor function to their paralysed muscles. The major challenge of muscle contraction induced by FES is early muscle fatigue due to the open-loop stimulation strategy. To reduce the early muscle fatigue phenomenon, a closed-loop FES system is proposed to track the angle of the limb's movement and provide an accurate amount of charge according to the desired reference angle. Among the existing feedback controllers, fuzzy logic controller (FLC) has been found to exhibit good control performance in handling complex non-linear systems without developing any complex mathematical model. Recently, there has been considerable interest in the implementation of FLC in hardware embedded systems. Therefore, in this paper, a digital fuzzy feedback controller (FFC) embedded in a field-programmable gate array (FPGA) board was proposed. The digital FFC mainly consists of an analog-to-digital converter (ADC) Data Acquisition and FLC sub-modules. The FFC was designed to monitor and control the progress of knee extension movement by regulating the stimulus pulse width duration to meet the target angle. The knee is expected to extend to a maximum reference angle setting (70°, 40° or 30°) from its normal position of 0° once the stimulus charge is applied to the muscle by the FES device. Initially, the FLC was modelled using MATLAB Simulink. Then, the FLC was hardcoded into digital logic using hardware description language (HDL) Verilog codes. Thereafter, the performance of the digital FLC was tested with a knee extension model using the HDL co-simulation technique in MATLAB Simulink. Finally, for real-time verification, the designed digital FFC was downloaded to the Intel FPGA (DE2-115) board. The digital FFC utilized only 4% of the total FPGA (Cyclone IV E) logic elements (LEs) and required 238 µs to regulate stimulus pulse width data, including 3 µs for the FLC computation. The high processing speed of the digital FFC enables the stimulus pulse width duration to be updated every stimulation cycle. Furthermore, the implemented digital FFC has demonstrated good control performance in accurately controlling the stimulus pulse width duration to reach the desired reference angle with very small overshoot (1.4°) and steady-state error (0.4°). These promising results are very useful for a real-world closed-loop FES application.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links