Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Zreaqat M, Hassan R, Ismail AR, Ismail NM, Aziz FA
    Oral Health Dent Manag, 2013 Dec;12(4):217-21.
    PMID: 24390019
    Assessment of orthodontic treatment need and demand helps in planning orthodontic services and estimating the required resources and man power. The aim of this study was to assess the orthodontic treatment need and demand and to assess the association between the orthodontic treatment demand and factors such as ITON, gender, and age.
  2. Yasin Y, Ismail NM, Hussein MZ, Aminudin N
    J Biomed Nanotechnol, 2011 Jun;7(3):486-8.
    PMID: 21830495
    A drug-inorganic nanostructured material involving pharmaceutically active compound lawsone intercalated Zn-Al layered double hydroxides (Law-LDHs) with Zn/AI = 4 has been assembled by co-precipitation and ion exchange methods. Powder X-ray diffraction (XRD) and Fourier transform infrared spectra (FTIR) analysis indicate a successful intercalation of lawsone between the layers of layered double hydroxides. It suggests that layered double hydroxides may have application as the basis of a drug delivery system.
  3. Susilawati S, Prayogi S, Arif MF, Ismail NM, Bilad MR, Asy'ari M
    Polymers (Basel), 2021 Mar 28;13(7).
    PMID: 33800592 DOI: 10.3390/polym13071065
    This study assesses the optical properties and conductivity of PVA-H3PO4 (polyvinyl alcohol-phosphoric acid) polymer film blend irradiated by gamma (γ) rays. The PVA-H3PO4 polymer film blend was prepared by the solvent-casting method at H3PO4 concentrations of 75 v% and 85 v%, and then irradiated up to 25 kGy using γ-rays from the Cobalt-60 isotope source. The optical absorption spectrum was measured using an ultraviolet-visible spectrophotometer over a wavelength range of 200 to 700 nm. It was found that the absorption peaks are in three regions, namely two peaks in the ultraviolet region (310 and 350 nm) and one peak in the visible region (550 nm). The presence of an absorption peak after being exposed to hυ energy indicates a transition of electrons from HOMO to LUMO within the polymer chain. The study of optical absorption shows that the energy band gap (energy gap) depends on the radiation dose and the concentration of H3PO4 in the polymer film blend. The optical absorption, absorption edge, and energy gap decrease with increasing H3PO4 concentration and radiation dose. The interaction between PVA and H3PO4 blend led to an increase in the conductivity of the resulting polymer blend film.
  4. Shafiee MN, Ismail NM, Shan LP, Kampan N, Omar MH, Dali HM
    Sex Reprod Healthc, 2011 Apr;2(2):91-2.
    PMID: 21439527 DOI: 10.1016/j.srhc.2011.02.001
    Choriocarcinoma is a rare neoplasia with a tendency of distant metastasis although highly sensitive to chemotherapy renders a good prognosis and outcome. Lungs, liver and cerebral metastasis are commonly implicated with maxillofacial region rarely involved. We illustrate a case of overwhelming metastatic choriocarcinoma to lungs, liver, brain and to the extreme of gum metastasis. Decompressive craniectomy for intracranial bleeding, multiple transfusions to correct anaemia and coagulopathy were done before high-risk-regime chemotherapy. Despite this, due to fulminant multi-organs involvement she finally succumbed to death. In conclusion, gum bleeding in choriocarcinoma may suggest metastasis and poor prognosis.
  5. Saini R, Al-Maweri SA, Saini D, Ismail NM, Ismail AR
    Diabetes Res Clin Pract, 2010 Sep;89(3):320-6.
    PMID: 20488573 DOI: 10.1016/j.diabres.2010.04.016
    AIMS: This study was aimed to determine the prevalence of oral mucosal lesions (OML) in patients with diabetes mellitus (DM) and non-diabetic subjects without any oral habits and to investigate the association of DM with oral precancerous lesions.
    METHODS: This cross-sectional study involved 420 diabetic and 420 non-diabetic control subjects without any oral habits. Detailed oral examination was performed based on international criteria.
    RESULTS: A significantly greater proportion of subjects with DM (45%) had one or more OML in comparison to non-diabetics (38.3%). Patients with DM showed a significantly greater prevalence of geographic tongue, denture stomatitis and angular cheilitis than non-diabetics (p<0.05). The results also showed an association between occurrence of one or more OML and metabolic control of diabetic patients (p<0.05). For precancerous lesions, lichen planus was found in two diabetic patients while none of controls had any precancerous lesion (p>0.05).
    CONCLUSIONS: Prevalence of OML was significantly higher in diabetic patients than non-diabetics and this prevalence was associated with the metabolic control of the patients. However, no association was observed between DM and oral precancerous lesions.
  6. Sadikan MZ, Nasir NAA, Agarwal R, Ismail NM
    Biomolecules, 2020 04 05;10(4).
    PMID: 32260544 DOI: 10.3390/biom10040556
    : Oxidative stress plays an important role in retinal neurodegeneration and angiogenesis associated with diabetes. In this study, we investigated the effect of the tocotrienol-rich fraction (TRF), a potent antioxidant, against diabetes-induced changes in retinal layer thickness (RLT), retinal cell count (RCC), retinal cell apoptosis, and retinal expression of vascular endothelial growth factor (VEGF) in rats. Additionally, the efficacy of TRF after administration by two different routes was compared. The diabetes was induced in Sprague-Dawley rats by intraperitoneal injection of streptozotocin. Subsequently, diabetic rats received either oral or topical treatment with vehicle or TRF. Additionally, a group of non-diabetic rats was included with either oral or topical treatment with a vehicle. After 12 weeks of the treatment period, rats were euthanized, and retinas were collected for measurement of RLT, RCC, retinal cell apoptosis, and VEGF expression. RLT and RCC in the ganglion cell layer were reduced in all diabetic groups compared to control groups (p < 0.01). However, at the end of the experimental period, oral TRF-treated rats showed a significantly greater RLT compared to topical TRF-treated rats. A similar observation was made for retinal cell apoptosis and VEGF expression. In conclusion, oral TRF supplementation protects against retinal degenerative changes and an increase in VEGF expression in rats with streptozotocin-induced diabetic retinopathy. Similar effects were not observed after topical administration of TRF.
  7. Razali N, Agarwal R, Agarwal P, Kapitonova MY, Kannan Kutty M, Smirnov A, et al.
    Eur J Pharmacol, 2015 Feb 15;749:73-80.
    PMID: 25481859 DOI: 10.1016/j.ejphar.2014.11.029
    Steroid-induced ocular hypertension (SIOH) is associated with topical and systemic use of steroids. However, SIOH-associated anterior and posterior segment morphological changes in rats have not been described widely. Here we describe the pattern of intraocular pressure (IOP) changes, quantitative assessment of trabecular meshwork (TM) and retinal morphological changes and changes in retinal redox status in response to chronic dexamethasone treatment in rats. We also evaluated the responsiveness of steroid-pretreated rat eyes to 5 different classes of antiglaucoma drugs that act by different mechanisms. Up to 80% of dexamethasone treated animals achieved significant and sustained IOP elevation. TM thickness was significantly increased and number of TM cells was significantly reduced in SIOH rats compared to the vehicle-treated rats. Quantitative assessment of retinal morphology showed significantly reduced thickness of ganglion cell layer (GCL) and inner retina (IR) in SIOH rats compared to vehicle-treated rats. Estimation of retinal antioxidants including catalase, superoxide dismutase and glutathione showed significantly increased retinal oxidative stress in SIOH animals. Furthermore, steroid-treated eyes showed significant IOP lowering in response to treatment with 5 different drug classes. This indicated the ability of SIOH eyes to respond to drugs acting by different mechanisms. In conclusion, SIOH was associated with significant morphological changes in TM and retina and retinal redox status. Additionally, SIOH eyes also showed IOP lowering in response to drugs that act by different mechanisms of action. Hence, SIOH rats appear to be an inexpensive and noninvasive model for studying the experimental antiglaucoma drugs for IOP lowering and neuroprotective effects.
  8. Razali N, Agarwal R, Agarwal P, Tripathy M, Kapitonova MY, Kutty MK, et al.
    Exp Eye Res, 2016 Feb;143:9-16.
    PMID: 26424219 DOI: 10.1016/j.exer.2015.09.014
    Steroid-induced hypertension and glaucoma is associated with increased extracellular meshwork (ECM) deposition in trabecular meshwork (TM). Previous studies have shown that single drop application of trans-resveratrol lowers IOP in steroid-induced ocular hypertensive (SIOH) rats. This IOP lowering is attributed to activation of adenosine A1 receptors, which may lead to increased matrix metalloproteinase (MMP)-2 activity. This study evaluated the effect of repeated topical application of trans-resveratrol for 21 days in SIOH animals on IOP, changes in MMP-2 level in aqueous humor, trabecular meshwork and retinal morphology and retinal redox status. We observed that treatment with trans-resveratrol results in significant and sustained IOP reduction in SIOH rats. This IOP reduction is associated with significantly higher aqueous humor total MMP-2 level; significantly reduced TM thickness and increased number of TM cells. Treatment with trans-resveratrol also significantly increased ganglion cell layer (GCL) thickness, the linear cell density in the GCL and inner retina thickness; and significantly reduced retinal oxidative stress compared to the SIOH vehicle-treated group. In conclusion, repeated dose topical application of trans-resveratrol produces sustained IOP lowering effect, which is associated with increased level of aqueous humor MMP-2, normalization of TM and retinal morphology and restoration of retinal redox status.
  9. Razali N, Agarwal R, Agarwal P, Kumar S, Tripathy M, Vasudevan S, et al.
    Clin Exp Ophthalmol, 2015 Jan-Feb;43(1):54-66.
    PMID: 24995479 DOI: 10.1111/ceo.12375
    BACKGROUND: Steroid-induced ocular hypertension is currently treated in the same way as primary open-angle glaucoma. However, the treatment is often suboptimal and is associated with adverse effects. We evaluated the oculohypotensive effects of topical trans-resveratrol in rats with steroid-induced ocular hypertension and involvement of adenosine receptors (AR) in intraocular pressure (IOP) lowering effect of trans-resveratrol.
    METHODS: The oculohypotensive effect of unilateral single-drop application of various concentrations of trans-resveratrol was first studied in oculonormotensive rats. Concentration with maximum effect was similarly studied in rats with steroid-induced ocular hypertension. Involvement of AR was studied by observing the alterations of IOP in response to trans-resveratrol after pretreating animals with AR subtype-specific antagonists. Additionally, we used computational methods, including 3D modelling, 3D structure generation and protein-ligand interaction, to determine the AR-trans-resveratrol interaction.
    RESULTS: All concentrations of trans-resveratrol produced significant IOP reduction in normotensive rat eyes. Maximum mean IOP reduction of 15.1% was achieved with trans-resveratrol 0.2%. In oculohypertensive rats, trans-resveratrol 0.2% produced peak IOP reduction of 25.2%. Pretreatment with A₁ antagonist abolished the oculohypotensive effect of trans-resveratrol. Pretreatment with A₃ and A₂A AR antagonists produced significant IOP reduction in both treated and control eyes, which was further augmented by trans-resveratrol application in treated eyes. Computational studies showed that trans-resveratrol has highest affinity for A₂B and A₁, followed by A2A and A₃ AR.
    CONCLUSION: Topically applied trans-resveratrol reduces IOP in rats with steroid-induced ocular hypertension. Trans-resveratrol-induced oculohypotension involves its agonistic activity at the A₁ AR.
    KEYWORDS: adenosine receptors; docking simulation; intraocular pressure; resveratrol; topical
  10. Razali N, Agarwal R, Agarwal P, Froemming GRA, Tripathy M, Ismail NM
    Eur J Pharmacol, 2018 Nov 05;838:1-10.
    PMID: 30171854 DOI: 10.1016/j.ejphar.2018.08.035
    Trans-resveratrol was earlier shown to lower intraocular pressure (IOP) in rats; however, its mechanisms of action remain unclear. It has been shown to modulate adenosine receptor (AR) and TGF-β2 signaling, both of which play a role in regulating IOP. Hence, we investigated effects of trans-resveratrol on AR and TGF-β2 signaling. Steroid-induced ocular hypertensive (SIOH) rats were pretreated with A1AR, phospholipase C (PLC) and ERK1/2 inhibitors and were subsequently treated with single drop of trans-resveratrol. Metalloproteinases (MMP)-2 and -9 were measured in aqueous humor (AH). In another set of experiments, effect of trans-resveratrol on AH level of tissue plasminogen activator (tPA) and urokinase plasminogen activator (uPA) was determined after single and multiple drop administration in SIOH rats. Effect of trans-resveratrol on ARs expression, PLC and pERK1/2 activation and MMPs, tPA and uPA secretion was determined using human trabecular meshwork cells (HTMC). Further, effect of trans-resveratrol on TGF-β2 receptors, SMAD signaling molecules and uPA and tPA expression by HTMC was determined in the presence and absence of TGF-β2. Pretreatment with A1AR, PLC and ERK1/2 inhibitors antagonized the IOP lowering effect of trans-resveratrol and caused significant reduction in the AH level of MMP-2 in SIOH rats. Trans-resveratrol increased A1AR and A2AAR expression, cellular PLC, pERK1/2 levels and MMP-2, tPA and uPA secretion by HTMC. Additionally, it produced TGFβRI downregulation and SMAD 7 upregulation. In conclusion, IOP lowering effect of trans-resveratrol involves upregulation of A1AR expression, PLC and ERK1/2 activation and increased MMP-2 secretion. It downregulates TGFβRI and upregulates SMAD7 hence, inhibits TGF-β2 signaling.
  11. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Sidek S, Ismail NM
    Neural Regen Res, 2018 Nov;13(11):2014-2021.
    PMID: 30233077 DOI: 10.4103/1673-5374.239450
    Endothelin-1 (ET-1), a potent vasoconstrictor, is involved in retinal vascular dysregulation and oxidative stress in glaucomatous eyes. Taurine (TAU), a naturally occurring free amino acid, is known for its neuroprotective and antioxidant properties. Hence, we evaluated its neuroprotective properties against ET-1 induced retinal and optic nerve damage. ET-1 was administered intravitreally to Sprague-Dawley rats and TAU was injected as pre-, co- or post-treatment. Animals were euthanized seven days post TAU injection. Retinae and optic nerve were examined for morphology, and were also processed for caspase-3 immunostaining. Retinal redox status was estimated by measuring retinal superoxide dismutase, catalase, glutathione, and malondialdehyde levels using enzyme-linked immuosorbent assay. Histopathological examination showed significantly improved retinal and optic nerve morphology in TAU-treated groups. Morphometric examination showed that TAU pre-treatment provided marked protection against ET-1 induced damage to retina and optic nerve. In accordance with the morphological observations, immunostaining for caspase showed a significantly lesser number of apoptotic retinal cells in the TAU pre-treatment group. The retinal oxidative stress was reduced in all TAU-treated groups, and particularly in the pre-treatment group. The findings suggest that treatment with TAU, particularly pre-treatment, prevents apoptosis of retinal cells induced by ET-1 and hence prevents the changes in the morphology of retina and optic nerve. The protective effect of TAU against ET-1 induced retinal and optic nerve damage is associated with reduced retinal oxidative stress.
  12. Nor Arfuzir NN, Agarwal R, Iezhitsa I, Agarwal P, Ismail NM
    Exp Eye Res, 2020 05;194:107996.
    PMID: 32156652 DOI: 10.1016/j.exer.2020.107996
    Endothelin-1 (ET-1), a potent vasoconstrictor, plays a significant role in the pathophysiology of ocular conditions like glaucoma. Glaucoma is characterized by apoptotic loss of retinal ganglion cells (RGCs) and loss of visual fields and is a leading cause of irreversible blindness. In glaucomatous eyes, retinal ischemia causes release of pro-inflammatory mediators such as interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α and promotes activation of transcription factors such as nuclear factor kappa B (NFKB) and c-Jun. Magnesium acetyltaurate (MgAT) has previously been shown to protect against ET-1 induced retinal and optic nerve damage. Current study investigated the mechanisms underlying these effects of MgAT, which so far remain unknown. Sprague dawley rats were intravitreally injected with ET-1 with or without pretreatment with MgAT. Seven days post-injection, retinal expression of IL-1β, IL-6, TNF-α, NFKB and c-Jun protein and genes was determined using multiplex assay, Western blot and PCR. Animals were subjected to retrograde labeling of RGCs to determine the extent of RGC survival. RGC survival was also examined using Brn3A staining. Furthermore, visual functions of rats were determined using Morris water maze. It was observed that pre-treatment with MgAT protects against ET-1 induced increase in the retinal expression of IL-1β, IL-6 and TNF-α proteins and genes. It also protected against ET-1 induced activation of NFKB and c-Jun. These effects of MgAT were associated with greater RGC survival and preservation of visual functions in rats. In conclusion, MgAT prevents ET-1 induced RGC loss and loss of visual functions by suppressing neuroinflammatory reaction in rat retinas.
  13. Nawawi HM, Yazid TN, Ismail NM, Mohamad AR, Nirwana SI, Khalid BA
    Malays J Pathol, 2001 Dec;23(2):79-88.
    PMID: 12166596
    The objectives of this study were to: (i) evaluate the diagnostic sensitivity and specificity of the biochemical bone markers: serum total alkaline phosphatase (TALP), bone specific alkaline phosphatase (BSALP) and urinary deoxypyridinoline (Dpyr) in postmenopausal osteoporosis, (ii) compare the bone turnover of postmenopausal osteoporotic patients without and with hormone replacement therapy (HRT) against controls and (iii) identify the correlation between these bone markers and bone mineral density (BMD). We examined 42 postmenopausal women with BMD proven osteoporosis and 35 control subjects. Serum TALP, BSALP and urinary Dpyr were measured. All three biochemical bone markers showed comparable moderate diagnostic sensitivity but Dpyr had the highest diagnostic specificity. There were significantly higher serum TALP, BSALP and urinary Dpyr levels in non-HRT treated patients compared to controls (p<0.005, <0.0001 and <0.005 respectively). There were no significant differences in the levels of all three bone markers between HRT treated patients and control subjects. There was no significant correlation between TALP, BSALP or Dpyr and BMD in both controls and patients. In conclusion, the biochemical bone markers are not useful in diagnosis of postmenopausal osteoporosis but may have a role in monitoring progress and response to treatment. HRT treatment reduces bone turnover of postmenopausal osteoporosis.
  14. Mulyati S, Aprilia S, Muchtar S, Syamsuddin Y, Rosnelly CM, Bilad MR, et al.
    Polymers (Basel), 2022 Jan 03;14(1).
    PMID: 35012208 DOI: 10.3390/polym14010186
    Potential use of tannic acid (TA) as an additive for fabrication of polyvinylidene difluoride (PVDF) membrane was investigated. The TA was introduced by blending into the dope solution with varying concentrations of 0, 1, 1.5, and 2 wt%. The prepared membranes were characterized and evaluated for filtration of humic acid (HA) solution. The stability of the membrane under harsh treatment was also evaluated by one-week exposure to acid and alkaline conditions. The results show that TA loadings enhanced the resulting membrane properties. It increased the bulk porosity, water uptake, and hydrophilicity, which translated into improved clean water flux from 15.4 L/m2.h for the pristine PVDF membrane up to 3.3× for the TA-modified membranes with the 2 wt% TA loading. The flux recovery ratio (FRR) of the TA-modified membranes (FRRs = 78-83%) was higher than the pristine one (FRR = 58.54%), with suitable chemical stability too. The improved antifouling property for the TA-modified membranes was attributed to their enhanced hydrophilicity thanks to improved morphology and residual TA in the membrane matric.
  15. Marcus AJ, Iezhitsa I, Agarwal R, Vassiliev P, Spasov A, Zhukovskaya O, et al.
    Eur J Pharmacol, 2019 May 05;850:75-87.
    PMID: 30716317 DOI: 10.1016/j.ejphar.2019.01.059
    Ocular hypertension is believed to be involved in the etiology of primary open-angle glaucoma. Although many pharmaceutical agents have been shown to be effective for the reduction of intraocular pressure (IOP), a significant opportunity to improve glaucoma treatments remains. Thus, the aims of the present study were: (1) to evaluate the IOP-lowering effect of four compounds RU-551, RU-555, RU-839 (pyrimido[1,2-a]benzimidazole), and RU-615 (imidazo[1,2-a]benzimidazole) on steroid-induced ocular hypertension in rats after single drop and chronic applications; and (2) to test in silico and in vitro conventional rho-associated kinase (ROCK) inhibitory activity of the selected compound. This study demonstrated that RU-551, RU-555, RU-839, and RU-615 significantly reduced IOP in Sprague Dawley rats with dexamethasone (DEXA) induced ocular hypertension after single drop administration (0.1%), however RU-615 showed the best IOP lowering effect as indicated by maximum IOP reduction of 22.32% from baseline. Repeated dose topical application of RU-615 caused sustained reduction of IOP from baseline throughout the 3 weeks of treatment with maximum IOP reduction of 30.31% on day 15. This study also showed that the steroid-induced increase in IOP is associated with increased retinal oxidative stress and significant retinal ganglion cells (RGCs) loss. Prolonged treatment with RU-615 over 3 weeks results in normalization of IOP in DEXA-treated rats with partial restoration of retinal antioxidant status (catalase, glutathione and superoxide dismutase) and subsequent protective effect against RGC loss. Thus, IOP lowering activity of RU-615 together with antioxidant properties might be the factors that contribute to prevention of further RGC loss. In vitro part of this study explored the ROCK inhibitory activity of RU-615 using dexamethasone-treated human trabecular meshwork cells as a possible mechanism of action of its IOP lowering activity. However, this study didn't show conventional ROCK inhibition by RU-615 which was later confirmed by in silico consensus prediction. Therefore, in the future studies it is important to identify the upstream target receptors for RU-615 and then delineate the involved intracellular signalling pathways which are likely to be other than ROCK inhibition.
  16. Mani SA, Aziz AA, John J, Ismail NM
    J Indian Soc Pedod Prev Dent, 2010 Apr-Jun;28(2):78-83.
    PMID: 20660972 DOI: 10.4103/0970-4388.66741
    The role of caretakers at day-care centers has become more imperative in promoting oral health care in children since many new mothers opt to work outside their homes, leaving their children at day-care centers. The aim of this study is to assess the knowledge, attitude and practice of oral health promoting factors among secondary caretakers of children attending day-care centers.
  17. Lambuk L, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, Ismail NM
    Neurotoxicology, 2019 01;70:62-71.
    PMID: 30385388 DOI: 10.1016/j.neuro.2018.10.009
    OBJECTIVE: N-methyl-D-aspartate (NMDA) excitotoxicity has been proposed to mediate apoptosis of retinal ganglion cells (RGCs) in glaucoma. Taurine (TAU) has been shown to have neuroprotective properties, thus we examined anti-apoptotic effect of TAU against retinal damage after NMDA exposure.

    METHODOLOGY: Sprague-Dawley rats were divided into 5 groups of 33 each. Group 1 was administered intravitreally with PBS and group 2 was similarly injected with NMDA (160 nmol). Groups 3, 4 and 5 were injected with TAU (320 nmol) 24 hours before (pre-treatment), in combination (co-treatment) and 24 hours after (post-treatment) NMDA exposure respectively. Seven days after injection, rats were sacrificed; eyes were enucleated, fixed and processed for morphometric analysis, TUNEL and caspase-3 staining. Optic nerve morphology assessment was done using toluidine blue staining. The estimation of BDNF, pro/anti-apoptotic factors (Bax/Bcl-2) and caspase-3 activity in retina was done using ELISA technique.

    RESULTS: Severe degenerative changes were observed in retinae after intravitreal NMDA exposure. The retinal morphology in the TAU pre-treated group appeared more similar to the control retinae and demonstrated a higher number of nuclei than the NMDA group both per 100 μm length (by 1.5-fold, p 

  18. Lambuk L, Iezhitsa I, Agarwal R, Agarwal P, Peresypkina A, Pobeda A, et al.
    Neural Regen Res, 2021 Nov;16(11):2330-2344.
    PMID: 33818520 DOI: 10.4103/1673-5374.310691
    Magnesium acetyltaurate (MgAT) has been shown to have a protective effect against N-methyl-D-aspartate (NMDA)-induced retinal cell apoptosis. The current study investigated the involvement of nuclear factor kappa-B (NF-κB), p53 and AP-1 family members (c-Jun/c-Fos) in neuroprotection by MgAT against NMDA-induced retinal damage. In this study, Sprague-Dawley rats were randomized to undergo intravitreal injection of vehicle, NMDA or MgAT as pre-treatment to NMDA. Seven days after injections, retinal ganglion cells survival was detected using retrograde labelling with fluorogold and BRN3A immunostaining. Functional outcome of retinal damage was assessed using electroretinography, and the mechanisms underlying antiapoptotic effect of MgAT were investigated through assessment of retinal gene expression of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos) using reverse transcription-polymerase chain reaction. Retinal phospho-NF-κB, phospho-p53 and AP-1 levels were evaluated using western blot assay. Rat visual functions were evaluated using visual object recognition tests. Both retrograde labelling and BRN3A immunostaining revealed a significant increase in the number of retinal ganglion cells in rats receiving intravitreal injection of MgAT compared with the rats receiving intravitreal injection of NMDA. Electroretinography indicated that pre-treatment with MgAT partially preserved the functional activity of NMDA-exposed retinas. MgAT abolished NMDA-induced increase of retinal phospho-NF-κB, phospho-p53 and AP-1 expression and suppressed NMDA-induced transcriptional activity of NF-κB, p53 and AP-1 family members (c-Jun/c-Fos). Visual object recognition tests showed that MgAT reduced difficulties in recognizing the visual cues (i.e. objects with different shapes) after NMDA exposure, suggesting that visual functions of rats were relatively preserved by pre-treatment with MgAT. In conclusion, pre-treatment with MgAT prevents NMDA induced retinal injury by inhibiting NMDA-induced neuronal apoptosis via downregulation of transcriptional activity of NF-κB, p53 and AP-1-mediated c-Jun/c-Fos. The experiments were approved by the Animal Ethics Committee of Universiti Teknologi MARA (UiTM), Malaysia, UiTM CARE No 118/2015 on December 4, 2015 and UiTM CARE No 220/7/2017 on December 8, 2017 and Ethics Committee of Belgorod State National Research University, Russia, No 02/20 on January 10, 2020.
  19. Lambuk L, Jafri AJ, Arfuzir NN, Iezhitsa I, Agarwal R, Rozali KN, et al.
    Neurotox Res, 2017 01;31(1):31-45.
    PMID: 27568334 DOI: 10.1007/s12640-016-9658-9
    Glutamate excitotoxicity plays a major role in the loss of retinal ganglion cells (RGCs) in glaucoma. The toxic effects of glutamate on RGCs are mediated by the overstimulation of N-methyl-D-aspartate (NMDA) receptors. Accordingly, NMDA receptor antagonists have been suggested to inhibit excitotoxicity in RGCs and delay the progression and visual loss in glaucoma patients. The purpose of the present study was to examine the potential neuroprotective effect of Mg acetyltaurate (MgAT) on RGC death induced by NMDA. MgAT was proposed mainly due to the combination of magnesium (Mg) and taurine which may provide neuroprotection by dual mechanisms of action, i.e., inhibition of NMDA receptors and antioxidant effects. Rats were divided into 5 groups and were given intravitreal injections. Group 1 (PBS group) was injected with vehicle; group 2 (NMDA group) was injected with NMDA while groups 3 (pre-), 4 (co-), and 5 (post-) treatments were injected with MgAT, 24 h before, in combination or 24 h after NMDA injection respectively. NMDA and MgAT were injected in PBS at doses 160 and 320 nmol, respectively. Seven days after intravitreal injection, the histological changes in the retina were evaluated using hematoxylin & eosin (H&E) staining. Optic nerves were dissected and stained in Toluidine blue for grading on morphological neurodegenerative changes. The extent of apoptosis in retinal tissue was assessed by TUNEL assay and caspase-3 immunohistochemistry staining. The estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors and caspase-3 activity in retina was done using enzyme-linked immunosorbent assay (ELISA) technique. The retinal morphometry showed reduced thickness of ganglion cell layer (GCL) and reduction in the number of retinal cells in GCL in NMDA group compared to the MgAT-treated groups. TUNEL and caspase-3 staining showed increased number of apoptotic cells in inner retina. The results were further corroborated by the estimation of neurotrophic factor, oxidative stress, pro/anti-apoptotic factors, and caspase-3 activity in retina. In conclusion, current study revealed that intravitreal MgAT prevents retinal and optic nerve damage induced by NMDA. Overall, our data demonstrated that the pretreatment with MgAT was more effective than co- and posttreatment. This protective effect of MgAT against NMDA-induced retinal cell apoptosis could be attributed to the reduction of retinal oxidative stress and activation of BDNF-related neuroprotective mechanisms.
  20. Lambuk L, Jafri AJA, Iezhitsa I, Agarwal R, Bakar NS, Agarwal P, et al.
    Int J Ophthalmol, 2019;12(5):746-753.
    PMID: 31131232 DOI: 10.18240/ijo.2019.05.08
    AIM: To investigate dose-dependent effects of N-methyl-D-aspartate (NMDA) on retinal and optic nerve morphology in rats.

    METHODS: Sprague Dawley rats, 180-250 g in weight were divided into four groups. Groups 1, 2, 3 and 4 were intravitreally administered with vehicle and NMDA at the doses 80, 160 and 320 nmol respectively. Seven days after injection, rats were euthanized, and their eyes were taken for optic nerve toluidine blue and retinal hematoxylin and eosin stainings. The TUNEL assay was done for detecting apoptotic cells.

    RESULTS: All groups treated with NMDA showed significantly reduced ganglion cell layer (GCL) thickness within inner retina, as compared to control group. Group NMDA 160 nmol showed a significantly greater GCL thickness than the group NMDA 320 nmol. Administration of NMDA also resulted in a dose-dependent decrease in the number of nuclei both per 100 µm GCL length and per 100 µm2 of GCL. Intravitreal NMDA injection caused dose-dependent damage to the optic nerve. The degeneration of nerve fibres with increased clearing of cytoplasm was observed more prominently as the NMDA dose increased. In accordance with the results of retinal morphometry analysis and optic nerve grading, TUNEL staining demonstrated NMDA-induced excitotoxic retinal injury in a dose-dependent manner.

    CONCLUSION: Our results demonstrate dose-dependent effects of NMDA on retinal and optic nerve morphology in rats that may be attributed to differences in the severity of excitotoxicity and oxidative stress. Our results also suggest that care should be taken while making dose selections experimentally so that the choice might best uphold study objectives.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links