Displaying publications 1 - 20 of 81 in total

Abstract:
Sort:
  1. Abas F, Lajis NH, Shaari K, Israf DA, Stanslas J, Yusuf UK, et al.
    J Nat Prod, 2005 Jul;68(7):1090-3.
    PMID: 16038556
    A new labdane diterpene glucoside, curcumanggoside (1), together with nine known compounds, including labda-8(17),12-diene-15,16-dial (2), calcaratarin A (3), zerumin B (4), scopoletin, demethoxycurcumin, bisdemethoxycurcumin, 1,7-bis(4-hydroxyphenyl)-1,4,6-heptatrien-3-one, curcumin, and p-hydroxycinnamic acid, have been isolated from the rhizomes of Curcuma mangga. Their structures were determined using a combination of 1D (1H NMR, 13C NMR, DEPT) and 2D (COSY, HSQC, HMBC) NMR techniques. All diarylheptanoids and scopoletin showed significant antioxidant activity. Zerumin B, demethoxycurcumin, bisdemethoxycurcumin, and curcumin also exhibited cytotoxic activity against a panel of five human tumor cell lines.
  2. Abas F, Hui LS, Ahmad S, Stanslas J, Israf DA, Shaari K, et al.
    Z Naturforsch C J Biosci, 2006 12 2;61(9-10):625-31.
    PMID: 17137104
    Nine derivatives of three natural diarylheptanoids, curcumin, demethoxycurcumin and bisdemethoxycurcumin, were prepared. Their antioxidant, free radical scavenging, nitric oxide (NO) inhibitory and cytotoxic activities were evaluated and compared with those of the respective natural compounds. Curcumin (1), demethoxycurcumin (2), demethyldemethoxy-curcumin (C3), diacetyldemethoxycurcumin (AC2) and triacetyldemethylcurcumin (AC5) exhibited higher antioxidant activity than quercetin while products from demethylation of 1 and 2 exhibited higher free radical scavenging activity. Compounds AC2 and AC5 were found to be most active in inhibiting breast cancer cells (MCF-7) proliferation with IC50 values of 6.7 and 3.6 microM, respectively. The activity of AC2 is almost doubled and of AC5 almost tripled as compared to curcumin. Their selectivity towards different cell lines is also more noticeable. Compounds AC2 and AC5 also showed increased activity against a human prostate cancer cell line (DU-145) and non-small lung cancer cell line (NCI-H460) with IC50 values of 20.4, 16.3 and 18.3, 10.7 microM, respectively.
  3. Ahmad R, Ali AM, Israf DA, Ismail NH, Shaari K, Lajis NH
    Life Sci, 2005 Mar 11;76(17):1953-64.
    PMID: 15707878
    The antioxidant, radical-scavenging, anti-inflammatory, cytotoxic and antibacterial activities of methanolic extracts of seven Hedyotisspecies were investigated. The antioxidant activity was evaluated by the ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods while the radical scavenging activity was measured by the 1,1-diphenyl-2-picrylhydrazyl (DPPH) method. The anti-inflammatory activity related to NO inhibition of the plant extracts was measured by the Griess assay while cytotoxicity were measured by the MTT assay against CEM-SS cell line. The antibacterial bioassay (against 4 bacteria, i.e. Bacillus subtilis B28 (mutant), Bacillus subtilis B29 (wild-type), Pseudomonas aeruginosa UI 60690 and methicillin resistant Staphylococcus aureus, (MRSA) was also carried out using the disc-diffusion method. All tested extracts exhibited very strong antioxidant properties when compared to Vitamin E (alpha-tocopherol) with percent inhibition of 89-98% in the FTC and 60-95% in the TBA assays. In the DPPH method, H. herbacea exhibited the strongest radical scavenging activity with an IC50 value of 32 microg/ml. The results from the Griess assay showed that the tested extracts are weak inhibitors of NO synthase. However, all tested extracts exhibited moderate cytotoxic properties against CEM-SS cell line giving CD50 values in the range of 21-41 microg/ml. In the antibacterial bioassay, the stems and the roots of H. capitellata showed moderate activity against the 4 tested bacteria while the leaves showed moderate activity towards B. subtilis B28, MRSA and P. aeruginosa only. The roots of H. dichotoma showed strong antibacterial activity against all 4 bacteria. All other extracts did not exhibit any antibacterial activity.
  4. Ahmad S, Israf DA, Lajis NH, Shaari K, Mohamed H, Wahab AA, et al.
    Eur J Pharmacol, 2006 May 24;538(1-3):188-94.
    PMID: 16650843
    Some chalcones, such as hydroxychalcones have been reported previously to inhibit major pro-inflammatory mediators such as nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumor necrosis factor-alpha (TNF-alpha) and reactive oxygen species production by suppressing inducible enzyme expression via inhibition of the mitogen-activated protein kinase (MAPK) pathway and nuclear translocation of critical transcription factors. In this report, the effects of cardamonin (2',4'-dihydroxy-6'-methoxychalcone), a chalcone that we have previously isolated from Alpinia rafflesiana, was evaluated upon two cellular systems that are repeatedly used in the analysis of anti-inflammatory bioactive compounds namely RAW 264.7 cells and whole blood. Cardamonin inhibited NO and PGE(2) production from lipopolysaccharide- and interferon-gamma-induced RAW cells and whole blood with IC(50) values of 11.4 microM and 26.8 microM, respectively. Analysis of thromboxane B(2) (TxB(2)) secretion from whole blood either stimulated via the COX-1 or COX-2 pathway revealed that cardamonin inhibits the generation of TxB(2) via both pathways with IC(50) values of 2.9 and 1.1 microM, respectively. Analysis of IC(50) ratios determined that cardamonin was more COX-2 selective in its inhibition of TxB(2) with a ratio of 0.39. Cardamonin also inhibited the generation of intracellular reactive oxygen species and secretion of TNF-alpha from RAW 264.7 cells in a dose responsive manner with IC(50) values of 12.8 microM and 4.6 microM, respectively. However, cardamonin was a moderate inhibitor of lipoxygenase activity when tested in an enzymatic assay system, in which not a single concentration tested was able to cause an inhibition of more than 50%. Our results suggest that cardamonin acts upon major pro-inflammatory mediators in a similar fashion as described by previous work on other closely related synthetic hydroxychalcones and strengthens the conclusion of the importance of the methoxyl moiety substitution on the 4' or 6' locations of the A benzene ring.
  5. Al-Haddawi MH, Jasni S, Israf DA, Zamri-Saad M, Mutalib AR, Sheikh-Omar AR
    Res Vet Sci, 2001 Jun;70(3):191-7.
    PMID: 11676614
    Sixteen 8- to 9-week-old Pasteurella multocida-free New Zealand White rabbits were divided into two equal groups. The first group was inoculated intranasally with P multocida serotype D:1 strain and the second group that was inoculated with phosphate-buffered saline (PBS) only was used as a control group. Pasteurella multocida was isolated from the nasal cavity of all infected rabbits in group 1 and from tracheal swabs of seven rabbits in this group. Four rabbits in group 1 died with clinical signs of septicaemia, two rabbits had mucopurulent nasal discharge and pneumonic lesions and the other two did not show any clinical signs or gross lesions. The ultrastructural changes detected were deciliation or clumping of cilia of ciliated epithelium, cellular swelling, vacuolation and sloughing. The subepithelial capillaries showed congestion, intravascular fibrin deposition, platelets aggregation and endothelial injury. Pasteurella multocida was observed attached to the injured endothelial cells. Heterophils, mast cells, vacuolated monocytes and macrophages infiltrated the lamina propria and between the degenerated epithelial cells.
  6. Aw Yong PY, Islam F, Harith HH, Israf DA, Tan JW, Tham CL
    Front Pharmacol, 2020;11:599080.
    PMID: 33574752 DOI: 10.3389/fphar.2020.599080
    Honey has been conventionally consumed as food. However, its therapeutic properties have also gained much attention due to its application as a traditional medicine. Therapeutic properties of honey such as anti-microbial, anti-inflammatory, anti-cancer and wound healing have been widely reported. A number of interesting studies have reported the potential use of honey in the management of allergic diseases. Allergic diseases including anaphylaxis, asthma and atopic dermatitis (AD) are threatening around 20% of the world population. Although allergic reactions are somehow controllable with different drugs such as antihistamines, corticosteroids and mast cell stabilizers, modern dietary changes linked with allergic diseases have prompted studies to assess the preventive and therapeutic merits of dietary nutrients including honey. Many scientific evidences have shown that honey is able to relieve the pathological status and regulate the recruitment of inflammatory cells in cellular and animal models of allergic diseases. Clinically, a few studies demonstrated alleviation of allergic symptoms in patients after application or consumption of honey. Therefore, the objective of this mini review is to discuss the effectiveness of honey as a treatment or preventive approach for various allergic diseases. This mini review will provide insights into the potential use of honey in the management of allergic diseases in clinical settings.
  7. Chan YH, Musa NF, Chong YJ, Saat SA, Hafiz F, Shaari K, et al.
    Pharm Biol, 2021 Dec;59(1):732-740.
    PMID: 34155953 DOI: 10.1080/13880209.2021.1933083
    CONTEXT: Lipopolysaccharide (LPS) exacerbates systemic inflammatory responses and causes excessive fluid leakage. 2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) has been revealed to protect against LPS-induced vascular inflammation and endothelial hyperpermeability in vitro.

    OBJECTIVE: This study assesses the in vivo protective effects of tHGA against LPS-induced systemic inflammation and vascular permeability in endotoxemic mice.

    MATERIALS AND METHODS: BALB/c mice were intraperitoneally pre-treated with tHGA for 1 h, followed by 6 h of LPS induction. Evans blue permeability assay and leukocyte transmigration assay were performed in mice (n = 6) pre-treated with 2, 20 and 100 mg/kg tHGA. The effects of tHGA (20, 40 and 80 mg/kg) on LPS-induced serum TNF-α secretion, lung dysfunction and lethality were assessed using ELISA (n = 6), histopathological analysis (n = 6) and survivability assay (n = 10), respectively. Saline and dexamethasone were used as the negative control and drug control, respectively.

    RESULTS: tHGA significantly inhibited vascular permeability at 2, 20 and 100 mg/kg with percentage of inhibition of 48%, 85% and 86%, respectively, in comparison to the LPS control group (IC50=3.964 mg/kg). Leukocyte infiltration was suppressed at 20 and 100 mg/kg doses with percentage of inhibition of 73% and 81%, respectively (IC50=17.56 mg/kg). However, all tHGA doses (20, 40 and 80 mg/kg) failed to prevent endotoxemic mice from lethality because tHGA could not suppress TNF-α overproduction and organ dysfunction.

    DISCUSSION AND CONCLUSIONS: tHGA may be developed as a potential therapeutic agent for diseases related to uncontrolled vascular leakage by combining with other anti-inflammatory agents.

  8. Chan YH, Liew KY, Tan JW, Shaari K, Israf DA, Tham CL
    Front Pharmacol, 2021;12:736339.
    PMID: 34531753 DOI: 10.3389/fphar.2021.736339
    2,4,6-Trihydroxy-3-geranyl acetophenone (tHGA) is a bioactive phloroglucinol compound found in Melicope pteleifolia (Champ. ex Benth.) T.G.Hartley, a medicinal plant vernacularly known as "tenggek burung". A variety of phytochemicals have been isolated from different parts of the plant including leaves, stems, and roots by using several extraction methods. Specifically, tHGA, a drug-like compound containing phloroglucinol structural core with acyl and geranyl group, has been identified in the methanolic extract of the young leaves. Due to its high nutritional and medicinal values, tHGA has been extensively studied by using various experimental models. These studies have successfully discovered various interesting pharmacological activities of tHGA such as anti-inflammatory, endothelial and epithelial barrier protective, anti-asthmatic, anti-allergic, and anti-cancer. More in-depth investigations later found that these activities were attributable to the modulatory actions exerted by tHGA on specific molecular targets. Despite these findings, the association between the mechanisms and signaling pathways underlying each pharmacological activity remains largely unknown. Also, little is known about the medicinal potentials of tHGA as a drug lead in the current pharmaceutical industry. Therefore, this mini review aims to summarize and relate the pharmacological activities of tHGA in terms of their respective mechanisms of action and signaling pathways in order to present a perspective into the overall modulatory actions exerted by tHGA. Besides that, this mini review will also pinpoint the unexplored potentials of this compound and provide some valuable insights into the potential applications of tHGA which may serve as a guide for the development of modern medication in the future.
  9. Chan YH, Harith HH, Israf DA, Tham CL
    Front Cell Dev Biol, 2019;7:280.
    PMID: 31970155 DOI: 10.3389/fcell.2019.00280
    Endothelial cells lining the inner vascular wall form a monolayer that contributes to the selective permeability of endothelial barrier. This selective permeability is mainly regulated by an endothelium-specific adherens junctional protein, known as vascular endothelial-cadherin (VE-cadherin). In endothelial cells, the adherens junction comprises of VE-cadherin and its associated adhesion molecules such as p120, α-catenin, and β-catenin, in which α-catenin links cytoplasmic tails of VE-cadherin to actin cytoskeleton through β-catenin. Proinflammatory stimuli such as lipopolysaccharide (LPS) are capable of attenuating vascular integrity through the disruption of VE-cadherin adhesion in endothelial cells. To date, numerous studies demonstrated the disruption of adherens junction as a result of phosphorylation-mediated VE-cadherin disruption. However, the outcomes from these studies were inconsistent and non-conclusive as different cell fractions were used to examine the effect of LPS on the disruption of VE-cadherin. By using Western Blot, some studies utilized total protein lysate and reported decreased protein expression while some studies reported unchanged expression. Other studies which used membrane and cytosolic fractions of protein extract demonstrated decreased and increased VE-cadherin expression, respectively. Despite the irregularities, the results of immunofluorescence staining are consistent with the formation of intercellular gap. Besides that, the overall underlying disruptive mechanisms of VE-cadherin remain largely unknown. Therefore, this mini review will focus on different experiment approaches in terms of cell fractions used in different human endothelial cell studies, and relate these differences to the results obtained in Western blot and immunofluorescence staining in order to give some insights into the overall differential regulatory mechanisms of LPS-mediated VE-cadherin disruption and address the discrepancy in VE-cadherin expression.
  10. Chong YJ, Musa NF, Ng CH, Shaari K, Israf DA, Tham CL
    J Ethnopharmacol, 2016 Nov 04;192:248-255.
    PMID: 27404229 DOI: 10.1016/j.jep.2016.07.032
    PHARMOCOLOGICAL RELEVANCE: 2,4,6-trihydroxy-3-geranyl acetophenone (tHGA), is a phloroglucinol compound found naturally in Melicope ptelefolia. Melicope ptelefolia has been used traditionally for centuries as natural remedy for wound infections and inflammatory diseases.

    AIM OF THE STUDY: Endothelial barrier dysfunction is a pathological hallmark of many diseases and can be caused by lipopolysaccharides (LPS) stimulation. Therefore, this study aims to investigate the possible barrier protective effects of tHGA upon LPS-stimulated inflammatory responses in human umbilical vein endothelial cells (HUVECs).

    MATERIALS AND METHODS: HUVECs were pretreated with tHGA prior to LPS stimulation, where inflammatory parameters including permeability, monocyte adhesion and migration, and release of pro-inflammatory mediators were examined. Additionally, the effect of tHGA on F-actin rearrangement and adhesion protein expression of LPS-stimulated HUVECs was evaluated.

    RESULTS: It was found that pretreatment with tHGA inhibited monocyte adhesion and transendothelial migration, reduced endothelial hyperpermeability and secretion of prostaglandin E2 (PGE2). Additionally, tHGA inhibited cytoskeletal rearrangement and adhesion protein expression on LPS-stimulated HUVECs.

    CONCLUSION: As the regulation of endothelial barrier dysfunction can be one of the therapeutic strategies to improve the outcome of inflammation, tHGA may be able to preserve vascular barrier integrity of endothelial cells following LPS-stimulated dysfunction, thereby endorsing its potential usefulness in vascular inflammatory diseases.

  11. Chow YL, Lee KH, Vidyadaran S, Lajis NH, Akhtar MN, Israf DA, et al.
    Int Immunopharmacol, 2012 Apr;12(4):657-65.
    PMID: 22306767 DOI: 10.1016/j.intimp.2012.01.009
    The increasing prevalence of neurodegenerative diseases has prompted investigation into innovative therapeutics over the last two decades. Non-steroidal anti-inflammatory drugs (NSAIDs) are among the therapeutic choices to control and suppress the symptoms of neurodegenerative diseases. However, NSAIDs-associated gastropathy has hampered their long term usage despite their clinical advancement. On the natural end of the treatment spectrum, our group has shown that cardamonin (2',4'-dihydroxy-6'-methoxychalcone) isolated from Alpinia rafflesiana exerts potential anti-inflammatory activity in activated macrophages. Therefore, we further explored the anti-inflammatory property of cardamonin as well as its underlying mechanism of action in IFN-γ/LPS-stimulated microglial cells. In this investigation, cardamonin shows promising anti-inflammatory activity in microglial cell line BV2 by inhibiting the secretion of pro-inflammatory mediators including nitric oxide (NO), prostaglandin E(2) (PGE(2)), tumour necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6 (IL-6). The inhibition of NO and PGE(2) by cardamonin are resulted from the reduced expression of inducible nitric oxide synthase (iNOS) and cycloxygenase-2 (COX-2), respectively. Meanwhile the suppressive effects of cardamonin on TNF-α, IL-1β and IL-6 were demonstrated at both protein and mRNA levels, thus indicating the interference of upstream signal transduction pathway. Our results also validate that cardamonin interrupts nuclear factor-kappa B (NF-κB) signalling pathway via attenuation of NF-κB DNA binding activity. Interestingly, cardamonin also showed a consistent suppressive effect on the cell surface expression of CD14. Taken together, our experimental data provide mechanistic insights for the anti-inflammatory actions of cardamonin in BV2 and thus suggest a possible therapeutic application of cardamonin for targeting neuroinflammatory disorders.
  12. Harasstani OA, Moin S, Tham CL, Liew CY, Ismail N, Rajajendram R, et al.
    Inflamm Res, 2010 Sep;59(9):711-21.
    PMID: 20221843 DOI: 10.1007/s00011-010-0182-8
    OBJECTIVES: We evaluated several flavonoid combinations for synergy in the inhibition of proinflammatory mediator synthesis in the RAW 264.7 cellular model of inflammation.

    METHODS: The inhibitory effect of chrysin, kaempferol, morin, silibinin, quercetin, diosmin and hesperidin upon nitric oxide (NO), prostaglandin E(2) (PGE(2)) and tumour necrosis factor-alpha (TNF-alpha) secretion from the LPS-induced RAW 264.7 monocytic macrophage was assessed and IC(50) values obtained. Flavonoids that showed reasonable inhibitory effects in at least two out of the three assays were combined in a series of fixed IC(50) ratios and reassessed for inhibition of NO, PGE(2) and TNF-alpha. Dose-response curves were generated and interactions were analysed using isobolographic analysis.

    RESULTS: The experiments showed that only chrysin, kaempferol, morin, and silibinin were potent enough to produce dose-response effects upon at least two out of the three mediators assayed. Combinations of these four flavonoids showed that several combinations afforded highly significant synergistic effects.

    CONCLUSIONS: Some flavonoids are synergistic in their anti-inflammatory effects when combined. In particular chrysin and kaempferol significantly synergised in their inhibitory effect upon NO, PGE(2) and TNF-alpha secretion. These findings open further avenues of research into combinatorial therapeutics of inflammatory-related diseases and the pharmacology of flavonoid synergy.

  13. Harun SNA, Israf DA, Tham CL, Lam KW, Cheema MS, Md Hashim NF
    Molecules, 2018 Apr 10;23(4).
    PMID: 29642589 DOI: 10.3390/molecules23040865
    In order to metastasize, tumor cells need to migrate and invade the surrounding tissues. It is important to identify compound(s) capable of disrupting the metastasis of invasive cancer cells, especially for hindering invadopodia formation, so as to provide anti-metastasis targeted therapy. Invadopodia are thought to be specialized actin-rich protrusions formed by highly invasive cancer cells to degrade the extracellular matrix (ECM). A curcuminoid analogue known as 2,6-bis-(4-hydroxy-3-methoxybenzylidine)cyclohexanone or BHMC has shown good potential in inhibiting inflammation and hyperalgesia. It also possesses an anti-tumor effects on 4T1 murine breast cancer cells in vivo. However, there is still a lack of empirical evidence on how BHMC works in preventing human breast cancer invasion. In this study, we investigated the effect of BHMC on MDA-MB-231 breast cancer cells and its underlying mechanism of action to prevent breast cancer invasion, especially during the formation of invadopodia. All MDA-MB-231 cells, which were exposed to the non-cytotoxic concentrations of BHMC, expressed the proliferating cell nuclear antigen (PCNA), which indicate that the anti-proliferative effects of BHMC did not interfere in the subsequent experiments. By using a scratch migration assay, transwell migration and invasion assays, we determined that BHMC reduces the percentage of migration and invasion of MDA-MB-231 cells. The gelatin degradation assay showed that BHMC reduced the number of cells with invadopodia. Analysis of the proteins involved in the invasion showed that there is a significant reduction in the expressions of Rho guanine nucleotide exchange factor 7 (β-PIX), matrix metalloproteinase-9 (MMP-9), and membrane type 1 matrix metalloproteinase (MT1-MMP) in the presence of BHMC treatment at 12.5 µM. Therefore, it can be postulated that BHMC at 12.5 µM is the optimal concentration for preventing breast cancer invasion.
  14. Hasan NAHM, Harith HH, Israf DA, Tham CL
    Mol Biol Rep, 2020 May;47(5):3511-3519.
    PMID: 32279207 DOI: 10.1007/s11033-020-05439-x
    Epithelial-mesenchymal transition (EMT) is one of the mechanisms that contribute to bronchial remodelling which underlie chronic inflammatory airway diseases such as chronic obstructive pulmonary disorder (COPD) and asthma. Bronchial EMT can be triggered by many factors including transforming growth factor β1 (TGFβ1). The majority of studies on TGFβ1-mediated bronchial EMT used BEGM as the culture medium. LHC-9 medium is another alternative available which is more economical but a less common option. Using normal human bronchial epithelial cells (BEAS-2B) cultured in BEGM as a reference, this study aims to validate the induction of EMT by TGFβ1 in cells cultured in LHC-9. Briefly, the cells were maintained in either LHC-9 or BEGM, and induced with TGFβ1 (5, 10 and 20 ng/ml) for 48 h. EMT induction was confirmed by morphological analysis and EMT markers expression by immunoblotting. In both media, cells induced with TGFβ1 displayed spindle-like morphology with a significantly higher radius ratio compared to non-induced cells which displayed a cobblestone morphology. Correspondingly, the expression of the epithelial marker E-cadherin was significantly lower, whereas the mesenchymal marker vimentin expression was significantly higher in induced cells, compared to non-induced cells. By contrast, a slower cell growth rate was observed in LHC-9 compared to that of BEGM. This study demonstrates that neither LHC-9 nor BEGM significantly influence TGFβ1-induced bronchial EMT. However, LHC-9 is less optimal for bronchial epithelial cell growth compared to BEGM. Thus, LHC-9 may be a more cost-effective substitute for BEGM, provided that time is not a factor.
  15. Ismail N, Jambari NN, Zareen S, Akhtar MN, Shaari K, Zamri-Saad M, et al.
    Toxicol Appl Pharmacol, 2012 Mar 1;259(2):257-62.
    PMID: 22266348 DOI: 10.1016/j.taap.2012.01.003
    Asthma is associated with increased pulmonary inflammation and airway hyperresponsiveness. The current use of corticosteroids in the management of asthma has recently raised issues regarding safety and lack of responsiveness in 5-10% of asthmatic individuals. The aim of the present study was to investigate the therapeutic effect of a non-steroidal small molecule that has cysteinyl leukotriene (cysLT) inhibitory activity, upon attenuation of allergic lung inflammation in an acute murine model. Mice were sensitized with ovalbumin (OVA) and treated with several intraperitoneal doses (100, 20, 2 and 0.2mg/kg) of 2,4,6,-trihydroxy-3-geranylacetophenone (tHGA). Bronchoalveolar lavage was performed, blood and lung samples were obtained and respiratory function was measured. OVA sensitization increased pulmonary inflammation and pulmonary allergic inflammation was significantly reduced at doses of 100, 20 and 2mg/kg with no effect at the lowest dose of 0.2mg/kg. The beneficial effects in the lung were associated with reduced eosinophilic infiltration and reduced secretion of Th2 cytokines and cysLTs. Peripheral blood reduction of total IgE was also a prominent feature. Treatment with tHGA significantly attenuated altered airway hyperresponsiveness as measured by the enhanced pause (Penh) response to incremental doses of methacholine. These data demonstrate that tHGA, a synthetic non-steroidal small molecule, can prevent acute allergic inflammation. This proof of concept opens further avenues of research and development of tHGA as an additional option to the current armamentarium of anti-asthma therapeutics.
  16. Ismail NI, Ming-Tatt L, Lajis N, Akhtar MN, Akira A, Perimal EK, et al.
    Molecules, 2016 Aug 22;21(8).
    PMID: 27556438 DOI: 10.3390/molecules21081077
    The antinociceptive effects produced by intraperitoneal administration of a novel synthetic chalcone, 3-(2,3-dimethoxyphenyl)-1-(5-methylfuran-2-yl)prop-2-en-1-one (DMFP), were investigated in several mouse models of induced nociception. The administration of DMFP (0.1, 0.5, 1.0 and 5.0 mg/kg) produced significant attenuation on the acetic acid-induced abdominal-writhing test. It also produced a significant increase in response latency time in the hot-plate test and a marked reduction in time spent licking the injected paw in both phases of the formalin-induced paw-licking test. In addition, it was also demonstrated that DMFP exhibited significant inhibition of the neurogenic nociceptive response induced by intraplantar injections of capsaicin and glutamate. Moreover, the antinociceptive effect of DMFP in the acetic acid-induced abdominal-writhing test and the hot-plate test was not antagonized by pretreatment with a non-selective opioid receptor antagonist, naloxone. Finally, DMFP did not show any toxic effects and/or mortality in a study of acute toxicity and did not interfere with motor coordination during the Rota-rod test. Our present results show that DMFP exhibits both peripheral and central antinociceptive effects. It was suggested that its peripheral antinociceptive activity is associated with attenuated production and/or release of NO and various pro-inflammatory mediators, while central antinociceptive activity seems to be unrelated to the opioidergic system, but could involve, at least in part, an interaction with the inhibition of capsaicin-sensitive fibers and the glutamatergic system.
  17. Israf DA, Tham CL, Syahida A, Lajis NH, Sulaiman MR, Mohamad AS, et al.
    Phytomedicine, 2010 Aug;17(10):732-9.
    PMID: 20378317 DOI: 10.1016/j.phymed.2010.02.006
    In a previous communication we showed that atrovirinone, a 1,4-benzoquinone isolated from the roots of Garcinia atroviridis, was able to inhibit several major proinflammatory mediators of inflammation. In this report we show that atrovirinone inhibits NO and PGE(2) synthesis through inhibition of iNOS and COX-2 expression. We also show that atrovirinone inhibits the secretion of IL-1beta and IL-6 in a dose dependent fashion whereas the secretion of IL-10, the anti-inflammatory cytokine, was enhanced. Subsequently we determined that the inhibition of proinflammatory cytokine synthesis and inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation of p38 and ERK1/2. We also showed that atrovirinone prevented phosphorylation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation as demonstrated by expression analysis. We conclude that atrovirinone is a potential anti-inflammatory drug lead that targets both the MAPK and NF-kappaB pathway.
  18. Israf DA, Lajis NH, Somchit MN, Sulaiman MR
    Life Sci, 2004 Jun 11;75(4):397-406.
    PMID: 15147827
    An experiment was conducted with the objective to enhance mucosal immunity against ovalbumin (OVA) by co-administration of OVA with an aqueous extract from the fruit of Solanum torvum (STE). Five groups of female ICR mice aged approximately 8 weeks at the commencement of the experiment were caged in groups of eight and received various treatments. The treatments included OVA alone, OVA with cholera toxin (CT), and OVA with various doses of STE. Mice were primed intraperitoneally with 500 microg of OVA alone or co-administered with 0.1 microg CT, or with 1 microg STE. All mice were boosted orally via gastric intubation 14 days after priming with 10 mg OVA alone, or co-administered with 10 microg CT or with 10 mg, 1 mg or 0.1 mg STE. One week later all mice were killed and organs obtained for analysis of the immune response. Intestinal, faecal and pulmonary OVA-specific sIgA concentration was significantly increased (p<0.05) in mice that received booster combinations of OVA/CT and OVA with all extract doses (p<0.05). Specific serum IgG titres did not differ significantly between groups. It is concluded that STE can significantly enhance secretory immunity in the intestine to OVA with mucosal homing to the lungs. The adjuvant effect of STE is comparable to that of CT.
  19. Israf DA, Khaizurin TA, Syahida A, Lajis NH, Khozirah S
    Mol Immunol, 2007 Feb;44(5):673-9.
    PMID: 16777230
    Cardamonin, a chalcone isolated from the fruits of a local plant Alpinia rafflesiana, has demonstrated anti-inflammatory activity in cellular models of inflammation. In this report, we evaluated the ability of cardamonin to suppress both NO and PGE2 synthesis, iNOS and COX-2 expression and enzymatic activity, and key molecules in the NF-kappaB pathway in order to determine its molecular target. Cardamonin suppressed the production of NO and PGE2 in interferon-gamma (IFN-gamma)- and lipopolysaccharide (LPS)-induced RAW 264.7 cells. This inhibition was demonstrated to be caused by a dose-dependent down-regulation of both inducible enzymes, iNOS and COX-2, without direct effect upon iNOS or COX-2 enzyme activity. Subsequently we determined that the inhibition of inducible enzyme expression was due to a dose-dependent inhibition of phosphorylation and degradation of I-kappaBalpha, which resulted in a reduction of p65NF-kappaB nuclear translocation. We conclude that cardamonin is a potential anti-inflammatory drug lead that targets the NF-kappaB pathway.
  20. Israf DA, Zainal MJ, Ben-Gheshir MA, Rasedee A, Sani RA, Noordin MM
    J Helminthol, 1998 Jun;72(2):143-6.
    PMID: 9687595
    The influence of dietary protein supplementation upon resistance to haemonchosis was examined in Dorsimal (Polled Dorset x Malin) lambs offered two levels of protein. Lambs were offered either a complete basal ruminant diet (15% crude protein (CP)) or the same diet supplemented with fish meal as a source of rumen bypass protein (19% CP). Lambs from each dietary treatment group were given either a 7-week trickle infection with Haemonchus contortus infective larvae (L3) or remained uninfected. All lambs were drenched with anthelmintic at week 8 post-infection (PI), challenged with a single dose of 5000 H. contortus L3 one week later, and killed 14 days post-challenge (PC). Lambs on the supplemented diet that were trickle infected showed a significant reduction in egg output. Supplementation and previous infection did not affect either growth rate, worm burden, worm development or haematological parameters. There was a trend for enhanced growth among supplemented non-infected lambs in comparison to lambs which received the basal ration.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links