Displaying publications 1 - 20 of 73 in total

Abstract:
Sort:
  1. Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, et al.
    Carbohydr Polym, 2014 Jan;99:649-65.
    PMID: 24274556 DOI: 10.1016/j.carbpol.2013.08.069
    Nanofibrillated cellulose from biomass has recently gained attention owing to their biodegradable nature, low density, high mechanical properties, economic value and renewability. Although they still suffer from two major drawbacks. The first challenge is the exploration of raw materials and its application in nanocomposites production. Second one is high energy consumption regarding the mechanical fibrillation. However, pretreatments before mechanical isolation can overcome this problem. Hydrophilic nature of nano-size cellulose fibers restricts good dispersion of these materials in hydrophobic polymers and therefore, leads to lower mechanical properties. Surface modification before or after mechanical defibrillation could be a solution for this problem. Additionally, drying affects the size of nanofibers and its properties which needs to study further. This review focuses on recent developments in pretreatments, nanofibrillated cellulose production and its application in nanopaper applications, coating additives, security papers, food packaging, and surface modifications and also for first time its drying.
  2. Alotaibi MD, Alshammari BA, Saba N, Alothman OY, Sanjay MR, Almutairi Z, et al.
    Int J Biol Macromol, 2019 Aug 15;135:69-76.
    PMID: 31116962 DOI: 10.1016/j.ijbiomac.2019.05.102
    The current study is motivated by the strict environmental regulations regarding the utilization and consumption of ecofriendly materials. In this context, the aim of this study has been to prepare and characterize different date palm tree (Phoenix dactylifera L.) fibers processed through the conventional water retting method. The chemical, elemental, crystallinity, thermal and morphological characterization of trunk (DPTRF), leaf stalk (DPLST), sheath or leaf sheath (DPLSH) and fruit bunch stalk (DPFBS) fibers was carried out. Chemical analysis revealed that the four types of date palm fibers display noteworthy differences in the content of cellulose, hemicellulose and lignin. Also, the amount of calcium is relatively high in all the date palm fibers; besides this, DPTRF exhibited 69.2% crystallinity, which is lower than that of DPLSH with 72.4% crystallinity. Moreover, DPLST and DPFBS fibers are more thermally stable (higher thermal degradation temperature) than DPTRF and DPLSH samples. Morphological analysis revealed that the fracture surface of DPFBS was relatively rougher, which would probably lead to increased bonding strength with polymers in composites. Overall, we conclude that DPFBS would be promising alternative sustainable and biomass material for the isolation of respective cellulose nanofibers and cellulose nanocrystals as potential reinforcement in polymer composites.
  3. Alsafrani AE, Adeosun WA, Marwani HM, Khan I, Jawaid M, Asiri AM, et al.
    Polymers (Basel), 2021 Sep 30;13(19).
    PMID: 34641198 DOI: 10.3390/polym13193383
    A new class of conductive metal-organic framework (MOF), polyaniline- aluminum succinate (PANI@Al-SA) nanocomposite was prepared by oxidative polymerization of aniline monomer using potassium persulfate as an oxidant. Several analytical techniques such as FTIR, FE-SEM, EDX, XRD, XPS and TGA-DTA were utilized to characterize the obtained MOFs nanocomposite. DC electrical conductivity of polymer-MOFs was determined by four probe method. A bare glassy carbon electrode (GCE) was modified by nafion/PANI@Al-SA, and examined for Zn (II) ion detection. Modified electrode showed improved efficiency by 91.9%. The modified electrode (PANI@Al-SA/nafion/GCE) exhibited good catalytic property and highly selectivity towards Zn(II) ion. A linear dynamic range of 2.8-228.6 µM was obtained with detection limit of LOD 0.59 µM and excellent sensitivity of 7.14 µA µM-1 cm-2. The designed procedure for Zn (II) ion detection in real sample exhibited good stability in terms of repeatability, reproducibility and not affected by likely interferents. Therefore, the developed procedure is promising for quantification of Zn(II) ion in real samples.
  4. Asad M, Saba N, Asiri AM, Jawaid M, Indarti E, Wanrosli WD
    Carbohydr Polym, 2018 Jul 01;191:103-111.
    PMID: 29661297 DOI: 10.1016/j.carbpol.2018.03.015
    TEMPO-oxidize nanocellulose (TONC) suspension has been obtained from total chlorine free (TCF) oil palm empty-fruit-bunches (OPEFB) pulp using 4-acetamido-TEMPO (2,2,6,6-tetramethyl piperidin-1-oxyl) mediated oxidation with sodium hypochlorite and sodium bromide in water at 25 °C and pH 10. TONC suspension with varied content from 0.5 to 6% (w/w) reinforced polyvinyl alcohol (PVA) polymer based nanocomposite films were prepared by the casting method. The structural interaction between the TONC and PVA was characterized by the Fourier transform infrared (FT-IR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, X-ray diffraction (XRD) and scanning electron microscopy (SEM). It was found that the 4% (w/w) TONC content reinforced nanocomposite exhibited the highest tensile strength and modulus with an increase of 122% and 291% respectively, compared to PVA while the elongation at break decreased about 42.7%. Thermal stability of PVA based nanocomposite films was improved after incorporation of TONC. Incorporation of TONC in PVA film increases its crystallinity due to strongly linking between the hydroxyl groups of materials however considerable decreases beyond 2 wt% loading are observed. TONC incorporation beyond 2 wt% also reduces the melting temperature peaks and enthalpy of nanocomposite films. FT-IR spectra, NMR and SEM indicate that there is interaction between the TONC and PVA.
  5. Ayu RS, Khalina A, Harmaen AS, Zaman K, Jawaid M, Lee CH
    Polymers (Basel), 2018 Oct 25;10(11).
    PMID: 30961112 DOI: 10.3390/polym10111187
    In this study, polybutylene succinate (PBS) was blended with five types of modified tapioca starch to investigate the effect of modified tapioca starch in PBS blends for food packaging by identifying its properties. Tensile and flexural properties of blends found deteriorated for insertion of starch. This is due to poor interface, higher void contents and hydrolytic degradation of hydrophilic starch. FTIR results show all starch/PBS blends are found with footprints of starch except OH stretching vibration which is absent in B40 blends. Besides, Broad O⁻H absorption in all specimens show that these are hydrogen bonded molecules and no free O⁻H bonding was found. SEM testing shows good interfacial bonding between PBS and starch except E40 blends. Therefore, poor results of E40 blends was expected. In TGA, a slightly weight loss found between 80 to 100 °C due to free water removal. Apart from this, insertion of all types of starch reduces thermal stability of blend. However, high crystallinity of starch/PBS blend observed better thermal stability but lower char yield. Starch A and B blends are suggested to be used as food wrap and food container materials while starch D blend is suitable for grocery plastic bags according to observed results.
  6. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
  7. Aziman N, Jawaid M, Mutalib NAA, Yusof NL, Nadrah AH, Nazatul UK, et al.
    Foods, 2021 Nov 16;10(11).
    PMID: 34829093 DOI: 10.3390/foods10112812
    The function of packaging is crucial in the maintenance of fresh meat product quality. This study aimed to assess the efficiency of six films added with coatings 2379L/220 and 2379L/221 (containing sage extracts) to inhibit Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli, which showed that two of the six films had a significant effect. Additionally, the effects of the films on refrigerated skinless chicken breast meat were evaluated based on microbiological content, colour, weight loss, texture and pH. Four of the six films were examined could extend the storability of refrigerated chicken breast fillets for up to seven days. All six treated films improved the pH, colour stability, weight loss, and texture of the chicken fillets. Therefore, these findings suggested that the coatings containing sage extracts having different viscosities (2379L/220 and 2379L/221) were effective as antimicrobial adhesives in food packaging films and can be commercially applied in prolonging the storage of chicken breast meat without affecting their quality.
  8. Azum N, Jawaid M, Kian LK, Khan A, Alotaibi MM
    Polymers (Basel), 2021 Sep 08;13(18).
    PMID: 34577931 DOI: 10.3390/polym13183030
    Washingtonia is a desert plant with great sustainability and renewability in nature and is abundantly cultivated across global urban regions. Its fibre biomass comprises cellulose as the major structural part, and this is why it can be potentially utilized as an alternative biomaterial for manufacturing microcrystalline cellulose (MCC) products that can be widely applied in industrial fields. In the present study, NaOH-treated Washingtonia fibre (WAKL), NaClO2-treated Washingtonia fibre (WBLH), and Washingtonia microcrystalline cellulose (WMCC) were extracted through combined treatments of alkalization, bleaching, and acidic hydrolysis, respectively. The obtained chemically treated fibre samples were subjected to characterization to investigate their morphology, physico-chemistry, and thermal stability. In a morphological examination, the large bunch WAKL fibre reduced into small size WMCC fibrils, evidencing that the lignin and hemicellulose components were greatly eliminated through chemical dissolution. The elemental composition revealed that almost all impurities of anions and cations had been removed, particularly for the WMCC sample, showing its high purity of cellulose content. Additionally, the WMCC sample could attain at 25% yield, giving it the advantage for feasible economic production. Furthermore, the physicochemical analysis, Fourier Transform Infrared-ray (FTIR), indicated the presence of a crystalline cellulose region within the WMCC structure, which had promoted it with high crystallinity of 72.6% as examined by X-ray diffraction (XRD). As for thermal analysis, WMCC showed greater thermal stability comparing to WAKL and WBLC samples at high temperature. Therefore, Washingtonia fibre can be a reliable biosubstituent to replace other plant material for MCC production in the future.
  9. Bahlouli S, Belaadi A, Makhlouf A, Alshahrani H, Khan MKA, Jawaid M
    Polymers (Basel), 2023 Jun 30;15(13).
    PMID: 37447555 DOI: 10.3390/polym15132910
    In this research work, we aim to study the effect of the incorporation of vegetable fiber reinforcement on the thermo-mechanical and dynamic properties of a composite formed by a polymeric matrix reinforced with cellulosic fibers with the various Washingtonia fiber (WF) loadings (0%, 10%, 20%, and 30% by wt%) as reinforced material in high-density polyethylene (HDPE) Biocomposites to evaluate the optimum fiber loading of biocomposites. In addition, several characterization techniques (i.e., thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), dynamic mechanical analysis (DMA), and thermal mechanical analysis (TMA)) were used to better understand the characteristics of the new composites prepared. With these techniques, we managed to verify the rigidity and thermal stability of the composites so elaborated, as well as the success of the polymer and the structural homogeneity of the obtained biocomposites. Hence, the biocomposite with the best ratio (HDPE/20WF) showed a loss modulus (E″) of 224 MPa, a storage modulus (E') of 2079 MPa, and a damping factor (Tanδ) of 0.270 to the glass transition (Tg) of 145 °C. In addition, thermomechanical analysis (TMA) of the biocomposite samples exhibited marginally higher Ts compared to the HDPE matrix. The best results were recorded with biocomposites with 20% WF, which showed better thermal properties. This composite material can be used as insulation in construction materials (buildings, false ceilings, walls, etc.).
  10. Chee SS, Jawaid M, Alothman OY, Fouad H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513718 DOI: 10.3390/polym13030395
    Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.
  11. Chuo SC, Mohamed SF, Mohd Setapar SH, Ahmad A, Jawaid M, Wani WA, et al.
    Materials (Basel), 2020 Nov 05;13(21).
    PMID: 33167607 DOI: 10.3390/ma13214993
    Nowadays, microbially induced calcium carbonate precipitation (MICP) has received great attention for its potential in construction and geotechnical applications. This technique has been used in biocementation of sand, consolidation of soil, production of self-healing concrete or mortar, and removal of heavy metal ions from water. The products of MICP often have enhanced strength, durability, and self-healing ability. Utilization of the MICP technique can also increase sustainability, especially in the construction industry where a huge portion of the materials used is not sustainable. The presence of bacteria is essential for MICP to occur. Bacteria promote the conversion of suitable compounds into carbonate ions, change the microenvironment to favor precipitation of calcium carbonate, and act as precipitation sites for calcium carbonate crystals. Many bacteria have been discovered and tested for MICP potential. This paper reviews the bacteria used for MICP in some of the most recent studies. Bacteria that can cause MICP include ureolytic bacteria, non-ureolytic bacteria, cyanobacteria, nitrate reducing bacteria, and sulfate reducing bacteria. The most studied bacterium for MICP over the years is Sporosarcina pasteurii. Other bacteria from Bacillus species are also frequently investigated. Several factors that affect MICP performance are bacterial strain, bacterial concentration, nutrient concentration, calcium source concentration, addition of other substances, and methods to distribute bacteria. Several suggestions for future studies such as CO2 sequestration through MICP, cost reduction by using plant or animal wastes as media, and genetic modification of bacteria to enhance MICP have been put forward.
  12. Edhirej A, Sapuan SM, Jawaid M, Zahari NI
    Int J Biol Macromol, 2017 Aug;101:75-83.
    PMID: 28288881 DOI: 10.1016/j.ijbiomac.2017.03.045
    A hybrid composite was prepared from cassava bagasse (CB) and sugar palm fiber (SPF) using casting technique with cassava starch (CS) as matrix and fructose as a plasticizer. Different loadings of SPF (2, 4, 6 and 8% w/w of dry starch) were added to the CS/CB composite film containing 6% CB. The addition of SPF significantly influenced the physical properties. It increased the thickness while decreasing the density, water content, water solubility and water absorption. However, no significant effect was noticed on the thermal properties of the hybrid composite film. The incorporation of SPF increased the relative crystallinity up to 47%, compared to 32% of the CS film. SEM micrographs indicated that the filler was incorporated in the matrix. The film with a higher concentration of SPF (CS-CB/SPF8) showed a more heterogeneous surface. It could be concluded that the incorporation of SPF led to changes in cassava starch film properties, potentially affecting the film performances.
  13. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
  14. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M
    Carbohydr Polym, 2013 Oct 15;98(1):139-45.
    PMID: 23987327 DOI: 10.1016/j.carbpol.2013.05.069
    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.
  15. Hachaichi A, Kouini B, Kian LK, Asim M, Fouad H, Jawaid M, et al.
    Materials (Basel), 2021 Sep 15;14(18).
    PMID: 34576536 DOI: 10.3390/ma14185313
    Date palm fiber (Phoenix dactylifera L.) is a natural biopolymer rich in lignocellulosic components. Its high cellulose content lends them to the extraction of tiny particles like microcrystalline cellulose (MCC) and nanocrystalline cellulose (NCC). These cellulose-derived small size particles can be used as an alternative biomaterial in wide fields of application due to their renewability and sustainability. In the present work, NCC (A) and NCC (B) were isolated from date palm MCC at 60 min and 90 min hydrolysis times, respectively. The isolated NCC product was subjected to characterization to study their properties differences. With the hydrolysis treatment, the yields of produced NCC could be attained at between 22% and 25%. The infrared-ray functional analysis also revealed the isolated NCC possessed a highly exposed cellulose compartment with minimized lignoresidues of lignin and hemicellulose. From morphology evaluation, the nanoparticles' size was decreased gradually from NCC (A) (7.51 nm width, 139.91 nm length) to NCC (B) (4.34 nm width, 111.51 nm length) as a result of fragmentation into cellulose fibrils. The crystallinity index was found increasing from NCC (A) to NCC (B). With 90 min hydrolysis time, NCC (B) showed the highest crystallinity index of 71% due to its great cellulose rigidity. For thermal analysis, NCC (B) also exhibited stable heat resistance, in associating with its highly crystalline cellulose structure. In conclusion, the NCC isolated from date palm MCC would be a promising biomaterial for various applications such as biomedical and food packaging applications.
  16. Hanan F, Jawaid M, Paridah MT, Naveen J
    Polymers (Basel), 2020 Sep 09;12(9).
    PMID: 32916779 DOI: 10.3390/polym12092052
    In this research, the physical, mechanical and morphological properties of oil palm empty fruit bunch (EFB) mat/woven kenaf fabric-reinforced epoxy composites have been investigated. The oil palm EFB/woven kenaf fabrics were varied, with weight ratios of 50/0 (T1), 35/15 (T2), 25/25 (T3), 15/35 (T4) and 0/50 (T5). The composites were fabricated using a simple hand lay-up technique followed by hot pressing. The result obtained shows that an increase in kenaf fiber content exhibited higher tensile and flexural properties. On the other hand, the opposite trend was observed in the impact strength of hybrid composites, where an increase in kenaf fiber content reduced the impact strength. This can be corroborated with the physical properties analysis, where a higher void content, water absorption and thickness swelling were observed for pure oil palm EFB (T1) composites compared to other samples. The scanning electron microscopy analysis results clearly show the different failure modes of the tensile fractured samples. Statistical analysis was performed using one-way ANOVA and shows significant differences between the obtained results.
  17. Hashim UR, Jumahat A, Jawaid M, Dungani R, Alamery S
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33172162 DOI: 10.3390/polym12112621
    This work aims to give insight on the effect of accelerated weathering, i.e., the combination of ultraviolet (UV) exposure and water spraying, on the visual and mechanical properties of basalt fiber reinforced polymer (BFRP) composites. The solvent exchange method, sonication and high shear milling technique were used to prepare the nanocomposite laminates. Three types of laminates were fabricated, i.e., unmodified BFRP, nanosilica modified BFRP and graphene nanoplatelet (GNP) modified BFRP composites with the total fiber loading of 45 wt.%. Glass fiber reinforced polymer (GFRP) laminate was also prepared for performance comparison purposes between the natural and synthetic fibers. The laminates were exposed to UV with a total weathering condition of 504 h using a Quantum-UV accelerated weathering tester. The weathering condition cycle was set at 8 h 60 °C UV exposure and 4 h 50 °C condensation. The discoloration visual inspection on the tested specimen was observed under the optical microscope. The obtained results showed that the UV exposure and water absorption caused severe discoloration of the laminates due to photo-oxidation reaction. The effect of weathering conditions on tensile and flexural properties of unmodified BFRP composites indicated that the UV exposure and water absorption caused reduction by 12% in tensile strength and by 7% in flexural strength. It is also found that the reduction in tensile and flexural properties of nanomodified BFRP composites was smaller than the unmodified system. It concluded from this work, that the mineral based composites (i.e., BFRP) has high potential for structural applications owing to its better properties than synthetic based composites (i.e., GFRP).
  18. Hashim UR, Jumahat A, Jawaid M
    Nanomaterials (Basel), 2021 Jun 01;11(6).
    PMID: 34206085 DOI: 10.3390/nano11061468
    Basalt fibre (BF) is one of the most promising reinforcing natural materials for polymer composites that could replace the usage of glass fibre due to its comparable properties. The aim of adding nanofiller in polymer composites is to enhance the mechanical properties of the composites. In theory, the incorporation of high strength and stiffness nanofiller, namely graphene nanoplatelet (GNP), could create superior composite properties. However, the main challenges of incorporating this nanofiller are its poor dispersion state and aggregation in epoxy due to its high surface area and strong Van der Waals forces in between graphene sheets. In this study, we used one of the effective methods of functionalization to improve graphene's dispersion and also introducing nanosilica filler to enhance platelets shear mechanism. The high dispersive silica nanospheres were introduced in the tactoids morphology of stacked graphene nanosheets in order to produce high shear forces during milling and exfoliate the GNP. The hybrid nanofiller modified epoxy polymers were impregnated into BF to evaluate the mechanical properties of the basalt fibre reinforced polymeric (BFRP) system under tensile, compression, flexural, and drop-weight impact tests. In response to the synergistic effect of zero-dimensional nanosilica and two-dimensional graphene nanoplatelets enhanced the mechanical properties of BFRP, especially in Basalt fibre + 0.2 wt% GNP/15 wt% NS (BF-H0.2) with the highest increment in modulus and strength to compare with unmodified BF. These findings also revealed that the incorporation of hybrid nanofiller contributed to the improvement in the mechanical properties of the composite. BF has huge potential as an alternative to the synthetic glass fibre for the fabrication of mechanical components and structures.
  19. Husain A, Al-Zahrani SA, Al Otaibi A, Khan I, Mujahid Ali Khan M, Alosaimi AM, et al.
    Polymers (Basel), 2021 May 31;13(11).
    PMID: 34073027 DOI: 10.3390/polym13111829
    Polypyrrole (PPy) and polypyrrole/cerium oxide nanocomposite (PPy/CeO2) were prepared by the chemical oxidative method in an aqueous medium using anhydrous ferric chloride (FeCl3) as an oxidant. The successful formulation of materials was confirmed by Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), and transmittance electron microscopy (TEM). A four-in-line probe device was used for studying DC electrical conductivity and ammonia vapor sensing properties of PPy and PPy/CeO2. The significant improvement in both the conductivity and sensing parameters of PPy/CeO2 compared to pristine PPy reveals some synergistic/electronic interaction between PPy and cerium oxide nanoparticles (CeO2 NPs) working at molecular levels. The initial conductivity (i.e., conductivity at room temperature) was found to be 0.152 Scm-1 and 1.295 Scm-1 for PPy and PPy/CeO2, respectively. Also, PPy/CeO2 showed much better conductivity retention than pristine PPy under both the isothermal and cyclic ageing conditions. Ammonia vapor sensing was carried out at different concentration (0.01, 0.03, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5 vol %). The sensing response of PPy/CeO2 varied with varying concentrations. At 0.5 vol % ammonia concentration, the % sensing response of PPy and PPy/CeO2 sensor was found to be 39.1% and 93.4%, respectively. The sensing efficiency of the PPy/CeO2 sensor was also evaluated at 0.4. 0.3, 0.2, 0.1, 0.05, 0.03, and 0.01 vol % ammonia concentration in terms of % sensing response, response/recovery time, reversibility, selectivity as well as stability at room temperature.
  20. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links