Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Rasheed M, Jawaid M, Karim Z, Abdullah LC
    Molecules, 2020 Jun 18;25(12).
    PMID: 32570929 DOI: 10.3390/molecules25122824
    Bamboo fibers are utilized for the production of various structures, building materials, etc. and is of great significance all over the world especially in southeast Asia. In this study, the extraction of microcrystalline cellulose (MCC) was performed using bamboo fibers through acid hydrolysis and subsequently different characterizations were carried out using various advanced techniques. Fourier transform infrared (FTIR) spectroscopy analysis has indicated the removal of lignin from MCC extracted from bamboo pulp. Scanning Electron Microscopy (SEM) revealed rough surface and minor agglomeration of the MCC. Pure MCC, albeit with small quantities of impurities and residues, was obtained, as revealed by Energy Dispersive X-ray (EDX) analysis. X-ray diffraction (XRD) indicates the increase in crystallinity from 62.5% to 82.6%. Furthermore, the isolated MCC has slightly higher crystallinity compared to commercial available MCC (74%). The results of thermal gravimetric analysis (TGA) demonstrate better thermal stability of isolated MCC compared to its starting material (Bamboo fibers). Thus, the isolated MCC might be used as a reinforcing element for the production of green composites and it can also be utilized as a starting material for the production of crystalline nanocellulose in future.
  2. Meraj A, Jawaid M, Singh SP, Nasef MM, Ariffin H, Fouad H, et al.
    Sci Rep, 2024 Apr 15;14(1):8672.
    PMID: 38622317 DOI: 10.1038/s41598-024-59200-6
    Extraction of lignin via green methods is a crucial step in promoting the bioconversion of lignocellulosic biomasses. In the present study, utilisation of natural deep eutectic solvent for the pretreatment of kenaf fibres biomass is performed. Furthermore, extracted lignin from natural deep eutectic solvent pretreated kenaf biomass was carried out and its comparative study with commercial lignin was studied. The extracted lignin was characterized and investigated through Infrared Fourier transform spectroscopy, X-ray Diffraction, thermogravimetric analysis, UV-Vis spectroscopy, and scanning electron microscopy. FTIR Spectra shows that all samples have almost same set of absorption bands with slight difference in frequencies. CHNS analysis of natural deep eutectic solvent pretreated kenaf fibre showed a slight increase in carbon % from 42.36 to 43.17% and an increase in nitrogen % from - 0.0939 to - 0.1377%. Morphological analysis of commercial lignin shows irregular/uneven surfaces whereas natural deep eutectic solvent extracted lignin shows smooth and wavy surface. EDX analysis indicated noticeable peaks for oxygen and carbon elements which are present in lignocellulosic biomass. Thermal properties showed that lignin is constant at higher temperatures due to more branching and production of extremely condensed aromatic structures. In UV-VIS spectroscopy, commercial lignin shows slightly broad peak between 300 and 400 nm due to presence of carbonyl bond whereas, natural deep eutectic solvent extracted lignin does not show up any peak in this range. XRD results showed that the crystallinity index percentage for kenaf and natural deep eutectic solvent treated kenaf was 70.33 and 69.5% respectively. Therefore, these innovative solvents will undoubtedly have significant impact on the development of clean, green, and sustainable products for biocatalysts, extraction, electrochemistry, adsorption applications.
  3. Hashim UR, Jumahat A, Jawaid M, Dungani R, Alamery S
    Polymers (Basel), 2020 Nov 06;12(11).
    PMID: 33172162 DOI: 10.3390/polym12112621
    This work aims to give insight on the effect of accelerated weathering, i.e., the combination of ultraviolet (UV) exposure and water spraying, on the visual and mechanical properties of basalt fiber reinforced polymer (BFRP) composites. The solvent exchange method, sonication and high shear milling technique were used to prepare the nanocomposite laminates. Three types of laminates were fabricated, i.e., unmodified BFRP, nanosilica modified BFRP and graphene nanoplatelet (GNP) modified BFRP composites with the total fiber loading of 45 wt.%. Glass fiber reinforced polymer (GFRP) laminate was also prepared for performance comparison purposes between the natural and synthetic fibers. The laminates were exposed to UV with a total weathering condition of 504 h using a Quantum-UV accelerated weathering tester. The weathering condition cycle was set at 8 h 60 °C UV exposure and 4 h 50 °C condensation. The discoloration visual inspection on the tested specimen was observed under the optical microscope. The obtained results showed that the UV exposure and water absorption caused severe discoloration of the laminates due to photo-oxidation reaction. The effect of weathering conditions on tensile and flexural properties of unmodified BFRP composites indicated that the UV exposure and water absorption caused reduction by 12% in tensile strength and by 7% in flexural strength. It is also found that the reduction in tensile and flexural properties of nanomodified BFRP composites was smaller than the unmodified system. It concluded from this work, that the mineral based composites (i.e., BFRP) has high potential for structural applications owing to its better properties than synthetic based composites (i.e., GFRP).
  4. Aziman N, Kian LK, Jawaid M, Sanny M, Alamery S
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513665 DOI: 10.3390/polym13030391
    The development of antimicrobial film for food packaging application had become the focus for researchers and scientists. This research aims to study the characteristics and antimicrobial activity of novel biofilms made of poly (butylene succinate) (PBS) and tapioca starch (TPS) added with 1.5% or 3% of Biomaster-silver (BM) particle. In morphological examination, the incorporation of 3% BM particle was considerably good in forming well-structured PBS film. Meanwhile, the functional groups analysis revealed the 3% BM particle was effectively interacted with PBS molecular chains. The flame retard behavior of BM metal particle also helped in enhancing the thermal stability for pure PBS and PBS/TPS films. The nucleating effect of BM particles had improved the films crystallinity. Small pore size features with high barrier property for gas permeability was obtained for BM filled PBS/TPS films. From antimicrobial analysis, the BM particles possessed antimicrobial activity against three bacteria Staphylococcus aureus, Escherichia coli, and Salmonella Typhimurium in which PBS/TPS 3% BM film exhibited strong antimicrobial activity against all tested bacteria, however, PBS/TPS 1.5% BM film exhibited strong antimicrobial activity against E. coli only. Hence, the incorporation of BM into PBS/TPS film could be a sustainable way for developing packaging films to preserve food products.
  5. Rasheed M, Jawaid M, Parveez B, Hussain Bhat A, Alamery S
    Polymers (Basel), 2021 Feb 01;13(3).
    PMID: 33535490 DOI: 10.3390/polym13030465
    The present study aims to develop a biodegradable polymer blend that is environmentally friendly and has comparable tensile and thermal properties with synthetic plastics. In this work, microcrystalline cellulose (MCC) extracted from bamboo-chips-reinforced poly (lactic acid) (PLA) and poly (butylene succinate) (PBS) blend composites were fabricated by melt-mixing at 180 °C and then hot pressing at 180 °C. PBS and MCC (0.5, 1, 1.5 wt%) were added to improve the brittle nature of PLA. Field emission scanning electron microscopy (FESEM), scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscope (FTIR), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC)), and universal testing machine were used to analyze morphology, crystallinity, physiochemical, thermal, and tensile properties, respectively. The thermal stability of the PLA-PBS blends enhanced on addition of MCC up to 1wt % due to their uniform dispersion in the polymer matrix. Tensile properties declined on addition of PBS and increased with MCC above (0.5 wt%) however except elongation at break increased on addition of PBS then decreased insignificantly on addition of MCC. Thus, PBS and MCC addition in PLA matrix decreases the brittleness, making it a potential contender that could be considered to replace plastics that are used for food packaging.
  6. Aziman N, Jawaid M, Mutalib NAA, Yusof NL, Nadrah AH, Nazatul UK, et al.
    Foods, 2021 Nov 16;10(11).
    PMID: 34829093 DOI: 10.3390/foods10112812
    The function of packaging is crucial in the maintenance of fresh meat product quality. This study aimed to assess the efficiency of six films added with coatings 2379L/220 and 2379L/221 (containing sage extracts) to inhibit Salmonella typhimurium, Staphylococcus aureus, and Escherichia coli, which showed that two of the six films had a significant effect. Additionally, the effects of the films on refrigerated skinless chicken breast meat were evaluated based on microbiological content, colour, weight loss, texture and pH. Four of the six films were examined could extend the storability of refrigerated chicken breast fillets for up to seven days. All six treated films improved the pH, colour stability, weight loss, and texture of the chicken fillets. Therefore, these findings suggested that the coatings containing sage extracts having different viscosities (2379L/220 and 2379L/221) were effective as antimicrobial adhesives in food packaging films and can be commercially applied in prolonging the storage of chicken breast meat without affecting their quality.
  7. Majeed K, Ahmed A, Abu Bakar MS, Indra Mahlia TM, Saba N, Hassan A, et al.
    Polymers (Basel), 2019 Sep 25;11(10).
    PMID: 31557811 DOI: 10.3390/polym11101557
    In recent years, there has been considerable interest in the use of natural fibers as potential reinforcing fillers in polymer composites despite their hydrophilicity, which limits their widespread commercial application. The present study explored the fabrication of nanocomposites by melt mixing, using an internal mixer followed by a compression molding technique, and incorporating rice husk (RH) as a renewable natural filler, montmorillonite (MMT) nanoclay as water-resistant reinforcing nanoparticles, and polypropylene-grafted maleic anhydride (PP-g-MAH) as a compatibilizing agent. To correlate the effect of MMT delamination and MMT/RH dispersion in the composites, the mechanical and thermal properties of the composites were studied. XRD analysis revealed delamination of MMT platelets due to an increase in their interlayer spacing, and SEM micrographs indicated improved dispersion of the filler(s) from the use of compatibilizers. The mechanical properties were improved by the incorporation of MMT into the PP/RH system and the reinforcing effect was remarkable as a result of the use of compatibilizing agent. Prolonged water exposure of the prepared samples decreased their tensile and flexural properties. Interestingly, the maximum decrease was observed for PP/RH composites and the minimum was for MMT-reinforced and PP-g-MAH-compatibilized PP/RH composites. DSC results revealed an increase in crystallinity with the addition of filler(s), while the melting and crystallization temperatures remained unaltered. TGA revealed that MMT addition and its delamination in the composite systems improved the thermal stability of the developed nanocomposites. Overall, we conclude that MMT nanoclay is an effective water-resistant reinforcing nanoparticle that enhances the durability, mechanical properties, and thermal stability of composites.
  8. Azum N, Jawaid M, Kian LK, Khan A, Alotaibi MM
    Polymers (Basel), 2021 Sep 08;13(18).
    PMID: 34577931 DOI: 10.3390/polym13183030
    Washingtonia is a desert plant with great sustainability and renewability in nature and is abundantly cultivated across global urban regions. Its fibre biomass comprises cellulose as the major structural part, and this is why it can be potentially utilized as an alternative biomaterial for manufacturing microcrystalline cellulose (MCC) products that can be widely applied in industrial fields. In the present study, NaOH-treated Washingtonia fibre (WAKL), NaClO2-treated Washingtonia fibre (WBLH), and Washingtonia microcrystalline cellulose (WMCC) were extracted through combined treatments of alkalization, bleaching, and acidic hydrolysis, respectively. The obtained chemically treated fibre samples were subjected to characterization to investigate their morphology, physico-chemistry, and thermal stability. In a morphological examination, the large bunch WAKL fibre reduced into small size WMCC fibrils, evidencing that the lignin and hemicellulose components were greatly eliminated through chemical dissolution. The elemental composition revealed that almost all impurities of anions and cations had been removed, particularly for the WMCC sample, showing its high purity of cellulose content. Additionally, the WMCC sample could attain at 25% yield, giving it the advantage for feasible economic production. Furthermore, the physicochemical analysis, Fourier Transform Infrared-ray (FTIR), indicated the presence of a crystalline cellulose region within the WMCC structure, which had promoted it with high crystallinity of 72.6% as examined by X-ray diffraction (XRD). As for thermal analysis, WMCC showed greater thermal stability comparing to WAKL and WBLC samples at high temperature. Therefore, Washingtonia fibre can be a reliable biosubstituent to replace other plant material for MCC production in the future.
  9. Kian LK, Jawaid M, Ariffin H, Alothman OY
    Int J Biol Macromol, 2017 Oct;103:931-940.
    PMID: 28549863 DOI: 10.1016/j.ijbiomac.2017.05.135
    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
  10. Khan A, Jawaid M, Kian LK, Khan AAP, Asiri AM
    Polymers (Basel), 2021 Jun 01;13(11).
    PMID: 34206136 DOI: 10.3390/polym13111835
    Conocarpus fiber is a lignocellulosic biomass rich in cellulose potentially used for producing nanocrystalline cellulose (NCC), a biomaterial extensively employed in various application fields. In the present work, different hydrolysis times of 10, 20 and 30 min were applied to chemically pre-treated Conocarpus fiber to produce CPNC1, CPNC2, and CPNC3 particles. With acid hydrolysis treatment, the yield of NCC product was successfully retained at 17-19%. Individual, rod-like shapes of NCC particles could be clearly observed under microscopy examination. From chemical composition analysis, a relatively pure cellulose compartment was produced for all NCC samples with substantial removal of lignin and hemicellulose. The physicochemical analysis proved that each nanoparticle sample possessed strong cellulose crystalline structure. For thermal analyses, the heat resistance of NCCs was gradually enhanced with the increased hydrolysis times. Therefore, the extracted NCC product from Conocarpus fiber could be a green nano-filler for developing nanocomposite material in the future.
  11. Mohd Hawari N, Jawaid M, Md Tahir P, Azmeer RA
    Disabil Rehabil Assist Technol, 2017 Nov;12(8):868-874.
    PMID: 28068847 DOI: 10.1080/17483107.2016.1269209
    The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.
    Study site: Cheras Rehabilitation Hospital in Kuala Lumpur, Perkeso Rehab Center in Melaka, Pusat Latihan dan Perindustrian Bangi and Rumah Insaniah Tun Dr Siti Hasmah Ptaling Jaya in Selangor, Malaysia
  12. Loganathan TM, Hameed Sultan MT, Jawaid M, Ahsan Q, Naveen J, Shah AUM, et al.
    Polymers (Basel), 2021 Oct 08;13(19).
    PMID: 34641263 DOI: 10.3390/polym13193448
    Adequate awareness of sustainable materials and eco-legislation have inspired researchers to identify alternative sustainable and green composites for synthetic fiber-reinforced polymer composites in the automotive and aircraft industries. This research focused on investigating the physical, mechanical, and morphological properties of different hybrid Cyrtostachys renda (CR)/kenaf fiber (K) (10C:0K, 7C:3K, 5C:5K, 3C:7K, 0C:10K) reinforced with 0.5 wt% MWCNT-phenolic composites. We incorporated 0.5 wt% of MWCNT into phenolic resin (powder) using a ball milling process for 25 h to achieve homogeneous distribution. The results revealed that CR fiber composites showed higher voids content (12.23%) than pure kenaf fiber composites (6.57%). CR fiber phenolic composite was more stable to the swelling tendency, resulting in the lowest percentage of swelling rate (4.11%) compared to kenaf composite (5.29%). The addition of kenaf fiber into CR composites had improved the tensile, flexural, and impact properties. The highest tensile and flexural properties were found for weight fraction of CR and kenaf fiber at 5C:5K (47.96 MPa) and 3C:7K (90.89 MPa) composites, respectively. In contrast, the highest impact properties were obtained for 0C:10K composites (9.56 kJ/m2). Based on the FE-SEM image, the CR fiber lumen was larger in comparison to kenaf fiber. The lumen of CR fiber was attributed to higher void and water absorption, lower mechanical properties compared to kenaf fiber. 5C:5K composite was selected as an optimal hybrid composite, based on the TOPSIS method. This hybrid composite can be used as an interior component (non-load-bearing structures) in the aviation and automotive sectors.
  13. Loganathan TM, Sultan MTH, Ahsan Q, Jawaid M, Naveen J, Shah AUM, et al.
    J Therm Anal Calorim, 2022;147(24):14079-14096.
    PMID: 36093037 DOI: 10.1007/s10973-022-11557-4
    Natural fibers have emerged as a potential alternate to synthetic fibers, because of their excellent performance, biodegradability, renewability and sustainability. This research has focused on investigating the thermal, visco-elastic and fire-retardant properties of different hybrid Cytostachys Renda (CR)/kenaf fiber (K) (50/0; 35/ 15, 25/25, 15/ 35, 0/50)-reinforced MWCNT (multi-walled carbon nanotubes)-modified phenolic composites. The mass% of MWCNT-modified phenolic resin was maintained 50 mass% including 0.5 mass% of MWCNT. In order to achieve homogeneous dispersion ball milling process was employed to incorporate the MWCNT into phenolic resin (powder). Thermal results from thermogravimetric analysis and differential scanning calorimetric analysis revealed that the hybrid composites (35/15; 35 mass% CR and 15 mass% K) showed higher thermal stability among the composite samples. Visco-elastic results revealed that kenaf fiber-based MWCNT-modified composites (0/50; 0 mass% CR and 50 mass% K) exhibited higher storage and loss modulus due to high modulus kenaf fiber. Fire-retardant analysis (UL-94) showed that all the composite samples met H-B self-extinguishing rating and exhibited slow burning rate according to limiting oxygen index (LOI) test. However, (15/35; 15 mass% CR and 35 mass% K) hybrid composites showed the highest time to ignition, highest fire performance index, lowest total heat release rate, average mass loss rate, average fire growth rate index and maximum average rate of heat emission. Moreover, the smoke density of all hybrid composites was found to be less than 200 which meets the federal aviation regulations (FAR) 25.853d standard. Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) was carried out to select an optimal composite sample considering the thermal, visco-elastic and fire-retardant behaviors. Through TOPSIS analysis, the hybrid (15/35; 15 mass% CR and 35 mass% K) composite sample has been selected as an optimal composite which can be used for high-temperature aircraft and automotive applications.
  14. Sapiai N, Jumahat A, Jawaid M, Abu MZ, Chalid M
    Polymers (Basel), 2021 Sep 08;13(18).
    PMID: 34577933 DOI: 10.3390/polym13183032
    The granite processing industry generates large amounts of bottom granite dust waste every day. After the drying and heating process of concrete mixture production, the granite dust is blown and collected in the filtering nozzle. This very fine particle granite dry fly dust, with a particle size maximum distribution of 500 μm, can easily be blown away by wind and cause serious environmental impacts. The use of this waste material would be an effective way to reduce such impacts. Therefore, this paper presents an experimental study on the potential of granite dust as a filler in enhancing the mechanical performance of a hybrid basalt/glass (WB/GCSM) composite. The unhole and open hole tensile (UHT and OHT) properties, low velocity impact (LVI) properties, quasi-static indentations (QSI) properties, flexural properties, interlaminar shear stress (ILSS) properties, and morphology of the developed WB/GCSM composites were evaluated. To meet the objective of this study, composite specimens were produced using 1.5-60 μm granite fly dust at three (3) different loadings (1, 3 and 5 wt%). This granite fly dust was incorporated into polyurethane resin using a mechanical stirring technique. The production of FRP laminates then completed using a hand lay-up and vacuum bagging technique. Four types of the WB/GCSM composites systems, i.e., [WB/GCSM], [WB/GCSM/1GD], [WB/GCSM/3GD] and [WB/GCSM/5GD] were fabricated and compared. The analysis results for the mechanical tests revealed that the incorporation of granite dust of up to 3 wt% had increased the UHT, OHT, LVI, QSI, flexural and ILSS properties of all WB/GCSM composites systems. Higher levels of damage tolerance in UHT and OHT tests, and increased ductility index in the LVI test were obtained when granite dust was added up to 5 wt%. However, a remarkable improvement in all mechanical properties was noticed for [WB/GCSM/1GD], which recorded the highest mechanical performance among all WB/GCSM composite systems.
  15. Kian LK, Saba N, Jawaid M, Fouad H
    Int J Biol Macromol, 2020 Aug 01;156:347-353.
    PMID: 32278601 DOI: 10.1016/j.ijbiomac.2020.04.015
    Olive fiber is a renewable natural fiber which has potential as an alternative biomass for extraction of microcrystalline cellulose (MCC). MCC has been widely applied in various industries owing to its small dimensional size for ease of reactive fabrication process. At present study, a serial treatments of bleaching, alkaline and acid hydrolysis was employed to extract OL-BLF, OL-PUF, and OL-MCC respectively from olive stem fiber. In morphology examination, a feature of short micro-crystallite particles was obtained for OL-MCC. The particle size was found gradually reducing from OL-PUF (305.31 μm) to OL-MCC (156.06 μm) due to the disintegration of cellulose fibrils. From physicochemical analysis, most lignin and hemicellulose components had been removed from OL-BLF to form OL-PUF with individually fibril structure. The elemental analysis revealed that highly pure cellulose component was obtained for OL-MCC. Also, the rigidity had been improved from OL-BLF to OL-PUF, while with the highest for OL-MCC with 74.2% crystallinity, endowing it as a reliable load-bearing agent. As for thermal analysis, OL-MCC had the most stable heat resistance in among the chemically-treated fibers. Therefore, olive MCC could act as a promising reinforcing agent to withstand harsh conditions for variety fields of composite applications.
  16. Kian LK, Saba N, Jawaid M, Alothman OY, Fouad H
    Carbohydr Polym, 2020 Aug 01;241:116423.
    PMID: 32507177 DOI: 10.1016/j.carbpol.2020.116423
    Olive fiber is a sustainable material as well as alternative biomass for extraction of nanocrystalline cellulose (NCC), which has been widely applied in various industries. In the present study, ONC-I, ONC-II, and ONC-III were extracted from olive stem fiber at different hydrolysis reaction times of 30 min, 45 min, and 60 min, respectively. The nanoparticle size was found gradually reducing from ONC-I (11.35 nm width, 168.28 nm length) to ONC-III (6.92 nm width, 124.16 nm length) due to the disintegration of cellulose fibrils. ONC-II and ONC-III possessed highly pure cellulose compartments and enhanced crystals structure. This study also showed that rigidity increased from ONC-I to ONC-II. ONC-III showed the highest crystallinity of 83.1 %, endowing it as a potentially reliable load-bearing agent. Moreover, ONC-III exhibited highest stable heat resistance among the chemically-isolated nanocellulose. We concluded that olive NCC could be promising materials for a variety of industrial applications in various fields.
  17. Chee SS, Jawaid M, Alothman OY, Fouad H
    Polymers (Basel), 2021 Jan 27;13(3).
    PMID: 33513718 DOI: 10.3390/polym13030395
    Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.
  18. Zahra Dashtizadeh, Abdan, K., Jawaid, M., Mohd Asim Khan, Mohammad Behmanesh, Masoud Dashtizadeh, et al.
    MyJurnal
    Environmental issues have motivated researchers to replace synthetic fibres with natural fibres in the
    fabrication of polymer composites. However, natural fibres demonstrate weak mechanical or thermal
    properties which limit their different applications. Researchers have suggested fabrication of hybrid
    composites in order to improve the mechanical and thermal properties of natural fibre-based composites.
    Hybrid composites are made up by two or more fibres in one matrix or two polymer blends and with
    one natural fibre reinforcement. By hybridising one
    natural fibre with another natural fibre/synthetic
    fibre in one matrix, the resulting composite is a
    unique product (hybrid composites) that displays
    better mechanical and thermal properties in
    comparison with individual fibre-reinforced
    polymer composites. The advantages of developing
    hybrid composites are that they are more reliable
    for different applications and more environmental
    friendly. In this review paper, we present some
    recently published works related to mechanical
    and thermal properties of natural/natural fibres, and
    natural/synthetic fibre-based hybrid composites. Hybrid composites are one of the emerging fields in material science which has attracted attention for
    their different engineering applications.
  19. Fouad H, Kian LK, Jawaid M, Alotaibi MD, Alothman OY, Hashem M
    Polymers (Basel), 2020 Dec 07;12(12).
    PMID: 33297332 DOI: 10.3390/polym12122926
    Conocarpus fiber is an abundantly available and sustainable cellulosic biomass. With its richness in cellulose content, it is potentially used for manufacturing microcrystalline cellulose (MCC), a cellulose derivative product with versatile industrial applications. In this work, different samples of bleached fiber (CPBLH), alkali-treated fiber (CPAKL), and acid-treated fiber (CPMCC) were produced from Conocarpus through integrated chemical process of bleaching, alkaline cooking, and acid hydrolysis, respectively. Characterizations of samples were carried out with Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Fourier Transform Infrared-Ray (FTIR), X-ray Diffraction (XRD), Thermogravimetric (TGA), and Differential Scanning Calorimetry (DSC). From morphology study, the bundle fiber feature of CPBLH disintegrated into micro-size fibrils of CPMCC, showing the amorphous compounds were substantially removed through chemical depolymerization. Meanwhile, the elemental analysis also proved that the traces of impurities such as cations and anions were successfully eliminated from CPMCC. The CPMCC also gave a considerably high yield of 27%, which endowed it with great sustainability in acting as alternative biomass for MCC production. Physicochemical analysis revealed the existence of crystalline cellulose domain in CPMCC had contributed it 75.7% crystallinity. In thermal analysis, CPMCC had stable decomposition behavior comparing to CPBLH and CPAKL fibers. Therefore, Conocarpus fiber could be a promising candidate for extracting MCC with excellent properties in the future.
  20. Ismail AS, Jawaid M, Hamid NH, Yahaya R, Hassan A
    Molecules, 2021 Feb 03;26(4).
    PMID: 33546097 DOI: 10.3390/molecules26040773
    Polymer blends is a well-established and suitable method to produced new polymeric materials as compared to synthesis of a new polymer. The combination of two different types of polymers will produce a new and unique material, which has the attribute of both polymers. The aim of this work is to analyze mechanical and morphological properties of bio-phenolic/epoxy polymer blends to find the best formulation for future study. Bio-phenolic/epoxy polymer blends were fabricated using the hand lay-up method at different loading of bio-phenolic (5 wt%, 10 wt%, 15 wt%, 20 wt%, and 25 wt%) in the epoxy matrix whereas neat bio-phenolic and epoxy samples were also fabricated for comparison. Results indicated that mechanical properties were improved for bio-phenolic/epoxy polymer blends compared to neat epoxy and phenolic. In addition, there is no sign of phase separation in polymer blends. The highest tensile, flexural, and impact strength was shown by P-20(biophenolic-20 wt% and Epoxy-80 wt%) whereas P-25 (biophenolic-25 wt% and Epoxy-75 wt%) has the highest tensile and flexural modulus. Based on the finding, it is concluded that P-20 shows better overall mechanical properties among the polymer blends. Based on this finding, the bio-phenolic/epoxy blend with 20 wt% will be used for further study on flax-reinforced bio-phenolic/epoxy polymer blends.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links