Displaying publications 1 - 20 of 74 in total

Abstract:
Sort:
  1. Mohamad Haafiz MK, Eichhorn SJ, Hassan A, Jawaid M
    Carbohydr Polym, 2013 Apr 2;93(2):628-34.
    PMID: 23499105 DOI: 10.1016/j.carbpol.2013.01.035
    In this work, we successfully isolated microcrystalline cellulose (MCC) from oil palm empty fruit bunch (OPEFB) fiber-total chlorine free (TCF) pulp using acid hydrolysis method. TCF pulp bleaching carried out using an oxygen-ozone-hydrogen peroxide bleaching sequence. Fourier transform infrared (FT-IR) spectroscopy indicates that acid hydrolysis does not affect the chemical structure of the cellulosic fragments. The morphology of the hydrolyzed MCC was investigated using scanning electron microscopy (SEM), showing a compact structure and a rough surface. Furthermore, atomic force microscopy (AFM) image of the surface indicates the presence of spherical features. X-ray diffraction (XRD) shows that the MCC produced is a cellulose-I polymorph, with 87% crystallinity. The MCC obtained from OPEFB-pulp is shown to have a good thermal stability. The potential for a range of applications such as green nano biocomposites reinforced with this form of MCC and pharmaceutical tableting material is discussed.
  2. Haafiz MK, Hassan A, Zakaria Z, Inuwa IM, Islam MS, Jawaid M
    Carbohydr Polym, 2013 Oct 15;98(1):139-45.
    PMID: 23987327 DOI: 10.1016/j.carbpol.2013.05.069
    In this work, polylactic acid (PLA) composites filled with microcrystalline cellulose (MCC) from oil palm biomass were successfully prepared through solution casting. Fourier transform infrared (FT-IR) spectroscopy indicates that there are no significant changes in the peak positions, suggesting that incorporation of MCC in PLA did not result in any significant change in chemical structure of PLA. Thermogravimetric analysis was conducted on the samples. The T50 decomposition temperature improved with addition of MCC, showing increase in thermal stability of the composites. The synthesized composites were characterized in terms of tensile properties. The Young's modulus increased by about 30%, while the tensile strength and elongation at break for composites decreased with addition of MCC. Scanning electron microscopy (SEM) of the composites fractured surface shows that the MCC remained as aggregates of crystalline cellulose. Atomic force microscopy (AFM) topographic image of the composite surfaces show clustering of MCC with uneven distribution.
  3. Namvar F, Tahir PM, Mohamad R, Mahdavi M, Abedi P, Najafi TF, et al.
    Nat Prod Commun, 2013 Dec;8(12):1811-20.
    PMID: 24555303
    This review article summarizes in vitro and in vivo experiments on seaweed anticancer activity and seaweed chemical components. Seaweed use in cancer therapy, chemopreventive randomized control trials (RCTs) and quasi-experiments are discussed. The literature reviewed in this article was obtained from various scientific sources and encompasses publications from 2000-2012. Seaweed therapeutic effects were deemed scientifically plausible and may be partially explained by the in vivo and in vitro pharmacological studies described. Although the mechanisms of action remain unclear, seaweed's anticancer properties may be attributable to its major biologically active metabolites. Much of the seaweed research outlined in this paper can serve as a foundation for explaining seaweed anticancer bioactivity. This review will open doors for developing strategies to treat malignancies using seaweed natural products.
  4. Abdul Khalil HP, Davoudpour Y, Islam MN, Mustapha A, Sudesh K, Dungani R, et al.
    Carbohydr Polym, 2014 Jan;99:649-65.
    PMID: 24274556 DOI: 10.1016/j.carbpol.2013.08.069
    Nanofibrillated cellulose from biomass has recently gained attention owing to their biodegradable nature, low density, high mechanical properties, economic value and renewability. Although they still suffer from two major drawbacks. The first challenge is the exploration of raw materials and its application in nanocomposites production. Second one is high energy consumption regarding the mechanical fibrillation. However, pretreatments before mechanical isolation can overcome this problem. Hydrophilic nature of nano-size cellulose fibers restricts good dispersion of these materials in hydrophobic polymers and therefore, leads to lower mechanical properties. Surface modification before or after mechanical defibrillation could be a solution for this problem. Additionally, drying affects the size of nanofibers and its properties which needs to study further. This review focuses on recent developments in pretreatments, nanofibrillated cellulose production and its application in nanopaper applications, coating additives, security papers, food packaging, and surface modifications and also for first time its drying.
  5. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    J Food Sci Technol, 2016 Jan;53(1):326-36.
    PMID: 26787952 DOI: 10.1007/s13197-015-2009-7
    In this study, sugar palm starch (SPS) films were developed using glycerol (G), sorbitol (S) or their combination (GS) as plasticizers at the ratio of 15, 30 and 45 (wt)% using casting technique. The addition of plasticizers to SPS film-forming solutions helped to overcome the brittle and fragile nature of unplasticized SPS films. Increased plasticizer concentration resulted to an increase in film thickness, moisture content and solubility. On the contrary, density and water absorption of plasticized films decreased with increasing plasticizer concentration. Raising the plasticizer content from 15 to 45 % showed less effect on the moisture content and water absorption of S-plasticized films. Films containing glycerol and glycerol-sorbitol plasticizer (G, and GS) demonstrated higher moisture content, solubility and water absorption capacity compared to S-plasticized films. The results obtained in this study showed that plasticizer type and concentration significantly improves film properties and enhances their suitability for food packaging applications.
  6. Sanyang ML, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Carbohydr Polym, 2016 08 01;146:36-45.
    PMID: 27112848 DOI: 10.1016/j.carbpol.2016.03.051
    The development and characterization of environmentally friendly bilayer films from sugar palm starch (SPS) and poly(lactic acid) (PLA) were conducted in this study. The SPS-PLA bilayer films and their individual components were characterized for their physical, mechanical, thermal and water barrier properties. Addition of 50% PLA layer onto 50% SPS layer (SPS50-PLA50) increased the tensile strength of neat SPS film from 7.74 to 13.65MPa but reduced their elongation at break from 46.66 to 15.53%. The incorporation of PLA layer significantly reduced the water vapor permeability as well as the water uptake and solubility of bilayer films which was attributed to the hydrophobic characteristic of the PLA layer. Furthermore, scanning electron microscopy (SEM) image of SPS50-PLA50 revealed lack of strong interfacial adhesion between the SPS and PLA. Overall, the incorporation of PLA layer onto SPS films enhances the suitability of SPS based films for food packaging.
  7. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2016 Aug;89:575-81.
    PMID: 27177458 DOI: 10.1016/j.ijbiomac.2016.05.028
    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.
  8. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Feb;95:1064-1071.
    PMID: 27984140 DOI: 10.1016/j.ijbiomac.2016.09.114
    In the present work, copper nanoparticles (CuNPs) were in situ generated inside cellulose matrix using Terminalia catappa leaf extract as a reducing agent. During this process, some CuNPs were also formed outside the matrix. The CuNPs formed outside the matrix were observed with transmission electron microscope (TEM) and scanning electron microscope (SEM). Majority of the CuNPs formed outside the matrix were in the size range of 21-30nm. The cellulose/CuNP composite films were characterized by Fourier transform infrared spectroscopic, X-Ray diffraction and thermogravimetric techniques. The crystallinity of the cellulose/CuNP composite films was found to be lower than that of the matrix indicating rearrangement of cellulose molecules by in situ generated CuNPs. Further, the expanded diffractogram of the composite films indicated the presence of a mixture of Cu, CuO and Cu2O nanoparticles. The thermal stability of the composites was found to be lower than that of the composites upto 350°C beyond which a reverse trend was observed. This was attributed to the catalytic behaviour of CuNPs for early degradation of the composites. The composite films possessed sufficient tensile strength which can replace polymer packaging films like polyethylene. Further, the cellulose/CuNP composite films exhibited good antibacterial activity against E.coli bacteria.
  9. Saba N, Mohammad F, Pervaiz M, Jawaid M, Alothman OY, Sain M
    Int J Biol Macromol, 2017 Apr;97:190-200.
    PMID: 28082223 DOI: 10.1016/j.ijbiomac.2017.01.029
    Present study, deals about isolation and characterization of cellulose nanofibers (CNFs) from the Northern Bleached Softwood Kraft (NBSK) pulp, fabrication by hand lay-up technique and characterization of fabricated epoxy nanocomposites at different filler loadings (0.5%, 0.75%, 1% by wt.). The effect of CNFs loading on mechanical (tensile, impact and flexural), morphological (scanning electron microscope and transmission electron microscope) and structural (XRD and FTIR) properties of epoxy composites were investigated. FTIR analysis confirms the introduction of CNFs into the epoxy matrix while no considerable change in the crystallinity and diffraction peaks of epoxy composites were observed by the XRD patterns. Additions of CNFs considerably enhance the mechanical properties of epoxy composites but a remarkable improvement is observed for 0.75% CNFs as compared to the rest epoxy nanocomposites. In addition, the electron micrographs revealed the perfect distribution and dispersion of CNFs in the epoxy matrix for the 0.75% CNFs/epoxy nanocomposites, while the existence of voids and agglomerations were observed beyond 0.75% CNFs filler loadings. Overall results analysis clearly revealed that the 0.75% CNFs filler loading is best and effective with respect to rest to enhance the mechanical and structural properties of the epoxy composites.
  10. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Apr;97:606-615.
    PMID: 28109810 DOI: 10.1016/j.ijbiomac.2017.01.079
    The aim of this research is to investigate the effect of sugar palm fibre (SPF) on the mechanical, thermal and physical properties of seaweed/thermoplastic sugar palm starch agar (TPSA) composites. Hybridized seaweed/SPF filler at weight ratio of 25:75, 50:50 and 75:25 were prepared using TPSA as a matrix. Mechanical, thermal and physical properties of hybrid composites were carried out. Obtained results indicated that hybrid composites display improved tensile and flexural properties accompanied with lower impact resistance. The highest tensile (17.74MPa) and flexural strength (31.24MPa) was obtained from hybrid composite with 50:50 ratio of seaweed/SPF. Good fibre-matrix bonding was evident in the scanning electron microscopy (SEM) micrograph of the hybrid composites' tensile fracture. Fourier transform infrared spectroscopy (FT-IR) analysis showed increase in intermolecular hydrogen bonding following the addition of SPF. Thermal stability of hybrid composites was enhanced, indicated by a higher onset degradation temperature (259°C) for 25:75 seaweed/SPF composites than the individual seaweed composites (253°C). Water absorption, thickness swelling, water solubility, and soil burial tests showed higher water and biodegradation resistance of the hybrid composites. Overall, the hybridization of SPF with seaweed/TPSA composites enhances the properties of the biocomposites for short-life application; that is, disposable tray, plate, etc.
  11. Jumaidin R, Sapuan SM, Jawaid M, Ishak MR, Sahari J
    Int J Biol Macromol, 2017 Jun;99:265-273.
    PMID: 28249765 DOI: 10.1016/j.ijbiomac.2017.02.092
    The aim of this paper is to investigate the characteristics of thermoplastic sugar palm starch/agar (TPSA) blend containing Eucheuma cottonii seaweed waste as biofiller. The composites were prepared by melt-mixing and hot pressing at 140°C for 10min. The TPSA/seaweed composites were characterized for their mechanical, thermal and biodegradation properties. Incorporation of seaweed from 0 to 40wt.% has significantly improved the tensile, flexural, and impact properties of the TPSA/seaweed composites. Scanning electron micrograph of the tensile fracture showed homogeneous surface with formation of cleavage plane. It is also evident from TGA results that thermal stability of the composites were enhanced with addition of seaweed. After soil burial for 2 and 4 weeks, the biodegradation of the composites was enhanced with addition of seaweed. Overall, the incorporation of seaweed into TPSA enhances the properties of TPSA for short-life product application such as tray, plate, etc.
  12. Sivaranjana P, Nagarajan ER, Rajini N, Jawaid M, Rajulu AV
    Int J Biol Macromol, 2017 Jun;99:223-232.
    PMID: 28237574 DOI: 10.1016/j.ijbiomac.2017.02.070
    Cotton linters were dissolved in aq. (8% LiOH+15% urea) that was pre-cooled to -12.5°C. Using this solution cellulose gel films were prepared by regeneration method with ethyl alcohol as a coagulant. These wet films were diffused with 10wt% Cassia alata leaf extract that acted as a reducing agent. The leaf extract diffused cellulose wet films were used as the matrix. The wet matrix films were dipped individually in lower concentrated 1-5mM aq.AgNO3 source solutions in the presence of sunlight and allowed the solutions to react with the diffused leaf extract reducing agent which in situ generated the silver nanoparticles (AgNPs) inside the films as well as in the source solution. The AgNPs formed in the source solution were observed by transmission electron microscope (TEM) and scanning electron microscope (SEM) while those formed in situ the films were observed by SEM and the particle size distribution was determined. The cellulose/AgNP composite films showed good antibacterial activity against Escherichia coli bacteria. These nanocomposite films were also characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), thermogravimetric analysis (TGA) and tensile tests. At temperatures below 300°C, the thermal stability of the nanocomposite films was lower than that of the matrix due to the catalytic effect of AgNPs. The nanocomposite films also possessed good tensile properties. The ecofriendly cellulose/AgNP composite films with good antibacterial activity and tensile properties can be considered for medical applications like dressing materials.
  13. Rahman MR, Hamdan S, Lai JCH, Jawaid M, Yusof FABM
    Heliyon, 2017 Jul;3(7):e00342.
    PMID: 28725868 DOI: 10.1016/j.heliyon.2017.e00342
    In this study, the physical, morphological, mechanical and thermal properties of furfuryl alcohol/2-ethylhexyl methacrylate/halloysite nanoclay wood polymer nanocomposites (FA-co-EHMA-HNC WPNCs) were investigated. FA-co-EHMA-HNC WPNCs were prepared via an impregnation method and the properties of the nanocomposites were characterized through the weight percent gain, Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), three-point flexural test, dynamic mechanical thermal analysis (DMTA), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC) analysis and moisture absorption test. The weight percent gain in the 50:50 FA-co-EHMA-HNC WPNC was the highest compared with the raw wood (RW) and other WPNCs. The FT-IR results confirmed that polymerization took place in the nanocomposites, especially 50:50 FA-co-EHMA-HNC WPNC, which had a reduced amount of hydroxyl groups. The SEM results revealed that the 50:50 FA-co-EHMA-HNC WPNC had the smoothest and most uniform surface among all of the nanocomposites. The 50:50 FA-co-EHMA-HNC WPNC showed the highest flexural strength and modulus of elasticity. The results revealed that the storage modulus and loss modulus of the FA-co-EHMA-HNC WPNCs were higher and the tan δ of FA-co-EHMA-HNC WNPCs was lower compared with the RW. The FA-co-EHMA-HNC WPNCs exhibited the higher thermal stability in the TGA and DSC analysis. The 50:50 FA-co-EHMA-HNC WPNC exhibited remarkably lower moisture absorption compared with the RW. Overall, this study proved that the ratio 50:50 FA-co-EHMA ratio was the most suitable for introduction in the in the RW.
  14. Edhirej A, Sapuan SM, Jawaid M, Zahari NI
    Int J Biol Macromol, 2017 Aug;101:75-83.
    PMID: 28288881 DOI: 10.1016/j.ijbiomac.2017.03.045
    A hybrid composite was prepared from cassava bagasse (CB) and sugar palm fiber (SPF) using casting technique with cassava starch (CS) as matrix and fructose as a plasticizer. Different loadings of SPF (2, 4, 6 and 8% w/w of dry starch) were added to the CS/CB composite film containing 6% CB. The addition of SPF significantly influenced the physical properties. It increased the thickness while decreasing the density, water content, water solubility and water absorption. However, no significant effect was noticed on the thermal properties of the hybrid composite film. The incorporation of SPF increased the relative crystallinity up to 47%, compared to 32% of the CS film. SEM micrographs indicated that the filler was incorporated in the matrix. The film with a higher concentration of SPF (CS-CB/SPF8) showed a more heterogeneous surface. It could be concluded that the incorporation of SPF led to changes in cassava starch film properties, potentially affecting the film performances.
  15. Saba N, Safwan A, Sanyang ML, Mohammad F, Pervaiz M, Jawaid M, et al.
    Int J Biol Macromol, 2017 Sep;102:822-828.
    PMID: 28455253 DOI: 10.1016/j.ijbiomac.2017.04.074
    The current study presents about the effect of cellulose nanofibers (CNFs) filler on the thermal and dynamic mechanical analysis (DMA) of epoxy composites as a function of temperature. In this study hand lay-up method was used to fabricate CNF reinforced Epoxy nanocomposites with CNF loading of 0.5%, 0.75%, and 1% into epoxy resin. The obtained thermal and DMA results illustrates that thermal stability, char content, storage modulus (E'), loss modulus (E") and glass transition temperature (Tg) increases for all CNF/epoxy nanocomposites compared to the pure epoxy. Thermal results revealed that 0.75% offers superior resistance or stability towards heat compared to its counterparts. In addition, 0.75% CNF/epoxy nanocomposites confers highest value of storage modulus as compared to 0.5% and 1% filler loading. Hence, it is concluded that 0.75% CNFs loading is the minimal to enhance both thermal and dynamic mechanical properties of the epoxy composites and can be utilized for advance material applications where thermal stability along with renewability are prime requirements.
  16. Kian LK, Jawaid M, Ariffin H, Alothman OY
    Int J Biol Macromol, 2017 Oct;103:931-940.
    PMID: 28549863 DOI: 10.1016/j.ijbiomac.2017.05.135
    In this study, microcrystalline cellulose (MCC) was extracted from roselle fiber through acid hydrolysis treatment and its properties were compared with those of commercially available MCC. The physicochemical and morphological characteristics, elemental composition, size distribution, crystallinity and thermal properties of the obtained MCC were analyzed in this work. Fourier transform infrared spectroscopy (FTIR) analysis provided clear evidence that the characteristic peak of lignin was absent in the spectrum of the MCC prepared from roselle fiber. Rough surface and slight aggregation of MCC were observed by scanning electron microscopy (SEM). Energy dispersive X-ray (EDX) analysis showed that pure MCC with small quantities of residues and impurities was obtained, with a similar elemental composition to that of commercial MCC. A mean diameter of approximately 44.28μm was measured for MCC by using a particle size analyzer (PSA). X-ray diffraction (XRD) showed the crystallinity increased from 63% in roselle pulp to 78% in roselle MCC, the latter having a slightly higher crystallinity than that of commercial MCC (74%). TGA and DSC results indicated that the roselle MCC had better thermal stability than the roselle pulp, whereas it had poorer thermal stability in comparison with commercial MCC. Thus, the isolated MCC from roselle fibers will be going to use as reinforcing element in green composites and may be a precursor for future roselle derived nanocellulose, and thus a promising subject in nanocomposite research.
  17. Mohd Hawari N, Jawaid M, Md Tahir P, Azmeer RA
    Disabil Rehabil Assist Technol, 2017 Nov;12(8):868-874.
    PMID: 28068847 DOI: 10.1080/17483107.2016.1269209
    The aim of this case study was to explore patient satisfaction with the quality of prosthetic leg sockets intended for persons with lower limb amputations. A qualitative study based on in-depth interviews, preceded by a questionnaire session, was carried out with patients from the Rehabilitation Center and Hospital in Malaysia. Twelve out-patient and in-patient amputees with lower limb amputations, specifically below-knee amputations, were chosen randomly. The analysis of patients' narratives aimed to identify the functional and esthetic characteristics of currently used prosthetic leg sockets and any problems related to them. The obtained results indicated that out of the 12 participants, 41.7% and 25% were satisfied and somewhat satisfied with their current prosthetic sockets. Durability and comfort were rated by the participants as the most important characteristics of prosthetic sockets, with 83.3%. As regards the esthetic appearance of the socket, 66.7% of the respondents considered that the most important feature was the material from which the socket was fabricated. Thus, we conclude that current satisfaction levels with the quality of prosthetic sockets among amputees in Malaysia are suitable, prosthesis being preferred by many amputees. The results can be used to direct future research on cosmesis and functionality of prosthetic socket design. Implications for Rehabilitation Case study will help participants to get cost effective prosthetic leg socket. Develop prosthetic leg socket comfortable as comparative to existing one. Help Malaysian government to make policy to develop local prosthetic leg socket at affordable price.
    Study site: Cheras Rehabilitation Hospital in Kuala Lumpur, Perkeso Rehab Center in Melaka, Pusat Latihan dan Perindustrian Bangi and Rumah Insaniah Tun Dr Siti Hasmah Ptaling Jaya in Selangor, Malaysia
  18. Thiagamani SMK, Nagarajan R, Jawaid M, Anumakonda V, Siengchin S
    Waste Manag, 2017 Nov;69:445-454.
    PMID: 28774586 DOI: 10.1016/j.wasman.2017.07.035
    As the annual production of the solid waste generable in the form of spent coffee bean powder (SCBP) is over 6 million tons, its utilization in the generation of green energy, waste water treatment and as a filler in biocomposites is desirable. The objective of this article is to analyze the possibilities to valorize coffee bean powder as a filler in cellulose matrix. Cellulose matrix was dissolved in the relatively safer aqueous solution mixture (8% LiOH and 15% Urea) precooled to -12.5°C. To the cellulose solution (SCBP) was added in 5-25wt% and the composite films were prepared by regeneration method using ethyl alcohol as a coagulant. Some SCBP was treated with aq. 5% NaOH and the composite films were also prepared using alkali treated SCBP as a filler. The films of composites were uniform with brown in color. The cellulose/SCBP films without and with alkali treated SCBP were characterized by FTIR, XRD, optical and polarized optical microscopy, thermogravimetric analysis (TGA) and tensile tests. The maximum tensile strength of the composite films with alkali treated SCBP varied between (106-149MPa) and increased with SCBP content when compared to the composites with untreated SCBP. The thermal stability of the composite was higher at elevated temperatures when alkali treated SCBP was used. Based on the improved tensile properties and photo resistivity, the cellulose/SCBP composite films with alkali treated SCBP may be considered for packaging and wrapping of flowers and vegetables.
  19. Zahra Dashtizadeh, Abdan, K., Jawaid, M., Mohd Asim Khan, Mohammad Behmanesh, Masoud Dashtizadeh, et al.
    MyJurnal
    Environmental issues have motivated researchers to replace synthetic fibres with natural fibres in the
    fabrication of polymer composites. However, natural fibres demonstrate weak mechanical or thermal
    properties which limit their different applications. Researchers have suggested fabrication of hybrid
    composites in order to improve the mechanical and thermal properties of natural fibre-based composites.
    Hybrid composites are made up by two or more fibres in one matrix or two polymer blends and with
    one natural fibre reinforcement. By hybridising one
    natural fibre with another natural fibre/synthetic
    fibre in one matrix, the resulting composite is a
    unique product (hybrid composites) that displays
    better mechanical and thermal properties in
    comparison with individual fibre-reinforced
    polymer composites. The advantages of developing
    hybrid composites are that they are more reliable
    for different applications and more environmental
    friendly. In this review paper, we present some
    recently published works related to mechanical
    and thermal properties of natural/natural fibres, and
    natural/synthetic fibre-based hybrid composites. Hybrid composites are one of the emerging fields in material science which has attracted attention for
    their different engineering applications.
  20. Jumaidin, R., Sapuan, S.M., Jawaid, M., Ishak, M.R., Sahari J.
    MyJurnal
    Modification of thermoplastic starch with other natural polymer is a promising research since the
    combination of both material will produce a fully green polymer with modified properties. The aim of
    this paper is to investigate the effects of agar on physical properties of thermoplastic sugar palm starch
    (SPS). Various types of thermoplasctic SPS based polymer were prepared by blending SPS and agar
    with the presence of glycerol as a plasticiser. Agar with various contents (10, 20, 30, and 40 wt%) were
    mixed with thermoplastic SPS via melt mixing before compression moulded into 3 mm mould plate.
    The prepared laminates were characterised for the moisture content, density, water absorption, thickness
    swelling and water solubility. Results showed that incorporation of agar has slightly increased the moisture
    content and water absorption capacity of the blends. Slight increment in thickness swelling was observed
    for thermoplastic SPS after incorporation with agar (40 wt%). Water solubility of thermoplastic SPS
    was slightly increased with incorporation of agar (40 wt%). Similar density was recorded for all ratios
    of agar, which indicated that the incorporation of agar did not influence the density of thermoplastic
    SPS. In conclusion, the incorporation of agar has
    slightly increased the hydrophilic behaviour of
    thermoplastic SPS.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links