Displaying all 7 publications

Abstract:
Sort:
  1. Aad G, Abbott B, Abeling K, Abicht NJ, Abidi SH, Aboulhorma A, et al.
    Phys Rev Lett, 2024 Jan 12;132(2):021803.
    PMID: 38277607 DOI: 10.1103/PhysRevLett.132.021803
    The first evidence for the Higgs boson decay to a Z boson and a photon is presented, with a statistical significance of 3.4 standard deviations. The result is derived from a combined analysis of the searches performed by the ATLAS and CMS Collaborations with proton-proton collision datasets collected at the CERN Large Hadron Collider (LHC) from 2015 to 2018. These correspond to integrated luminosities of around 140  fb^{-1} for each experiment, at a center-of-mass energy of 13 TeV. The measured signal yield is 2.2±0.7 times the standard model prediction, and agrees with the theoretical expectation within 1.9 standard deviations.
  2. Sun Y, Jia X, Tan CP, Zhang B, Fu X, Huang Q
    Int J Biol Macromol, 2023 Apr 30;235:123886.
    PMID: 36870635 DOI: 10.1016/j.ijbiomac.2023.123886
    The formation of inclusion complexes (ICs) between V-type starch and flavors is traditionally conducted in an aqueous system. In this study, limonene was solid encapsulated into V6-starch under ambient pressure (AP) and high hydrostatic pressure (HHP). The maximum loading capacity reached 639.0 mg/g after HHP treatment, and the highest encapsulation efficiency was 79.9 %. X-ray Diffraction (XRD) results showed that the ordered structure of V6-starch was ameliorated with limonene, which avoided the reduction of the space between adjacent helices within V6-starch generated by HHP treatment. Notably, HHP treatment may force molecular permeation of limonene from amorphous regions into inter-crystalline amorphous regions and crystalline regions as the Small-angle X-ray scattering (SAXS) patterns indicated, leading to better controlled-release behavior. Thermogravimetry analysis (TGA) revealed that the solid encapsulation of V-type starch improved the thermal stability of limonene. Further, the release kinetics study showed that a complex prepared with a mass ratio of 2:1 under HHP treatment sustainably released limonene over 96 h and exhibited a preferable antimicrobial effect, which could extend the shelf life of strawberries.
  3. Peng Z, Xue H, Liu X, Wang S, Liu G, Jia X, et al.
    Front Bioeng Biotechnol, 2023;11:1222088.
    PMID: 37539434 DOI: 10.3389/fbioe.2023.1222088
    The development of cost-effective, biocompatible soft wound dressings is highly desirable; however, conventional dressings are only designed for flat wounds, which creates difficulty with promising healing efficiency in complex practical conditions. Herein, we developed a tough, adhesive biomimetic hyaluronic acid methacryloyl hydrogels composed of chemically crosslinked hyaluronic acid methacryloyl (HAMA) network and poly(N-hydroxyethyl acrylamide) (PHEAA) network rich in multiple hydrogen bonding. Due to the multiple chemical crosslinking sites (acrylamide groups) of HAMA; the bulk HEMA/PHEAA hydrogels presented significant enhancements in mechanical properties (∼0.45 MPa) than common hyaluronic acid hydrogels (<0.1 MPa). The abundant hydrogen bonding also endowed the resultant hydrogels with extremely high adhesiveness on many nonporous substrates, including glass and biological tissues (e.g., heart, liver, lung, kidney, stomach, and muscle), with a considerable interfacial toughness of ∼1432 J m-2. Accordingly, since both natural hyaluronic acid derivative polymers and hydrophilic PHEAA networks are highly biocompatible, the hydrogel matrix possesses good blood compatibility (<5% of hemolysis ratio) and satisfies the general dressing requirements (>99% of cell viability). Based on these physicochemical features, we have demonstrated that this adhesive hydrogel, administered in the form of a designed patch, could be applied to wound tissue healing by promoting epithelialization, angiogenesis, and collagen deposition. We believe that our proposed biomimetic hydrogel design holds great potential for wound repair and our developed HAMA/PHEAA hydrogels are extremely promising for the next-generation tissue healings in emergency situations.
  4. Mehdizadeh H, Jia X, Mo KH, Ling TC
    Environ Pollut, 2021 Jul 01;280:116914.
    PMID: 33774540 DOI: 10.1016/j.envpol.2021.116914
    Recently, the use of accelerated carbonation curing has attracted wide attention as a promising method to reduce carbon dioxide (CO2) emission and improve the mechanical properties of cement-based materials. However, the diffusion mechanism of CO2 in the matrix and the content of hydration products are the key factors that restrict the carbonation reaction rate. To understand the combined behavior of hydration and carbonation reactions, this paper investigates the influence of cement hydration induced by water-to-cement ratio (w/c) (ranging from 0.25 to 0.45) on microstructure and microhardness properties of cement paste. The experimental results demonstrated that carbonation only occurred at the surface layer of cement paste samples and carbonation efficiency was significantly influenced by greater hydration due to higher w/c. The carbonation depth of the sample with 0.45 w/c was about 6 times higher than that of sample with 0.25 w/c after 28 days of CO2 curing. XRD results revealed that calcite-type calcium carbonate is the main carbonation product and consumption of clinker phases (C2S and C3S) during the hydration enhanced the calcite precipitation in the pores of the surface layer. According to FTIR, with increasing w/c, the position of Si-O-Si stretching bond of the carbonated surface changed from Q2 to Q3, confirming the formation of amorphous silica-rich gel, along with the appearance of CO32- bonds related to calcite. In overall, the micro-mechanical analysis in this study showed that the carbonation significantly improved the surface microhardness of cement paste samples, while the refinement of capillary pores due to carbonation also decreased the negative impact of large pores formed in the matrix of cement paste prepared with high w/c.
  5. Varbanov PS, Jia X, Lim JS
    J Clean Prod, 2021 Jan 25;281:124602.
    PMID: 33071477 DOI: 10.1016/j.jclepro.2020.124602
    This contribution starts from the broad perspective of the global material cycles, analysing the main resource and pollution issues world-wide from the viewpoint of the disturbances to these cycles caused by human activities. The issues are analysed in the light of the currently developing COVID-19 pandemic with the resulting behavioural and business pattern changes. It has been revealed in the analysis of previous reviews that there is a need for a more comprehensive analysis of the resource and environmental impact contributions by industrial and urban processes, as well as product supply chains. The review discusses the recent key developments in the areas of Process Integration and Optimisation, the assessment and reduction of process environmental impacts, waste management and integration, green technologies. That is accompanied by a review of the papers in the current Virtual Special Issue of the Journal of Cleaner Production which is dedicated to the extended articles developed on the basis of the papers presented at the 22nd Conference on Process Integration for Energy Saving and Pollution Reduction. The follow-up analysis reveals significant advances in the efficiency and emission cleaning effects of key processes, as well as water/wastewater management and energy storage. The further analysis of the developments identifies several key areas for further research and development - including increases of the safety and robustness of supply networks for products and services, increase of the resources use efficiency of core production and resource conversion processes, as well as the emphasis on improved product and process design for minimising product wastage.
  6. Guo L, Zheng X, Wang E, Jia X, Wang G, Wen J
    Biomed Pharmacother, 2020 May;125:109784.
    PMID: 32092815 DOI: 10.1016/j.biopha.2019.109784
    Doxorubicin (DOX) is an eff ;ective chemotherapeutic drug to suppress the progression of various types of tumors. However, its clinical application has been largely limited due to its potential cardiotoxicity. MicroRNAs (miRNAs) are emerged as critical regulators of cardiac injury. This study was aimed to explore the effects of irigenin (IR), as an isoflavonoid isolated from the rhizome of Belamcanda chinensis, on DOX-induced cardiotoxicity using the in vivo and in vitrostudies. The results indicated that DOX-induced fibrosis, cardiac dysfunction and injury were markedly attenuated by IR through reducing apoptosis, oxidative stress and inflammation in heart tissue samples. Importantly, DOX resulted in a remarkable decrease of miR-425 in heart tissues and cells, which was significantly rescued by IR. Receptor-interacting protein kinase 1 (RIPK1) was discovered to be a direct target of miR-425. DOX induced over-expression of RIPK1 both in vivo and in vitro, which were greatly decreased by IR. Transfection with miR-425 mimic could inhibit RIPK1 expression, whereas reducing miR-425 increased RIPK1 expression levels. In parallel to miR-425 over-expression, RIPK1 knockdown could attenuate apoptosis, reactive oxygen species (ROS) production and inflammation in HL-1 cells. However, over-expression of RIPK1 markedly abolished miR-425 mimic-induced apoptosis, ROS accumulation and inflammatory response in DOX-exposed cells. Herein, miR-425 could ameliorate cardiomyocyte injury through directly targeting RIPK1. Furthermore, activation of miR-425 by IR markedly improved DOX-induced cardiotoxicity, and therefore IR could be considered as a promising therapeutic agent for the treatment of cardiac injury.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links