Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Wu ZH, Shih JY, Li YJ, Tsai YD, Hung TF, Karuppiah C, et al.
    Nanomaterials (Basel), 2022 Jan 26;12(3).
    PMID: 35159754 DOI: 10.3390/nano12030409
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
  2. Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, et al.
    J Colloid Interface Sci, 2024 Mar 15;658:699-713.
    PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
  3. Walle KZ, Musuvadhi Babulal L, Wu SH, Chien WC, Jose R, Lue SJ, et al.
    ACS Appl Mater Interfaces, 2021 Jan 20;13(2):2507-2520.
    PMID: 33406841 DOI: 10.1021/acsami.0c17422
    Although solid-state Li-metal batteries (LMBs) featuring polymer-based solid electrolytes might one day replace conventional Li-ion batteries, the poor Li-ion conductivity of solid polymer electrolytes at low temperatures has hindered their practical applications. Herein, we describe the first example of using a co-precipitation method in a Taylor flow reactor to produce the metal hydroxides of both the Ga/F dual-doped Li7La3Zr2O12 (Ga/F-LLZO) ceramic electrolyte precursors and the Li2MoO4-modified Ni0.8Co0.1Mn0.1O2 (LMO@T-LNCM 811) cathode materials for LMBs. The Li/Nafion (LiNf)-coated Ga/F-LLZO (LiNf@Ga/F-LLZO) ceramic filler was finely dispersed in the poly(vinylidene fluoride)/polyacrylonitrile/lithium bis(trifluoromethanesulfonimide)/succinonitrile matrix to give a trilayer composite polymer electrolyte (denoted "Tri-CPE") through a simple solution-casting. The bulk ionic conductivity of the Tri-CPE at room temperature was approximately 4.50 × 10-4 S cm-1 and exhibited a high Li+ ion transference number (0.84). It also exhibits a broader electrochemical window of 1-5.04 V versus Li/Li+. A full cell based on a CR2032 coin cell containing the LMO@T-LNCM811-based composite cathode, when cycled under 1 C/1 C at room temperature for 300 cycles, achieved an average Columbic efficiency of 99.4% and a capacity retention of 89.8%. This novel fabrication strategy for Tri-CPE structures has potential applications in the preparation of highly safe high-voltage cathodes for solid-state LMBs.
  4. Vijayan BL, Misnon II, Anil Kumar GM, Miyajima K, Reddy MV, Zaghib K, et al.
    J Colloid Interface Sci, 2020 Mar 07;562:567-577.
    PMID: 31780115 DOI: 10.1016/j.jcis.2019.11.077
    In an effort to minimize the usage of non-renewable materials and to enhance the functionality of the renewable materials, we have developed thin metal oxide coated porous carbon derived from a highly abundant non-edible bio resource, i.e., palm kernel shell, using a one-step activation-coating procedure and demonstrated their superiority as a supercapacitive energy storage electrode. In a typical experiment, an optimized composition contained ~10 wt% of Mn2O3 on activated carbon (AC); a supercapacitor electrode fabricated using this electrode showed higher rate capability and more than twice specific capacitance than pure carbon electrode and could be cycled over 5000 cycles without any appreciable capacity loss in 1 M Na2SO4 electrolyte. A symmetric supercapacitor prototype developed using the optimum electrode showed nearly four times higher energy density than the pure carbon owing to the enhancements in voltage window and capacitance. A lithium ion capacitor fabricated in half-cell configuration using 1 M LiPF6 electrolyte showed larger voltage window, superior capacitance and rate capability in the ~10 wt% Mn2O3 @AC than the pure analogue. These results demonstrate that the current protocol allows fabrication of superior charge storing electrodes using renewable materials functionalized by minimum quantity of earthborn materials.
  5. Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, et al.
    J Endocrinol, 2023 Jan 01;256(1).
    PMID: 36327153 DOI: 10.1530/JOE-22-0141
    Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
  6. Tan JW, Gupta T, Manosroi W, Yao TM, Hopkins PN, Williams JS, et al.
    JCI Insight, 2017 12 07;2(23).
    PMID: 29212952 DOI: 10.1172/jci.insight.95992
    Compared with persons of European descent (ED), persons of African descent (AD) have lower aldosterone (ALDO) levels, with the assumption being that the increased cardiovascular disease (CVD) risk associated with AD is not related to ALDO. However, the appropriateness of the ALDO levels for the volume status in AD is unclear. We hypothesized that, even though ALDO levels are lower in AD, they are inappropriately increased, and therefore, ALDO could mediate the increased CVD in AD. To test this hypothesis, we analyzed data from HyperPATH - 1,788 individuals from the total cohort and 765 restricted to ED-to-AD in a 2:1 match and genotyped for the endothelin-1 gene (EDN1). Linear regression analyses with adjustments were performed. In the total and restricted cohorts, PRA, ALDO, and urinary potassium levels were significantly lower in AD. However, in the AD group, greater ALDO dysregulation was present as evidenced by higher ALDO/plasma renin activity (PRA) ratios (ARR) and sodium-modulated ALDO suppression-to-stimulation indices. Furthermore, EDN1 minor allele carriers had significantly greater ARRs than noncarriers but only in the AD group. ARR levels were modulated by a significant interaction between EDN1 and AD. Thus, EDN1 variants may identify particularly susceptible ADs who will be responsive to treatment targeting ALDO-dependent pathways (e.g., mineralocorticoid-receptor antagonists).
  7. Suteris NN, Yasin A, Misnon II, Roslan R, Zulkifli FH, Rahim MHA, et al.
    Int J Biol Macromol, 2021 Dec 29;198:147-156.
    PMID: 34971642 DOI: 10.1016/j.ijbiomac.2021.12.006
    This article demonstrates the development of nanofibrous cloths by electrospinning of renewable materials, i.e., curcumin-loaded 90% cellulose acetate (CA)/10% poly(ε-caprolactone) (PCL), for applications in regenerative medicine. The CA is derived from the biomass waste of the oil palm plantation (empty fruit bunch). The nanofiber scaffolds are characterized for the fiber morphology, microstructure, thermal properties, and wettability. The optimized smooth and bead-free electrospun fiber cloth contains 90% CA and 10% PCL in two curcumin compositions (0.5 and 1 wt%). The role of curcumin is shown to be two-fold: the first is its function as a drug and the second is its role in lowering the water contact angle and increasing the hydrophilicity. The hydrophilicity enhancements are related to the hydrogen bonding between the components. The enhanced hydrophilicity contributed to improve the swelling behavior of the scaffolds; the CA/PCL/Cur (0.5%) and the CA/PCL/Cur (1.0%) showed swelling of ~700 and 950%, respectively, in phosphate-buffered saline (PBS). The drug-release studies revealed the highest cumulative drug release of 60% and 78% for CA/PCL/Cur (0.5%) and CA/PCL/Cur (1.0%) nanofibers, respectively. The in-vitro studies showed that CA/PCL/Cur (0.5 wt%) and CA/PCL/Cur (1.0 wt%) nanofiber scaffolds facilitate a higher proliferation and expression of actin in fibroblasts than those scaffolds without curcumin for wound healing applications.
  8. Seenivasan M, Yang CC, Wu SH, Chang JK, Jose R
    J Colloid Interface Sci, 2024 May;661:1070-1081.
    PMID: 38368230 DOI: 10.1016/j.jcis.2024.02.040
    The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of ∼ 88 % at 25 °C and ∼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.
  9. Roslee AE, Muzakir SK, Ismail J, Yusoff MM, Jose R
    Phys Chem Chem Phys, 2016 Dec 21;19(1):408-418.
    PMID: 27905607 DOI: 10.1039/c6cp07173b
    This article addresses the heat capacity of quantum dots (QDs) using density functional theory (DFT). By analyzing the evolution of phonon density of states and heat capacity as CdSe clusters grow from a molecular cluster into larger quantum confined solids, we have shown that their heat capacity does not fit very well with the Debye T3 model. We observed that the number of phonon modes, which is discrete, increases as the particles grow, and the dispersion relation shows a quadratic behavior in contrast to the bulk solids whose dispersion relation is linear and equal to the sound velocity. The phonon density of states showed a square root variation with respect to frequency whereas that of the bulk is a quadratic variation of frequency. From the observed variation in the phonon density of states and holding the fact that the atomic vibrations in solids are elastically coupled, we have re-derived the expression for total energy of the QDs and arrive at a T3/2 model of heat capacity, which fits very well to the observed heat capacity data. These results give promising directions in the understanding of the evolution of the thermophysical properties of solids.
  10. Ramakrishna S, Jose R
    Sci Total Environ, 2022 Feb 01;806(Pt 3):151208.
    PMID: 34715226 DOI: 10.1016/j.scitotenv.2021.151208
    Widespread industrialization, rapid urbanization, and massive transport through land, waters, and air have led to catastrophes such as climate change, water pollution, resource limitation, and pandemics causing severe economic consequences, massive influences on the natural environment and pose a great threat to the life sustainability. Sustainability topic has a long history, and many policies and initiatives are in effect for a sustainable planet Earth, still gaps of varying degrees exist in almost all sectors. This article addresses the essentiality of minimising the sustainability gaps exist in diverse realms of life and citing few examples. Creating a cyclic path for production-consumption process in the economic sector through promoting circular economy, learning from the natural processes through appropriate biomimicking, and knowledge-integration from diverse disciplines and emphasizing sustainability in the educational sector are shown to lower the sustainability gaps.
  11. Ramakrishna S, Hu W, Jose R
    Circ Econ Sustain, 2022 Aug 06.
    PMID: 35966038 DOI: 10.1007/s43615-022-00201-w
    For a successful delivery of the United Nations Sustainable Development Goals (UNSDGs) and to track the progress of UNSDGs as well as identify the gaps and the areas requiring more attention, periodic analyses on the "research on sustainability" by various countries and their contribution to the topic are inevitable. This paper tracks the trends in sustainability research including the geographical distribution on sustainability research, their level of multi-disciplinarity and the cross-border collaboration, their distribution of funding with respect to the UNSDGs, and the lifecycle analyses. Cumulative publications and patents on sustainability could be fitted to an exponential function, thereby highlighting the importance of the research on sustainability in the recent past. Besides, this analytics quantifies cross-border collaborations and knowledge integration to solve critical issues as well as traditional and emerging sources to undertake sustainability research. As an important aspect of resource sustainability and circular economy, trends in publication and funding on lifecycle assessment have also been investigated. The analytics present here identify that major sustainability research volume is from the social sciences as well as business and economics sectors, whereas contributions from the engineering disciplines to develop technologies for sustainability practices are relatively lower. Similarly, funding distribution is also not evenly distributed under various SDGs; the larger share of funding has been on energy security and climate change research. Thus, this study identifies many gaps to be filled for the UNSDGs to be successful.
  12. Pochont NR, Sekhar YR, Vasu K, Jose R
    Molecules, 2022 Nov 16;27(22).
    PMID: 36432027 DOI: 10.3390/molecules27227927
    Perovskite solar cells (PSCs) offer advantages over widely deployed silicon solar cells in terms of ease of fabrication; however, the device is still under rigorous materials optimization for cell performance, stability, and cost. In this work, we explore a version of a PSC by replacing the polymeric hole transport layer (HTL) such as Spiro-OMeTAD, P3HT, and PEDOT: PSS with a more air-stable metal oxide, viz., nitrogen-doped titanium dioxide (TiO2:N). Numerical simulations on formamidinium (FA)-based PSCs in the FTO/TiO2/FAPbI3/Ag configuration have been carried out to depict the behaviour of the HTL as well as the effect of absorber layer thickness (∆t) on photovoltaic parameters. The results show that the cell output increases when the HTL bandgap increases from 2.5 to 3.0 eV. By optimizing the absorber layer thickness and the gradient in defect density (Nt), the device structure considered here can deliver a maximum power conversion efficiency of ~21.38% for a lower HTL bandgap (~2.5 eV) and ~26.99% for a higher HTL bandgap of ~3.0 eV. The results are validated by reproducing the performance of PSCs employing commonly used polymeric HTLs, viz. Spiro-OMeTAD, P3HT, and PEDOT: PSS as well as high power conversion efficiency in the highly crystalline perovskite layer. Therefore, the present study provides high-performing, cost-effective PSCs using TiO2:N.
  13. Pal B, Sarkar KJ, Wu B, Děkanovský L, Mazánek V, Jose R, et al.
    ACS Omega, 2023 Jan 17;8(2):2629-2638.
    PMID: 36687114 DOI: 10.1021/acsomega.2c07143
    Charge storage in electrochemical double-layer capacitors (EDLCs) is via the adsorption of electrolyte counterions in their positive and negative electrodes under an applied potential. This study investigates the EDLC-type charge storage in carbon nanotubes (CNT) electrodes in aqueous acidic (NaHSO4), basic (NaOH), and neutral (Na2SO4) electrolytes of similar cations but different anions as well as similar anions but different cations (Na2SO4 and Li2SO4) in a two-electrode Swagelok-type cell configuration. The physicochemical properties of ions, such as mobility/diffusion and solvation, are correlated with the charge storage parameters. The neutral electrolytes offer superior charge storage over the acidic and basic counterparts. Among the studied ions, SO4 2- and Li+ showed the most significant capacitance owing to their larger solvated ion size. The charge stored by the anions and cations follows the order SO4 2- > HSO4 - > OH- and Li+ > Na+, respectively. Consequently, the CNT//Li2SO4//CNT cell displayed outstanding charge storage indicators (operating voltage ∼0-2 V, specific capacitance ∼122 F·g-1, specific energy ∼67 W h·kg-1, and specific power ∼541 W·kg-1 at 0.5 A·g-1) than the other cells, which could light a red light-emitting diode (2.1 V) for several minutes. Besides, the CNT//Li2SO4//CNT device showed exceptional rate performance with a capacitance retention of ∼95% at various current densities (0.5-2.5 A·g-1) after 6500 cycles. The insights from this work could be used to design safer electrochemical capacitors of high energy density and power density.
  14. Pal B, Yang S, Ramesh S, Thangadurai V, Jose R
    Nanoscale Adv, 2019 Oct 09;1(10):3807-3835.
    PMID: 36132093 DOI: 10.1039/c9na00374f
    Electrolytes are one of the vital constituents of electrochemical energy storage devices and their physical and chemical properties play an important role in these devices' performance, including capacity, power density, rate performance, cyclability and safety. This article reviews the current state of understanding of the electrode-electrolyte interaction in supercapacitors and battery-supercapacitor hybrid devices. The article discusses factors that affect the overall performance of the devices such as the ionic conductivity, mobility, diffusion coefficient, radius of bare and hydrated spheres, ion solvation, viscosity, dielectric constant, electrochemical stability, thermal stability and dispersion interaction. The requirements needed to design better electrolytes and the challenges that still need to be addressed for building better supercapacitive devices for the competitive energy storage market have also been highlighted.
  15. Muzakir SK, Alias N, Yusoff MM, Jose R
    Phys Chem Chem Phys, 2013 Oct 14;15(38):16275-85.
    PMID: 24000052 DOI: 10.1039/c3cp52858h
    The possibility of achieving many electrons per absorbed photon of sufficient energy by quantum dots (QDs) drives the motivation to build high performance quantum dot solar cells (QDSCs). Although performance of dye-sensitized solar cells (DSCs), with similar device configuration as that of QDSCs, has significantly improved in the last two decades QDSCs are yet to demonstrate impressive device performances despite the remarkable features of QDs as light harvesters. We investigated the fundamental differences in the optical properties of QDs and dyes using DFT calculations to get insights on the inferior performance of QDSCs. The CdSe QDs and the ruthenium bipyridyl dicarboxylic acid dye (N3) were used as typical examples in this study. Based on a generalized equation of state correlating material properties and photoconversion efficiency, we calculated ground and excited state properties of these absorbers at the B3LYP/lanl2dz level of DFT and analyzed them on the basis of the device performance. Five missing links have been identified in the study which provides numerous insights into building high efficiency QDSCs. They are (i) fundamental differences in the emitting states of the QDs in the strong and weak confinement regimes were observed, which explained successfully the performance differences; (ii) the crucial role of bifunctional ligands that bind the QDs and the photo-electrode was identified; in most cases use of bifunctional ligands does not lead to a QD enabled widening of the absorption of the photo-electrode; (iii) wide QDs size distribution further hinders efficient electron injections; (iv) wide absorption cross-section of QDs favours photon harvesting; and (v) the role of redox potential of the electrolyte in the QD reduction process.
  16. Montero-Odasso M, van der Velde N, Alexander NB, Becker C, Blain H, Camicioli R, et al.
    Age Ageing, 2021 09 11;50(5):1499-1507.
    PMID: 34038522 DOI: 10.1093/ageing/afab076
    BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects both on quality of life and functional independence and are associated with increased morbidity, mortality and health care costs. Current clinical approaches and advice from falls guidelines vary substantially between countries and settings, warranting a standardised approach. At the first World Congress on Falls and Postural Instability in Kuala Lumpur, Malaysia, in December 2019, a worldwide task force of experts in falls in older adults, committed to achieving a global consensus on updating clinical practice guidelines for falls prevention and management by incorporating current and emerging evidence in falls research. Moreover, the importance of taking a person-centred approach and including perspectives from patients, caregivers and other stakeholders was recognised as important components of this endeavour. Finally, the need to specifically include recent developments in e-health was acknowledged, as well as the importance of addressing differences between settings and including developing countries.

    METHODS: a steering committee was assembled and 10 working Groups were created to provide preliminary evidence-based recommendations. A cross-cutting theme on patient's perspective was also created. In addition, a worldwide multidisciplinary group of experts and stakeholders, to review the proposed recommendations and to participate in a Delphi process to achieve consensus for the final recommendations, was brought together.

    CONCLUSION: in this New Horizons article, the global challenges in falls prevention are depicted, the goals of the worldwide task force are summarised and the conceptual framework for development of a global falls prevention and management guideline is presented.

  17. Montero-Odasso M, van der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, et al.
    Age Ageing, 2022 Sep 02;51(9).
    PMID: 36178003 DOI: 10.1093/ageing/afac205
    BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects on functional independence and quality of life and are associated with increased morbidity, mortality and health related costs. Current guidelines are inconsistent, with no up-to-date, globally applicable ones present.

    OBJECTIVES: to create a set of evidence- and expert consensus-based falls prevention and management recommendations applicable to older adults for use by healthcare and other professionals that consider: (i) a person-centred approach that includes the perspectives of older adults with lived experience, caregivers and other stakeholders; (ii) gaps in previous guidelines; (iii) recent developments in e-health and (iv) implementation across locations with limited access to resources such as low- and middle-income countries.

    METHODS: a steering committee and a worldwide multidisciplinary group of experts and stakeholders, including older adults, were assembled. Geriatrics and gerontological societies were represented. Using a modified Delphi process, recommendations from 11 topic-specific working groups (WGs), 10 ad-hoc WGs and a WG dealing with the perspectives of older adults were reviewed and refined. The final recommendations were determined by voting.

    RECOMMENDATIONS: all older adults should be advised on falls prevention and physical activity. Opportunistic case finding for falls risk is recommended for community-dwelling older adults. Those considered at high risk should be offered a comprehensive multifactorial falls risk assessment with a view to co-design and implement personalised multidomain interventions. Other recommendations cover details of assessment and intervention components and combinations, and recommendations for specific settings and populations.

    CONCLUSIONS: the core set of recommendations provided will require flexible implementation strategies that consider both local context and resources.

  18. Miah MSU, Sulaiman J, Sarwar TB, Ibrahim N, Masuduzzaman M, Jose R
    Heliyon, 2023 Sep;9(9):e20003.
    PMID: 37809409 DOI: 10.1016/j.heliyon.2023.e20003
    This article reports a tool that enables Materials Informatics, termed as MatRec, via a deep learning approach. The tool captures data, makes appropriate domain suggestions, extracts various entities such as materials and processes, and helps to establish entity-value relationships. This tool uses keyword extraction, a document similarity index to suggest relevant documents, and a deep learning approach employing Bi-LSTM for entity extraction. For example, materials and processes for electrical charge storage under an electric double layer capacitor (EDLC) mechanism are demonstrated herewith. A knowledge graph approach finds and visualizes different latent knowledge sets from the processed information. The MatRec received an F1 score of 9̃6% for entity extraction, 8̃3% for material-value relationship extraction, and 8̃7% for process-value relationship extraction, respectively. The proposed MatRec could be extended to solve material selection issues for various applications and could be an excellent tool for academia and industry.
  19. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  20. Mayurasakorn K, Hasanah N, Homma T, Homma M, Rangel IK, Garza AE, et al.
    Metabolism, 2018 Jun;83:92-101.
    PMID: 29410348 DOI: 10.1016/j.metabol.2018.01.012
    BACKGROUND AND PURPOSE: The plasma membrane protein caveolin-1 (CAV-1) has been shown to be involved in modulating glucose homeostasis and the actions of the renin-angiotensin-aldosterone system (RAAS). Caloric restriction (CR) is widely accepted as an effective therapeutic approach to improve insulin sensitivity and reduce the severity of diabetes. Recent data indicate that polymorphisms of the CAV-1 gene are strongly associated with insulin resistance, hypertension and metabolic abnormalities in non-obese individuals. Therefore, we sought to determine whether CR improves the metabolic and cardiovascular (CV) risk factors in the lean CAV-1 KO mice.

    MATERIALS/METHODS: Twelve- to fourteen-week-old CAV-1 knockout (KO) and genetically matched wild-type (WT) male mice were randomized by genotype to one of two dietary regimens: ad libitum (ad lib) food intake or 40% CR for 4 weeks. Three weeks following the onset of dietary restriction, all groups were assessed for insulin sensitivity. At the end of the study, all groups were assessed for fasting glucose, insulin, HOMA-IR, lipids, corticosterone levels and blood pressure (BP). Aldosterone secretion was determined from acutely isolated Zona Glomerulosa cells.

    RESULTS: We confirmed that the CAV-1 KO mice on the ad lib diet display a phenotype consistent with the cardiometabolic syndrome, as shown by higher systolic BP (SBP), plasma glucose, HOMA-IR and aldosterone levels despite lower body weight compared with WT mice on the ad lib diet. CAV-1 KO mice maintained their body weight on the ad lib diet, but had substantially greater weight loss with CR, as compared to caloric restricted WT mice. CR-mediated changes in weight were associated with dramatic improvements in glucose and insulin tolerance in both genotypes. These responses to CR, however, were more robust in CAV-1KO vs. WT mice and were accompanied by reductions in plasma glucose, insulin and HOMA-IR in CAV-1KO but not WT mice. Surprisingly, in the CAV-1 KO, but not in WT mice, CR was associated with increased SBP and aldosterone levels, suggesting that in CAV-1 KO mice CR induced an increase in some CV risk factors.

    CONCLUSIONS: CR improved the metabolic phenotype in CAV-1 KO mice by increasing insulin sensitivity; nevertheless, this intervention also increased CV risk by inappropriate adaptive responses in the RAAS and BP.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links