Displaying publications 1 - 20 of 44 in total

Abstract:
Sort:
  1. Montero-Odasso M, van der Velde N, Martin FC, Petrovic M, Tan MP, Ryg J, et al.
    Age Ageing, 2022 Sep 02;51(9).
    PMID: 36178003 DOI: 10.1093/ageing/afac205
    BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects on functional independence and quality of life and are associated with increased morbidity, mortality and health related costs. Current guidelines are inconsistent, with no up-to-date, globally applicable ones present.

    OBJECTIVES: to create a set of evidence- and expert consensus-based falls prevention and management recommendations applicable to older adults for use by healthcare and other professionals that consider: (i) a person-centred approach that includes the perspectives of older adults with lived experience, caregivers and other stakeholders; (ii) gaps in previous guidelines; (iii) recent developments in e-health and (iv) implementation across locations with limited access to resources such as low- and middle-income countries.

    METHODS: a steering committee and a worldwide multidisciplinary group of experts and stakeholders, including older adults, were assembled. Geriatrics and gerontological societies were represented. Using a modified Delphi process, recommendations from 11 topic-specific working groups (WGs), 10 ad-hoc WGs and a WG dealing with the perspectives of older adults were reviewed and refined. The final recommendations were determined by voting.

    RECOMMENDATIONS: all older adults should be advised on falls prevention and physical activity. Opportunistic case finding for falls risk is recommended for community-dwelling older adults. Those considered at high risk should be offered a comprehensive multifactorial falls risk assessment with a view to co-design and implement personalised multidomain interventions. Other recommendations cover details of assessment and intervention components and combinations, and recommendations for specific settings and populations.

    CONCLUSIONS: the core set of recommendations provided will require flexible implementation strategies that consider both local context and resources.

  2. Jamil T, Munir S, Wali Q, Shah GJ, Khan ME, Jose R
    ACS Omega, 2021 Dec 21;6(50):34744-34751.
    PMID: 34963957 DOI: 10.1021/acsomega.1c05197
    Here, we report water purification through novel polyvinyl alcohol (PVA)-based carbon nanofibers synthesized through the electrospinning technique. In our novel approach, we mix PVA and tetraethyl orthosilicate (TEOS) with green tea solutions with different concentrations to synthesize carbon-based nanofibers (CNFs) and further calcine at 280 °C for carbonization. The scanning electron microscopy (SEM) results show the diameter of the nanofibers to be ∼500 nm, which decreases by about 50% after carbonization, making them more suitable candidates for the filtration process. Next, using these carbon nanofibers, we prepare filters for water purification. The synthesized CNF filters show excellent performance and successful removal of contaminants from the water by analyzing the CNF-based filters before and after the filtration of water through SEM and energy-dispersive X-ray (EDX) spectroscopy. Our SEM and EDX results indicate the presence of various nanoparticles consisting of different elements such as Mg, Na, Ti, S, Si, and Fe on the filters, after the filtration of water. Additionally, the SEM results show that PVA and TEOS concentrations play an important role in the formation, uniformity, homogeneity, and particularly in the reduction of the nanofiber diameter.
  3. Fakharuddin A, Di Giacomo F, Palma AL, Matteocci F, Ahmed I, Razza S, et al.
    ACS Nano, 2015 Aug 25;9(8):8420-9.
    PMID: 26208221 DOI: 10.1021/acsnano.5b03265
    Perovskite solar cells employing CH3NH3PbI3-xClx active layers show power conversion efficiency (PCE) as high as 20% in single cells and 13% in large area modules. However, their operational stability has often been limited due to degradation of the CH3NH3PbI3-xClx active layer. Here, we report a perovskite solar module (PSM, best and av. PCE 10.5 and 8.1%), employing solution-grown TiO2 nanorods (NRs) as the electron transport layer, which showed an increase in performance (∼5%) even after shelf-life investigation for 2500 h. A crucial issue on the module fabrication was the patterning of the TiO2 NRs, which was solved by interfacial engineering during the growth process and using an optimized laser pulse for patterning. A shelf-life comparison with PSMs built on TiO2 nanoparticles (NPs, best and av. PCE 7.9 and 5.5%) of similar thickness and on a compact TiO2 layer (CL, best and av. PCE 5.8 and 4.9%) shows, in contrast to that observed for NR PSMs, that PCE in NPs and CL PSMs dropped by ∼50 and ∼90%, respectively. This is due to the fact that the CH3NH3PbI3-xClx active layer shows superior phase stability when incorporated in devices with TiO2 NR scaffolds.
  4. Wu XW, Karuppiah C, Wu YS, Zhang BR, Hsu LF, Shih JY, et al.
    J Colloid Interface Sci, 2024 Mar 15;658:699-713.
    PMID: 38141392 DOI: 10.1016/j.jcis.2023.12.098
    Due to the poor thermal stability of conventional separators, lithium-ion batteries require a suitable separator to maintain system safety for long-term cycling performance. It must have high porosity, superior electrolyte uptake ability, and good ion-conducting properties even at high temperatures. In this work, we demonstrate a novel composite membrane based on sandwiching of zeolitic imidazole frameworks-67 decorated cellulose acetate nanofibers (ZIF-67@CA) with electrospun poly(vinyl alcohol)/melamine (denoted as PVAM) nonwoven membranes. The as-prepared sandwich-type membranes are called PVAM/x%ZIF-67@CA/PVAM. The middle layer of composite membranes is primarily filled with different weight percentages of ZIF-67 nanoparticles (x = 5, 15, and 25 wt%), which both reduces the non-uniform porous structure of CA and increases its thermal stability. Therefore, our sandwich-type PVAM/x%ZIF-67@CA/PVAM membrane exhibits a higher thermal shrinkage effect at 200 °C than the commercial polyethylene (PE) separator. Due to its high electrolyte uptake (646.8%) and porosity (85.2%), PVAM/15%ZIF-67@CA/PVAM membrane achieved high ionic conductivity of 1.46 × 10-3 S cm-1 at 70 °C, as compared to the commercial PE separator (ca. 6.01 × 10-4 S cm-1 at 70 °C). Besides, the cell with PVAM/15%ZIF-67@CA/PVAM membrane shows an excellent discharge capacity of about 167.5 mAh g-1after 100 cycles at a 1C rate with a capacity retention of 90.3%. The ZIF-67 fillers in our sandwich-type composite membrane strongly attract anions (PF6-) through Lewis' acid-base interaction, allowing uniform Li+ ion transport and suppressing Li dendrites. As a result, we found that the PVAM/15%ZIF-67@CA/PVAM composite nonwoven membrane is applicable to high-power, high-safety lithium-ion battery systems that can be used in electric vehicles (EVs).
  5. Hendri YB, Kuo LY, Seenivasan M, Wu YS, Wu SH, Chang JK, et al.
    J Colloid Interface Sci, 2024 May;661:289-306.
    PMID: 38301467 DOI: 10.1016/j.jcis.2024.01.094
    A novel scalable Taylor-Couette reactor (TCR) synthesis method was employed to prepare Ta-modified LiNi0.92Co0.04Mn0.04O2 (T-NCM92) with different Ta contents. Through experiments and density functional theory (DFT) calculations, the phase and microstructure of Ta-modified NCM92 were analyzed, showing that Ta provides a bifunctional (doping and coating at one time) effect on LiNi0.92Co0.04Mn0.04O2 cathode material through a one-step synthesis process via a controlling suitable amount of Ta and Li-salt. Ta doping allows the tailoring of the microstructure, orientation, and morphology of the primary NCM92 particles, resulting in a needle-like shape with fine structures that considerably enhance Li+ ion diffusion and electrochemical charge/discharge stability. The Ta-based surface-coating layer effectively prevented microcrack formation and inhibited electrolyte decomposition and surface-side reactions during cycling, thereby significantly improving the electrochemical performance and long-term cycling stability of NCM92 cathodes. Our as-prepared NCM92 modified with 0.2 mol% Ta (i.e., T2-NCM92) exhibits outstanding cyclability, retaining 84.5 % capacity at 4.3 V, 78.3 % at 4.5 V, and 67.6 % at 45 ℃ after 200 cycles at 1C. Even under high-rate conditions (10C), T2-NCM92 demonstrated a remarkable capacity retention of 66.9 % after 100 cycles, with an initial discharge capacity of 157.6 mAh g-1. Thus, the Ta modification of Ni-rich NCM92 materials is a promising option for optimizing NCM cathode materials and enabling their use in real-world electric vehicle (EV) applications.
  6. Seenivasan M, Yang CC, Wu SH, Chang JK, Jose R
    J Colloid Interface Sci, 2024 May;661:1070-1081.
    PMID: 38368230 DOI: 10.1016/j.jcis.2024.02.040
    The growing use of EVs and society's energy needs require safe, affordable, durable, and eco-friendly high-energy lithium-ion batteries (LIBs). To this end, we synthesized and investigated the removal of Co from Al-doped Ni-rich cathode materials, specifically LiNi0.9Co0.1Al0.0O2 (NCA-0), LiNi0.9Mn0.1Al0.0O2 (NMA-0), LiNi0.9Mn0.07Al0.03O2 (NMA-3), intending to enhance LIB performance and reduce the reliance on cobalt, a costly and scarce resource. Our study primarily focuses on how the removal of Co affects the material characteristics of Ni-rich cathode material and further introduces aluminum into the cathode composition to study its impacts on electrochemical properties and overall performance. Among the synthesized samples, we discovered that the NMA-3 sample, modified with 3 mol% of Al, exhibited superior battery performance, demonstrating the effectiveness of aluminum in promoting cathode stability. Furthermore, the Al-modified cathode showed promising cycle life under normal and high-temperature conditions. Our NMA-3 demonstrated remarkable capacity retention of ∼ 88 % at 25 °C and ∼ 81 % at 45 °C after 200 cycles at 1C, within a voltage range of 2.8-4.3 V, closely matching the performances of conventional NCM and NCA cathodes. Without cobalt, the cathodes exhibited increased cation disorder leading to inferior rate capabilities at high C-rates. In-situ transmission XRD analysis revealed that the introduction of Al has reduced the phase change and provided much-needed stability to the overall structure of the Co-free NMA-3. Altogether, the findings suggest that our aluminum-modified NMA-3 sample offers a promising approach to developing Co-free, Ni-rich cathodes, effectively paving the way toward sustainable, high-energy-density LIBs.
  7. Ramakrishna S, Hu W, Jose R
    Circ Econ Sustain, 2022 Aug 06.
    PMID: 35966038 DOI: 10.1007/s43615-022-00201-w
    For a successful delivery of the United Nations Sustainable Development Goals (UNSDGs) and to track the progress of UNSDGs as well as identify the gaps and the areas requiring more attention, periodic analyses on the "research on sustainability" by various countries and their contribution to the topic are inevitable. This paper tracks the trends in sustainability research including the geographical distribution on sustainability research, their level of multi-disciplinarity and the cross-border collaboration, their distribution of funding with respect to the UNSDGs, and the lifecycle analyses. Cumulative publications and patents on sustainability could be fitted to an exponential function, thereby highlighting the importance of the research on sustainability in the recent past. Besides, this analytics quantifies cross-border collaborations and knowledge integration to solve critical issues as well as traditional and emerging sources to undertake sustainability research. As an important aspect of resource sustainability and circular economy, trends in publication and funding on lifecycle assessment have also been investigated. The analytics present here identify that major sustainability research volume is from the social sciences as well as business and economics sectors, whereas contributions from the engineering disciplines to develop technologies for sustainability practices are relatively lower. Similarly, funding distribution is also not evenly distributed under various SDGs; the larger share of funding has been on energy security and climate change research. Thus, this study identifies many gaps to be filled for the UNSDGs to be successful.
  8. Gupta T, Connors M, Tan JW, Manosroi W, Ahmed N, Ting PY, et al.
    Am J Hypertens, 2017 Dec 08;31(1):124-131.
    PMID: 28985281 DOI: 10.1093/ajh/hpx146
    BACKGROUND: Understanding the interactions between genetics, sodium (Na+) intake, and blood pressure (BP) will help overcome the lack of individual specificity in our current treatment of hypertension. This study had 3 goals: expand on the relationship between striatin gene (STRN) status and salt-sensitivity of BP (SSBP); evaluate the status of Na+ and volume regulating systems by striatin risk allele status; evaluate potential SSBP mechanisms.

    METHODS: We assessed the relationship between STRN status in humans (HyperPATH cohort) and SSBP and on volume regulated systems in humans and a striatin knockout mouse (STRN+/-).

    RESULTS: The previously identified association between a striatin risk allele and systolic SSBP was demonstrated in a new cohort (P = 0.01). The STRN-SSBP association was significant for the combined cohort (P = 0.003; β = +5.35 mm Hg systolic BP/risk allele) and in the following subgroups: normotensives, hypertensives, men, and older subjects. Additionally, we observed a lower epinephrine level in risk allele carriers (P = 0.014) and decreased adrenal medulla phenylethanolamine N-methyltransferase (PNMT) in STRN+/- mice. No significant associations were observed with other volume regulated systems.

    CONCLUSIONS: These results support the association between a variant of striatin and SSBP and extend the findings to normotensive individuals and other subsets. In contrast to most salt-sensitive hypertensives, striatin-associated SSBP is associated with normal plasma renin activity and reduced epinephrine levels. These data provide clues to the underlying cause and a potential pathway to achieve, specific, personalized treatment, and prevention.

  9. Fakharuddin A, Palma AL, Di Giacomo F, Casaluci S, Matteocci F, Wali Q, et al.
    Nanotechnology, 2015 Dec 11;26(49):494002.
    PMID: 26574237 DOI: 10.1088/0957-4484/26/49/494002
    The past few years have witnessed remarkable progress in solution-processed methylammonium lead halide (CH3NH3PbX3, X = halide) perovskite solar cells (PSCs) with reported photoconversion efficiency (η) exceeding 20% in laboratory-scale devices and reaching up to 13% in their large area perovskite solar modules (PSMs). These devices mostly employ mesoporous TiO2 nanoparticles (NPs) as an electron transport layer (ETL) which provides a scaffold on which the perovskite semiconductor can grow. However, limitations exist which are due to trap-limited electron transport and non-complete pore filling. Herein, we have employed TiO2 nanorods (NRs), a material offering a two-fold higher electronic mobility and higher pore-filing compared to their particle analogues, as an ETL. A crucial issue in NRs' patterning over substrates is resolved by using precise Nd:YVO4 laser ablation, and a champion device with η ∼ 8.1% is reported via a simple and low cost vacuum-vapor assisted sequential processing (V-VASP) of a CH3NH3PbI3 film. Our experiments showed a successful demonstration of NRs-based PSMs via the V-VASP technique which can be applied to fabricate large area modules with a pin-hole free, smooth and dense perovskite layer which is required to build high efficiency devices.
  10. Gnaneshwar PV, Sudakaran SV, Abisegapriyan S, Sherine J, Ramakrishna S, Rahim MHA, et al.
    Mater Sci Eng C Mater Biol Appl, 2019 Mar;96:337-346.
    PMID: 30606541 DOI: 10.1016/j.msec.2018.11.033
    Far-flung evolution in tissue engineering enabled the development of bioactive and biodegradable materials to generate biocomposite nanofibrous scaffolds for bone repair and replacement therapies. Polymeric bioactive nanofibers are to biomimic the native extracellular matrix (ECM), delivering tremendous regenerative potentials for drug delivery and tissue engineering applications. It's been known from few decades that Zinc oxide (ZnO) nanoparticles are enhancing bone growth and providing proliferation of osteoblasts when incorporated with hydroxyapatite (HAp). We attempted to investigate the interaction between the human foetal osteoblasts (hFOB) with ZnO doped HAp incorporated biocomposite poly(L-lactic acid)-co-poly(ε-caprolactone) and silk fibroin (PLACL/SF) nanofibrous scaffolds for osteoblasts mineralization in bone tissue regeneration. The present study, we doped ZnO with HAp (ZnO(HAp) using the sol-gel ethanol condensation technique. The properties of PLACL/SF/ZnO(HAp) biocomposite nanofibrous scaffolds enhanced with doped and blended ZnO/HAp were characterized using Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), Contact angle and Tensile studies to determine the morphology, functionality, wettability and stability. The in vitro study results showed that the addition of ZnO and HAp enhances the secretion of bone mineral matrix (98%) with smaller fiber diameter (139.4 ± 27 nm) due to the presence of silk fibroin showing potential tensile properties (322.4%), and increased the proliferation of osteoblasts for bone tissue regeneration.
  11. Menon V, Sharma S, Gupta S, Ghosal A, Nadda AK, Jose R, et al.
    Chemosphere, 2023 Mar;317:137848.
    PMID: 36642147 DOI: 10.1016/j.chemosphere.2023.137848
    Synthetic plastics, which are lightweight, durable, elastic, mouldable, cheap, and hydrophobic, were originally invented for human convenience. However, their non-biodegradability and continuous accumulation at an alarming rate as well as subsequent conversion into micro/nano plastic scale structures via mechanical and physio-chemical degradation pose significant threats to living beings, organisms, and the environment. Various minuscule forms of plastics detected in water, soil, and air are making their passage into living cells. High temperature and ambient humidity increase the degradation potential of plastic polymers photo-catalytically under sunlight or UV-B radiations. Microplastics (MPs) of polyethylene terephthalate, polyethylene, polystyrene, polypropylene, and polyvinyl chloride have been detected in bottled water. These microplastics are entering into the food chain cycle, causing serious harm to all living organisms. MPs entering into the food chain are usually inert in nature, possessing different sizes and shapes. Once they enter a cell or tissue, it causes mechanical damage, induces inflammation, disturbs metabolism, and even lead to necrosis. Various generation routes, types, impacts, identification, and treatment of microplastics entering the water bodies and getting associated with various pollutants are discussed in this review. It emphasizes potential detection techniques like pyrolysis, gas chromatography-mass spectrometry (GC-MS), micro-Raman spectroscopy, and fourier transform infrared spectroscopy (FT IR) spectroscopy for microplastics from water samples.
  12. Jeyakumar J, Seenivasan M, Wu YS, Wu SH, Chang JK, Jose R, et al.
    J Colloid Interface Sci, 2023 Jun;639:145-159.
    PMID: 36804788 DOI: 10.1016/j.jcis.2023.02.064
    Nickel-rich (Ni > 90 %) cathodes are regarded as one of the most attractive because of their high energy density, despite their poor stability and cycle life. To improve their performance, in this study we synthesized a double concentration-gradient layered Li[Ni0.90Co0.04Mn0.03Al0.03]O2 oxide (CG-NCMA) using a continuous co-precipitation Taylor-Couette cylindrical reactor (TCCR) with a Ni-rich-core, an Mn-rich surface, and Al on top. The concentration-gradient morphology was confirmed through cross-sectional EDX line scanning. The as-synthesized sample exhibited excellent electrochemical performance at high rates (5C/10C), as well as cyclability (91.5 % after 100 cycles and 70.3 % after 500 cycles at 1C), superior to that (83.4 % and 47.6 %) of its non-concentration-gradient counterpart (UC-NCMA). The Mn-rich surface and presence of Al helped the material stay structurally robust, even after 500 cycles, while also suppressing side reactions between the electrode and electrolyte, resulting in better overall electrochemical performance. These enhancements in performance were studied using TEM, SEM, in-situ-XRD, XPS, CV, EIS and post-mortem analyses. This synthetic method enables the highly scalable production of CG-NCMA samples with two concentration-gradient structures for practical applications in Li-ion batteries.
  13. Kliemann N, Murphy N, Viallon V, Freisling H, Tsilidis KK, Rinaldi S, et al.
    Int J Cancer, 2020 Aug 01;147(3):648-661.
    PMID: 31652358 DOI: 10.1002/ijc.32753
    Emerging evidence suggests that a metabolic profile associated with obesity may be a more relevant risk factor for some cancers than adiposity per se. Basal metabolic rate (BMR) is an indicator of overall body metabolism and may be a proxy for the impact of a specific metabolic profile on cancer risk. Therefore, we investigated the association of predicted BMR with incidence of 13 obesity-related cancers in the European Prospective Investigation into Cancer and Nutrition (EPIC). BMR at baseline was calculated using the WHO/FAO/UNU equations and the relationships between BMR and cancer risk were investigated using multivariable Cox proportional hazards regression models. A total of 141,295 men and 317,613 women, with a mean follow-up of 14 years were included in the analysis. Overall, higher BMR was associated with a greater risk for most cancers that have been linked with obesity. However, among normal weight participants, higher BMR was associated with elevated risks of esophageal adenocarcinoma (hazard ratio per 1-standard deviation change in BMR [HR1-SD ]: 2.46; 95% CI 1.20; 5.03) and distal colon cancer (HR1-SD : 1.33; 95% CI 1.001; 1.77) among men and with proximal colon (HR1-SD : 1.16; 95% CI 1.01; 1.35), pancreatic (HR1-SD : 1.37; 95% CI 1.13; 1.66), thyroid (HR1-SD : 1.65; 95% CI 1.33; 2.05), postmenopausal breast (HR1-SD : 1.17; 95% CI 1.11; 1.22) and endometrial (HR1-SD : 1.20; 95% CI 1.03; 1.40) cancers in women. These results indicate that higher BMR may be an indicator of a metabolic phenotype associated with risk of certain cancer types, and may be a useful predictor of cancer risk independent of body fatness.
  14. Harilal M, Vidyadharan B, Misnon II, Anilkumar GM, Lowe A, Ismail J, et al.
    ACS Appl Mater Interfaces, 2017 Mar 29;9(12):10730-10742.
    PMID: 28266837 DOI: 10.1021/acsami.7b00676
    A one-dimensional morphology comprising nanograins of two metal oxides, one with higher electrical conductivity (CuO) and the other with higher charge storability (Co3O4), is developed by electrospinning technique. The CuO-Co3O4 nanocomposite nanowires thus formed show high specific capacitance, high rate capability, and high cycling stability compared to their single-component nanowire counterparts when used as a supercapacitor electrode. Practical symmetric (SSCs) and asymmetric (ASCs) supercapacitors are fabricated using commercial activated carbon, CuO, Co3O4, and CuO-Co3O4 composite nanowires, and their properties are compared. A high energy density of ∼44 Wh kg-1 at a power density of 14 kW kg-1 is achieved in CuO-Co3O4 ASCs employing aqueous alkaline electrolytes, enabling them to store high energy at a faster rate. The current methodology of hybrid nanowires of various functional materials could be applied to extend the performance limit of diverse electrical and electrochemical devices.
  15. Muzakir SK, Alias N, Yusoff MM, Jose R
    Phys Chem Chem Phys, 2013 Oct 14;15(38):16275-85.
    PMID: 24000052 DOI: 10.1039/c3cp52858h
    The possibility of achieving many electrons per absorbed photon of sufficient energy by quantum dots (QDs) drives the motivation to build high performance quantum dot solar cells (QDSCs). Although performance of dye-sensitized solar cells (DSCs), with similar device configuration as that of QDSCs, has significantly improved in the last two decades QDSCs are yet to demonstrate impressive device performances despite the remarkable features of QDs as light harvesters. We investigated the fundamental differences in the optical properties of QDs and dyes using DFT calculations to get insights on the inferior performance of QDSCs. The CdSe QDs and the ruthenium bipyridyl dicarboxylic acid dye (N3) were used as typical examples in this study. Based on a generalized equation of state correlating material properties and photoconversion efficiency, we calculated ground and excited state properties of these absorbers at the B3LYP/lanl2dz level of DFT and analyzed them on the basis of the device performance. Five missing links have been identified in the study which provides numerous insights into building high efficiency QDSCs. They are (i) fundamental differences in the emitting states of the QDs in the strong and weak confinement regimes were observed, which explained successfully the performance differences; (ii) the crucial role of bifunctional ligands that bind the QDs and the photo-electrode was identified; in most cases use of bifunctional ligands does not lead to a QD enabled widening of the absorption of the photo-electrode; (iii) wide QDs size distribution further hinders efficient electron injections; (iv) wide absorption cross-section of QDs favours photon harvesting; and (v) the role of redox potential of the electrolyte in the QD reduction process.
  16. Pochont NR, Sekhar YR, Vasu K, Jose R
    Molecules, 2022 Nov 16;27(22).
    PMID: 36432027 DOI: 10.3390/molecules27227927
    Perovskite solar cells (PSCs) offer advantages over widely deployed silicon solar cells in terms of ease of fabrication; however, the device is still under rigorous materials optimization for cell performance, stability, and cost. In this work, we explore a version of a PSC by replacing the polymeric hole transport layer (HTL) such as Spiro-OMeTAD, P3HT, and PEDOT: PSS with a more air-stable metal oxide, viz., nitrogen-doped titanium dioxide (TiO2:N). Numerical simulations on formamidinium (FA)-based PSCs in the FTO/TiO2/FAPbI3/Ag configuration have been carried out to depict the behaviour of the HTL as well as the effect of absorber layer thickness (∆t) on photovoltaic parameters. The results show that the cell output increases when the HTL bandgap increases from 2.5 to 3.0 eV. By optimizing the absorber layer thickness and the gradient in defect density (Nt), the device structure considered here can deliver a maximum power conversion efficiency of ~21.38% for a lower HTL bandgap (~2.5 eV) and ~26.99% for a higher HTL bandgap of ~3.0 eV. The results are validated by reproducing the performance of PSCs employing commonly used polymeric HTLs, viz. Spiro-OMeTAD, P3HT, and PEDOT: PSS as well as high power conversion efficiency in the highly crystalline perovskite layer. Therefore, the present study provides high-performing, cost-effective PSCs using TiO2:N.
  17. Montero-Odasso M, van der Velde N, Alexander NB, Becker C, Blain H, Camicioli R, et al.
    Age Ageing, 2021 09 11;50(5):1499-1507.
    PMID: 34038522 DOI: 10.1093/ageing/afab076
    BACKGROUND: falls and fall-related injuries are common in older adults, have negative effects both on quality of life and functional independence and are associated with increased morbidity, mortality and health care costs. Current clinical approaches and advice from falls guidelines vary substantially between countries and settings, warranting a standardised approach. At the first World Congress on Falls and Postural Instability in Kuala Lumpur, Malaysia, in December 2019, a worldwide task force of experts in falls in older adults, committed to achieving a global consensus on updating clinical practice guidelines for falls prevention and management by incorporating current and emerging evidence in falls research. Moreover, the importance of taking a person-centred approach and including perspectives from patients, caregivers and other stakeholders was recognised as important components of this endeavour. Finally, the need to specifically include recent developments in e-health was acknowledged, as well as the importance of addressing differences between settings and including developing countries.

    METHODS: a steering committee was assembled and 10 working Groups were created to provide preliminary evidence-based recommendations. A cross-cutting theme on patient's perspective was also created. In addition, a worldwide multidisciplinary group of experts and stakeholders, to review the proposed recommendations and to participate in a Delphi process to achieve consensus for the final recommendations, was brought together.

    CONCLUSION: in this New Horizons article, the global challenges in falls prevention are depicted, the goals of the worldwide task force are summarised and the conceptual framework for development of a global falls prevention and management guideline is presented.

  18. Wu ZH, Shih JY, Li YJ, Tsai YD, Hung TF, Karuppiah C, et al.
    Nanomaterials (Basel), 2022 Jan 26;12(3).
    PMID: 35159754 DOI: 10.3390/nano12030409
    To reduce surface contamination and increase battery life, MoO3 nanoparticles were coated with a high-voltage (5 V) LiNi0.5Mn1.5O4 cathode material by in-situ method during the high-temperature annealing process. To avoid charging by more than 5 V, we also developed a system based on anode-limited full-cell with a negative/positive electrode (N/P) ratio of 0.9. The pristine LiNi0.5Mn1.5O4 was initially prepared by high-energy ball-mill with a solid-state reaction, followed by a precipitation reaction with a molybdenum precursor for the MoO3 coating. The typical structural and electrochemical behaviors of the materials were clearly investigated and reported. The results revealed that a sample of 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode exhibited an optimal electrochemical activity, indicating that the MoO3 nanoparticle coating layers considerably enhanced the high-rate charge-discharge profiles and cycle life performance of LiNi0.5Mn1.5O4 with a negligible capacity decay. The 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode could achieve high specific discharge capacities of 131 and 124 mAh g-1 at the rates of 1 and 10 C, respectively. In particular, the 2 wt.% MoO3-coated LiNi0.5Mn1.5O4 electrode retained its specific capacity (87 mAh g-1) of 80.1% after 500 cycles at a rate of 10 C. The Li4Ti5O12/LiNi0.5Mn1.5O4 full cell based on the electrochemical-cell (EL-cell) configuration was successfully assembled and tested, exhibiting excellent cycling retention of 93.4% at a 1 C rate for 100 cycles. The results suggest that the MoO3 nano-coating layer could effectively reduce side reactions at the interface of the LiNi0.5Mn1.5O4 cathode and the electrolyte, thus improving the electrochemical performance of the battery system.
  19. Ahmed I, Fakharuddin A, Wali Q, Bin Zainun AR, Ismail J, Jose R
    Nanotechnology, 2015 Mar 13;26(10):105401.
    PMID: 25687409 DOI: 10.1088/0957-4484/26/10/105401
    Working electrode (WE) fabrication offers significant challenges in terms of achieving high-efficiency dye-sensitized solar cells (DSCs). We have combined the beneficial effects of vertical nanorods grown on conducting glass substrate for charge transport and mesoporous particles for dye loading and have achieved a high photoconversion efficiency of (η) > 11% with an internal quantum efficiency of ∼93% in electrode films of thickness ∼7 ± 0.5 μm. Controlling the interface between the vertical nanorods and the mesoporous film is a crucial step in attaining high η. We identify three parameters, viz., large surface area of nanoparticles, increased light scattering of the nanorod-nanoparticle layer, and superior charge transport of nanorods, that simultaneously contribute to the improved photovoltaic performance of the WE developed.
  20. Tan YJD, Brooks DL, Wong KYH, Huang Y, Romero JR, Williams JS, et al.
    J Endocrinol, 2023 Jan 01;256(1).
    PMID: 36327153 DOI: 10.1530/JOE-22-0141
    Biologic sex influences the development of cardiovascular disease and modifies aldosterone (ALDO) and blood pressure (BP) phenotypes: females secrete more ALDO, and their adrenal glomerulosa cell is more sensitive to stimulation. Lysine-specific demethylase 1 (LSD1) variants in Africans and LSD1 deficiency in mice are associated with BP and/or ALDO phenotypes. This study, in 18- and 40-week-old wild type (WT) and LSD1+/- mice, was designed to determine whether (1) sex modifies ALDO biosynthetic enzymes; (2) LSD1 deficiency disrupts the effect of sex on these enzymes; (3) within each genotype, there is a positive relationship between ALDO biosynthesis (proximate phenotype), plasma ALDO (intermediate phenotype) and BP levels (distant phenotype); and (4) sex and LSD1 genotype interact on these phenotypes. In WT mice, female sex increases the expression of early enzymes in ALDO biosynthesis but not ALDO levels or systolic blood pressure (SBP). However, enzyme expressions are shifted downward in LSD1+/- females vs males, so that early enzyme levels are similar but the late enzymes are substantially lower. In both age groups, LSD1 deficiency modifies the adrenal enzyme expressions, circulating ALDO levels, and SBP in a sex-specific manner. Finally, significant sex/LSD1 genotype interactions modulate the three phenotypes in mice. In conclusion, biologic sex in mice interacts with LSD1 deficiency to modify several phenotypes: (1) proximal (ALDO biosynthetic enzymes); (2) intermediate (circulating ALDO); and (3) distant (SBP). These results provide entry to better understand the roles of biological sex and LSD1 in (1) hypertension heterogeneity and (2) providing more personalized treatment.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links