Displaying publications 1 - 20 of 34 in total

Abstract:
Sort:
  1. Syazwan A, Rafee BM, Juahir H, Azman A, Nizar A, Izwyn Z, et al.
    Drug Healthc Patient Saf, 2012;4:107-26.
    PMID: 23055779 DOI: 10.2147/DHPS.S33400
    To analyze and characterize a multidisciplinary, integrated indoor air quality checklist for evaluating the health risk of building occupants in a nonindustrial workplace setting.
  2. Ismail A, Juahir H, Mohamed SB, Toriman ME, Kassim AM, Zain SM, et al.
    Water Sci Technol, 2021 Mar;83(5):1039-1054.
    PMID: 33724935 DOI: 10.2166/wst.2021.038
    The main focus of this study is exploring the spatial distribution of polyaromatics hydrocarbon links between oil spills in the environment via Support Vector Machines based on Kernel-Radial Basis Function (RBF) approach for high precision classification of oil spill type from its sample fingerprinting in Peninsular Malaysia. The results show the highest concentrations of Σ Alkylated PAHs and Σ EPA PAHs in ΣTAH concentration in diesel from the oil samples PP3_liquid and GP6_Jetty achieving 100% classification output, corresponding to coherent decision boundary and projective subspace estimation. The high dimensional nature of this approach has led to the existence of a perfect separability of the oil type classification from four clustered oil type components; i.e diesel, bunker C, Mixture Oil (MO), lube oil and Waste Oil (WO) with the slack variables of ξ ≠ 0. Of the four clusters, only the SVs of two are correctly predicted, namely diesel and MO. The kernel-RBF approach provides efficient and reliable oil sample classification, enabling the oil classification to be optimally performed within a relatively short period of execution and a faster dataset classification where the slack variables ξ are non-zero.
  3. Ismail A, Toriman ME, Juahir H, Kassim AM, Zain SM, Ahmad WKW, et al.
    Mar Pollut Bull, 2016 Oct 15;111(1-2):339-346.
    PMID: 27397593 DOI: 10.1016/j.marpolbul.2016.06.089
    Extended use of GC-FID and GC-MS in oil spill fingerprinting and matching is significantly important for oil classification from the oil spill sources collected from various areas of Peninsular Malaysia and Sabah (East Malaysia). Oil spill fingerprinting from GC-FID and GC-MS coupled with chemometric techniques (discriminant analysis and principal component analysis) is used as a diagnostic tool to classify the types of oil polluting the water. Clustering and discrimination of oil spill compounds in the water from the actual site of oil spill events are divided into four groups viz. diesel, Heavy Fuel Oil (HFO), Mixture Oil containing Light Fuel Oil (MOLFO) and Waste Oil (WO) according to the similarity of their intrinsic chemical properties. Principal component analysis (PCA) demonstrates that diesel, HFO, MOLFO and WO are types of oil or oil products from complex oil mixtures with a total variance of 85.34% and are identified with various anthropogenic activities related to either intentional releasing of oil or accidental discharge of oil into the environment. Our results show that the use of chemometric techniques is significant in providing independent validation for classifying the types of spilled oil in the investigation of oil spill pollution in Malaysia. This, in consequence would result in cost and time saving in identification of the oil spill sources.
  4. Juahir H, Ismail A, Mohamed SB, Toriman ME, Kassim AM, Zain SM, et al.
    Mar Pollut Bull, 2017 Jul 15;120(1-2):322-332.
    PMID: 28535957 DOI: 10.1016/j.marpolbul.2017.04.032
    This study involves the use of quality engineering in oil spill classification based on oil spill fingerprinting from GC-FID and GC-MS employing the six-sigma approach. The oil spills are recovered from various water areas of Peninsular Malaysia and Sabah (East Malaysia). The study approach used six sigma methodologies that effectively serve as the problem solving in oil classification extracted from the complex mixtures of oil spilled dataset. The analysis of six sigma link with the quality engineering improved the organizational performance to achieve its objectivity of the environmental forensics. The study reveals that oil spills are discriminated into four groups' viz. diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) according to the similarity of the intrinsic chemical properties. Through the validation, it confirmed that four discriminant component, diesel, hydrocarbon fuel oil (HFO), mixture oil lubricant and fuel oil (MOLFO) and waste oil (WO) dominate the oil types with a total variance of 99.51% with ANOVA giving Fstat>Fcritical at 95% confidence level and a Chi Square goodness test of 74.87. Results obtained from this study reveals that by employing six-sigma approach in a data-driven problem such as in the case of oil spill classification, good decision making can be expedited.
  5. Syed Abdul Mutalib SN, Juahir H, Azid A, Mohd Sharif S, Latif MT, Aris AZ, et al.
    Environ Sci Process Impacts, 2013 Sep;15(9):1717-28.
    PMID: 23831918 DOI: 10.1039/c3em00161j
    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.
  6. Ismail A, Toriman ME, Juahir H, Zain SM, Habir NL, Retnam A, et al.
    Mar Pollut Bull, 2016 May 15;106(1-2):292-300.
    PMID: 27001716 DOI: 10.1016/j.marpolbul.2015.10.019
    This study presents the determination of the spatial variation and source identification of heavy metal pollution in surface water along the Straits of Malacca using several chemometric techniques. Clustering and discrimination of heavy metal compounds in surface water into two groups (northern and southern regions) are observed according to level of concentrations via the application of chemometric techniques. Principal component analysis (PCA) demonstrates that Cu and Cr dominate the source apportionment in northern region with a total variance of 57.62% and is identified with mining and shipping activities. These are the major contamination contributors in the Straits. Land-based pollution originating from vehicular emission with a total variance of 59.43% is attributed to the high level of Pb concentration in the southern region. The results revealed that one state representing each cluster (northern and southern regions) is significant as the main location for investigating heavy metal concentration in the Straits of Malacca which would save monitoring cost and time.

    CAPSULE: The monitoring of spatial variation and source of heavy metals pollution at the northern and southern regions of the Straits of Malacca, Malaysia, using chemometric analysis.

  7. Abdul Zali M, Juahir H, Ismail A, Retnam A, Idris AN, Sefie A, et al.
    Environ Sci Pollut Res Int, 2021 Apr;28(16):20717-20736.
    PMID: 33405159 DOI: 10.1007/s11356-020-11680-5
    Sewage contamination is a principal concern in water quality management as pathogens in sewage can cause diseases and lead to detrimental health effects in humans. This study examines the distribution of seven sterol compounds, namely coprostanol, epi-coprostanol, cholesterol, cholestanol, stigmasterol, campesterol, and β-sitosterol in filtered and particulate phases of sewage treatment plants (STPs), groundwater, and river water. For filtered samples, solid-phase extraction (SPE) was employed while for particulate samples were sonicated. Quantification was done by using gas chromatography-mass spectrometer (GC-MS). Faecal stanols (coprostanol and epi-coprostanol) and β-sitosterol were dominant in most STP samples. Groundwater samples were influenced by natural/biogenic sterol, while river water samples were characterized by a mixture of sources. Factor loadings from principal component analysis (PCA) defined fresh input of biogenic sterol and vascular plants (positive varimax factor (VF)1), aged/treated sewage sources (negative VF1), fresh- and less-treated sewage and domestic sources (positive VF2), biological sewage effluents (negative VF2), and fresh-treated sewage sources (VF3) in the samples. Association of VF loadings and factor score values illustrated the correlation of STP effluents and the input of biogenic and plant sterol sources in river and groundwater samples of Linggi. This study focuses on sterol distribution and its potential sources; these findings will aid in sewage assessment in the aquatic environment.
  8. Sheikhy Narany T, Ramli MF, Aris AZ, Sulaiman WN, Juahir H, Fakharian K
    ScientificWorldJournal, 2014;2014:419058.
    PMID: 24523640 DOI: 10.1155/2014/419058
    Hydrogeochemical investigations had been carried out at the Amol-Babol Plain in the north of Iran. Geochemical processes and factors controlling the groundwater chemistry are identified based on the combination of classic geochemical methods with geographic information system (GIS) and geostatistical techniques. The results of the ionic ratios and Gibbs plots show that water rock interaction mechanisms, followed by cation exchange, and dissolution of carbonate and silicate minerals have influenced the groundwater chemistry in the study area. The hydrogeochemical characteristics of groundwater show a shift from low mineralized Ca-HCO3, Ca-Na-HCO3, and Ca-Cl water types to high mineralized Na-Cl water type. Three classes, namely, C1, C2, and C3, have been classified using cluster analysis. The spatial distribution maps of Na(+)/Cl(-), Mg(2+)/Ca(2+), and Cl(-)/HCO3 (-) ratios and electrical conductivity values indicate that the carbonate and weathering of silicate minerals played a significant role in the groundwater chemistry on the southern and western sides of the plain. However, salinization process had increased due to the influence of the evaporation-precipitation process towards the north-eastern side of the study area.
  9. Gazzaz NM, Yusoff MK, Juahir H, Ramli MF, Aris AZ
    Water Environ Res, 2013 Aug;85(8):751-66.
    PMID: 24003601
    This study investigated relationships of a water quality index (WQI) with multiple water quality variables (WQVs), explored variability in water quality over time and space, and established linear and non-linear models predictive of WQI from raw WQVs. Data were processed using Spearman's rank correlation analysis, multiple linear regression, and artificial neural network modeling. Correlation analysis indicated that from a temporal perspective, the WQI, temperature, and zinc, arsenic, chemical oxygen demand, sodium, and dissolved oxygen concentrations increased, whereas turbidity and suspended solids, total solids, nitrate nitrogen (NO3-N), and biochemical oxygen demand concentrations decreased with year. From a spatial perspective, an increase with distance of the sampling station from the headwater was exhibited by 10 WQVs: magnesium, calcium, dissolved solids, electrical conductivity, temperature, NO3-N, arsenic, chloride, potassium, and sodium. At the same time, the WQI; Escherichia coli bacteria counts; and suspended solids, total solids, and dissolved oxygen concentrations decreased with distance from the headwater. Lastly, regression and artificial neural network models with high prediction powers (81.2% and 91.4%, respectively) were developed and are discussed.
  10. Gazzaz NM, Yusoff MK, Ramli MF, Aris AZ, Juahir H
    Mar Pollut Bull, 2012 Apr;64(4):688-98.
    PMID: 22330076 DOI: 10.1016/j.marpolbul.2012.01.032
    This study employed three chemometric data mining techniques (factor analysis (FA), cluster analysis (CA), and discriminant analysis (DA)) to identify the latent structure of a water quality (WQ) dataset pertaining to Kinta River (Malaysia) and to classify eight WQ monitoring stations along the river into groups of similar WQ characteristics. FA identified the WQ parameters responsible for variations in Kinta River's WQ and accentuated the roles of weathering and surface runoff in determining the river's WQ. CA grouped the monitoring locations into a cluster of low levels of water pollution (the two uppermost monitoring stations) and another of relatively high levels of river pollution (the mid-, and down-stream stations). DA confirmed these clusters and produced a discriminant function which can predict the cluster membership of new and/or unknown samples. These chemometric techniques highlight the potential for reasonably reducing the number of WQVs and monitoring stations for long-term monitoring purposes.
  11. Gazzaz NM, Yusoff MK, Aris AZ, Juahir H, Ramli MF
    Mar Pollut Bull, 2012 Nov;64(11):2409-20.
    PMID: 22925610 DOI: 10.1016/j.marpolbul.2012.08.005
    This article describes design and application of feed-forward, fully-connected, three-layer perceptron neural network model for computing the water quality index (WQI)(1) for Kinta River (Malaysia). The modeling efforts showed that the optimal network architecture was 23-34-1 and that the best WQI predictions were associated with the quick propagation (QP) training algorithm; a learning rate of 0.06; and a QP coefficient of 1.75. The WQI predictions of this model had significant, positive, very high correlation (r=0.977, p<0.01) with the measured WQI values, implying that the model predictions explain around 95.4% of the variation in the measured WQI values. The approach presented in this article offers useful and powerful alternative to WQI computation and prediction, especially in the case of WQI calculation methods which involve lengthy computations and use of various sub-index formulae for each value, or range of values, of the constituent water quality variables.
  12. Al-Odaini NA, Zakaria MP, Zali MA, Juahir H, Yaziz MI, Surif S
    Environ Monit Assess, 2012 Nov;184(11):6735-48.
    PMID: 22193630 DOI: 10.1007/s10661-011-2454-3
    The growing interest in the environmental occurrence of veterinary and human pharmaceuticals is essentially due to their possible health implications to humans and ecosystem. This study assesses the occurrence of human pharmaceuticals in a Malaysian tropical aquatic environment taking a chemometric approach using cluster analysis, discriminant analysis and principal component analysis. Water samples were collected from seven sampling stations along the heavily populated Langat River basin on the west coast of peninsular Malaysia and its main tributaries. Water samples were extracted using solid-phase extraction and analyzed using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) for 18 pharmaceuticals and one metabolite, which cover a range of six therapeutic classes widely consumed in Malaysia. Cluster analysis was applied to group both pharmaceutical pollutants and sampling stations. Cluster analysis successfully clustered sampling stations and pollutants into three major clusters. Discriminant analysis was applied to identify those pollutants which had a significant impact in the definition of clusters. Finally, principal component analysis using a three-component model determined the constitution and data variance explained by each of the three main principal components.
  13. Juahir H, Zain SM, Yusoff MK, Hanidza TI, Armi AS, Toriman ME, et al.
    Environ Monit Assess, 2011 Feb;173(1-4):625-41.
    PMID: 20339961 DOI: 10.1007/s10661-010-1411-x
    This study investigates the spatial water quality pattern of seven stations located along the main Langat River. Environmetric methods, namely, the hierarchical agglomerative cluster analysis (HACA), the discriminant analysis (DA), the principal component analysis (PCA), and the factor analysis (FA), were used to study the spatial variations of the most significant water quality variables and to determine the origin of pollution sources. Twenty-three water quality parameters were initially selected and analyzed. Three spatial clusters were formed based on HACA. These clusters are designated as downstream of Langat river, middle stream of Langat river, and upstream of Langat River regions. Forward and backward stepwise DA managed to discriminate six and seven water quality variables, respectively, from the original 23 variables. PCA and FA (varimax functionality) were used to investigate the origin of each water quality variable due to land use activities based on the three clustered regions. Seven principal components (PCs) were obtained with 81% total variation for the high-pollution source (HPS) region, while six PCs with 71% and 79% total variances were obtained for the moderate-pollution source (MPS) and low-pollution source (LPS) regions, respectively. The pollution sources for the HPS and MPS are of anthropogenic sources (industrial, municipal waste, and agricultural runoff). For the LPS region, the domestic and agricultural runoffs are the main sources of pollution. From this study, we can conclude that the application of environmetric methods can reveal meaningful information on the spatial variability of a large and complex river water quality data.
  14. Juahir H, Zain SM, Aris AZ, Yusoff MK, Mokhtar MB
    J Environ Monit, 2010 Jan;12(1):287-95.
    PMID: 20082024 DOI: 10.1039/b907306j
    The present study deals with the assessment of Langat River water quality with some chemometrics approaches such as cluster and discriminant analysis coupled with an artificial neural network (ANN). The data used in this study were collected from seven monitoring stations under the river water quality monitoring program by the Department of Environment (DOE) from 1995 to 2002. Twenty three physico-chemical parameters were involved in this analysis. Cluster analysis successfully clustered the Langat River into three major clusters, namely high, moderate and less pollution regions. Discriminant analysis identified seven of the most significant parameters which contribute to the high variation of Langat River water quality, namely dissolved oxygen, biological oxygen demand, pH, ammoniacal nitrogen, chlorine, E. coli, and coliform. Discriminant analysis also plays an important role as an input selection parameter for an ANN of spatial prediction (pollution regions). The ANN showed better prediction performance in discriminating the regional area with an excellent percentage of correct classification compared to discriminant analysis. Multivariate analysis, coupled with ANN, is proposed, which could help in decision making and problem solving in the local environment.
  15. Retnam A, Zakaria MP, Juahir H, Aris AZ, Zali MA, Kasim MF
    Mar Pollut Bull, 2013 Apr 15;69(1-2):55-66.
    PMID: 23452623 DOI: 10.1016/j.marpolbul.2013.01.009
    This study investigated polycyclic aromatic hydrocarbons (PAHs) pollution in surface sediments within aquaculture areas in Peninsular Malaysia using chemometric techniques, forensics and univariate methods. The samples were analysed using soxhlet extraction, silica gel column clean-up and gas chromatography mass spectrometry. The total PAH concentrations ranged from 20 to 1841 ng/g with a mean of 363 ng/g dw. The application of chemometric techniques enabled clustering and discrimination of the aquaculture sediments into four groups according to the contamination levels. A combination of chemometric and molecular indices was used to identify the sources of PAHs, which could be attributed to vehicle emissions, oil combustion and biomass combustion. Source apportionment using absolute principle component scores-multiple linear regression showed that the main sources of PAHs are vehicle emissions 54%, oil 37% and biomass combustion 9%. Land-based pollution from vehicle emissions is the predominant contributor of PAHs in the aquaculture sediments of Peninsular Malaysia.
  16. Nasir MF, Zali MA, Juahir H, Hussain H, Zain SM, Ramli N
    Iranian J Environ Health Sci Eng, 2012 Dec 10;9(1):18.
    PMID: 23369363 DOI: 10.1186/1735-2746-9-18
    Recent techniques in the management of surface river water have been expanding the demand on the method that can provide more representative of multivariate data set. A proper technique of the architecture of artificial neural network (ANN) model and multiple linear regression (MLR) provides an advance tool for surface water modeling and forecasting. The development of receptor model was applied in order to determine the major sources of pollutants at Kuantan River Basin, Malaysia. Thirteen water quality parameters were used in principal component analysis (PCA) and new variables of fertilizer waste, surface runoff, anthropogenic input, chemical and mineral changes and erosion are successfully developed for modeling purposes. Two models were compared in terms of efficiency and goodness-of-fit for water quality index (WQI) prediction. The results show that APCS-ANN model gives better performance with high R2 value (0.9680) and small root mean square error (RMSE) value (2.6409) compared to APCS-MLR model. Meanwhile from the sensitivity analysis, fertilizer waste acts as the dominant pollutant contributor (59.82%) to the basin studied followed by anthropogenic input (22.48%), surface runoff (13.42%), erosion (2.33%) and lastly chemical and mineral changes (1.95%). Thus, this study concluded that receptor modeling of APCS-ANN can be used to solve various constraints in environmental problem that exist between water distribution variables toward appropriate water quality management.
  17. Gazzaz NM, Yusoff MK, Ramli MF, Juahir H, Aris AZ
    Water Environ Res, 2015 Feb;87(2):99-112.
    PMID: 25790513
    This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management.
  18. Saim N, Osman R, Sari Abg Spian DR, Jaafar MZ, Juahir H, Abdullah MP, et al.
    Water Res, 2009 Dec;43(20):5023-30.
    PMID: 19896157 DOI: 10.1016/j.watres.2009.08.052
    Faecal sterols detection is a promising method for identifying sources of faecal pollution. In this study, faecal contamination in water samples from point source (sewage treatment plants, chicken farms, quail farms and horse stables) was extracted using the solid phase extraction (SPE) technique. Faecal sterols (coprostanol, cholesterol, stigmasterol, beta-sitosterol and stigmastanol) were selected as parameters to differentiate the source of faecal pollution. The results indicated that coprostanol, cholesterol and beta-sitosterol were the most significant parameters that can be used as source tracers for faecal contamination. Chemometric techniques, such as cluster analysis, principal component analysis and discriminant analysis were applied to the data set on faecal contamination in water from various pollution sources in order to validate the faecal sterols' profiles. Cluster analysis generated three clusters: coprostanol was in cluster 1, cholesterol and beta-sitosterol formed cluster 2, while cluster 3 contained stigmasterol and stigmastanol. Discriminant analysis suggested that coprostanol, cholesterol and beta-sitosterol were the most significant parameters to discriminate between the faecal pollution source. The use of chemometric techniques provides useful and promising indicators in tracing the source of faecal contamination.
  19. Sunardi S, Ariyani M, Agustian M, Withaningsih S, Parikesit P, Juahir H, et al.
    Sci Rep, 2020 07 06;10(1):11110.
    PMID: 32632183 DOI: 10.1038/s41598-020-68026-x
    Reservoirs play a strategic role in the context of sustainable energy supply. Unfortunately, the majority of the reservoirs are facing water-quality degradation due to complex pollutants originating from activities both in the catchment and inside the reservoir. This research was aimed at assessing the extent of the water degradation, in terms of corrosivity level, and at examining its impacts on hydropower capacity and operation. Water quality data (total dissolved solids, pH, calcium, bicarbonate, and temperature) were obtained from 20 sampling stations in the Cirata Reservoir from 2007 to 2016. The results show that the river water is already corrosive (Langelier Saturation Index, LSI = - 0.21 to - 1.08), and, the corrosiveness becoming greater when entering the reservoir (LSI = - 0.52 to - 1.49). The water corrosivity has caused damage to the hydro-mechanical equipment and lowering production capacity. The external environment of the catchment hosts complex human activities, such as agriculture, land conversion, urban and industrial discharge, which have all played a major role in the water corrosiveness. Meanwhile, the internal environment, such as floating net cage aquaculture, has intensified the problem. As the water corrosiveness has increased, the maintenance of the hydro-mechanical facilities has also increased. Strategies must be applied as current conditions are certainly a threat to the sustainability of the hydropower operation and, hence, the energy supply.
  20. Elfikrie N, Ho YB, Zaidon SZ, Juahir H, Tan ESS
    Sci Total Environ, 2020 Apr 10;712:136540.
    PMID: 32050383 DOI: 10.1016/j.scitotenv.2020.136540
    Agricultural activities have been arising along with the use of pesticides. The use of pesticides can impact not only on vector or other pest but also able to harm human health. Pesticide may leach from the irrigation of plant into the groundwater and in surface water. These waters could be sources of drinking water in a pesticides polluted area. This study aims to determine the occurrence pesticides in surface water and pesticides removal efficiency in a conventional drinking water treatment plant (DWTP) and the potential health risk to consumers. The study was conducted in Tanjung Karang, Selangor, Malaysia. Thirty river water samples and eighteen water samples from DWTP were collected. The water samples were extracted using solid phase extraction (SPE) before injected to the ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Five hundreds and ten respondents were interviewed using questionnaires to obtain information for health risk assessments. The results showed that propiconazole had the highest mean concentration (4493.1 ng/L) while pymetrozine had the lowest mean concentration (1.3 ng/L) in river water samples. The pesticides removal efficiencies in the conventional DWTP were 77% (imidacloprid), 86% (propiconazole and buprofezin), 88% (tebuconazole) and 100% (pymetrozine, tricyclazole, chlorantraniliprole, azoxystrobin and trifloxystrobin), respectively. The hazard quotients (HQs) and hazard index (HI) for all target pesticides were <1, indicating there was no significant chronic non-carcinogenic health risk due to consumption of the drinking water. Conventional DWTP was not able to completely remove four pesticide; thus, advanced treatment systems need to be considered to safeguard the health of the community in future.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links