Displaying publications 1 - 20 of 161 in total

Abstract:
Sort:
  1. Sivaprakasam S, Mohd Azim Khan NA, Yee Fan T, Kumarasan Y, Sicheritz-Pontén T, Petersen B, et al.
    PMID: 38506531 DOI: 10.1128/mra.01137-23
    Here, we present the complete genome of a plant growth-promoting strain, Bacillus stratosphericus AIMST-CREST02 isolated from the bulk soil of a high-yielding paddy plot. The genome is 3,840,451 bp in size with a GC content of 41.25%. Annotation predicted the presence of 3,907 coding sequences, including genes involved in auxin biosynthesis regulation and gamma-aminobutyric acid (GABA) metabolism.
  2. Anwar A, Khan NA, Alharbi AM, Alhazmi A, Siddiqui R
    Int Ophthalmol, 2024 Mar 15;44(1):140.
    PMID: 38491335 DOI: 10.1007/s10792-024-03062-4
    Keratitis is corneal inflammatory disease which may be caused by several reason such as an injury, allergy, as well as a microbial infection. Besides these, overexposure to ultraviolet light and unhygienic practice of contact lenses are also associated with keratitis. Based on the cause of keratitis, different lines of treatments are recommended. Photodynamic therapy is a promising approach that utilizes light activated compounds to instigate either killing or healing mechanism to treat various diseases including both communicable and non-communicable diseases. This review focuses on clinically-important patent applications and the recent literature for the use of photodynamic therapy against keratitis.
  3. Rao K, Abdullah M, Ahmed U, Wehelie HI, Shah MR, Siddiqui R, et al.
    Arch Microbiol, 2024 Mar 04;206(4):134.
    PMID: 38433145 DOI: 10.1007/s00203-024-03854-3
    Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.
  4. Asghar A, Huichun L, Fang Q, Khan NA, Shahid M, Rui W, et al.
    Plant Foods Hum Nutr, 2024 Feb 16.
    PMID: 38363439 DOI: 10.1007/s11130-024-01151-4
    Red dragon fruit is gaining popularity globally due to its nutritional value and bioactive components. The study aimed to assess the phytochemical, nutritional composition, antioxidant, antibacterial, and cytotoxic properties of extracts from the South Chinese red dragon fruit peel, flesh, and seeds. Extract fractions with increasing polarity (ethyl acetate
  5. Simau FA, Ahmed U, Khan KM, Khan NA, Siddiqui R, Alharbi AM, et al.
    Parasitol Res, 2024 Jan 31;123(2):117.
    PMID: 38294565 DOI: 10.1007/s00436-024-08131-2
    The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.
  6. Alishba, Ahmed U, Taha M, Khan NA, Salar U, Khan KM, et al.
    Heliyon, 2024 Jan 15;10(1):e23258.
    PMID: 38205285 DOI: 10.1016/j.heliyon.2023.e23258
    A rare but lethal central nervous system disease known as granulomatous amoebic encephalitis (GAE) and potentially blinding Acanthamoeba keratitis are diseases caused by free-living Acanthamoeba. Currently, no therapeutic agent can completely eradicate or prevent GAE. Synthetic compounds are a likely source of bioactive compounds for developing new drugs. This study synthesized seventeen 1,4-benzothiazine derivatives (I -XVII) by a base-catalyzed one-pot reaction of 2-amino thiophenol with substituted bromo acetophenones. Different spectroscopic techniques, such as EI-MS, 1H-, and 13C NMR (only for the new compounds), were used for the structural characterization and conformation of compounds. These compounds were assessed for the first time against Acanthamoeba castellanii. All compounds showed anti-amoebic potential in vitro against A. castellanii, reducing its ability to encyst and excyst at 100 μM. Compounds IX, X, and XVI showed the most potent activities among all derivatives and significantly reduced the viability to 5.3 × 104 (p 
  7. Ahmed U, Sivasothy Y, Khan KM, Khan NA, Wahab SMA, Awang K, et al.
    Acta Trop, 2023 Dec;248:107033.
    PMID: 37783284 DOI: 10.1016/j.actatropica.2023.107033
    Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.
  8. Ahmed U, Ong SK, Tan KO, Khan KM, Khan NA, Siddiqui R, et al.
    Int Microbiol, 2023 Nov 28.
    PMID: 38015290 DOI: 10.1007/s10123-023-00450-1
    Acanthamoeba are free living amoebae that are the causative agent of keratitis and granulomatous amoebic encephalitis. Alpha-Mangostin (AMS) is a significant xanthone; that demonstrates a wide range of biological activities. Here, the anti-amoebic activity of α-Mangostin and its silver nano conjugates (AMS-AgNPs) were evaluated against pathogenic A. castellanii trophozoites and cysts in vitro. Amoebicidal assays showed that both AMS and AMS-AgNPs inhibited the viability of A. castellanii dose-dependently, with an IC50 of 88.5 ± 2.04 and 20.2 ± 2.17 μM, respectively. Both formulations inhibited A. castellanii-mediated human keratinocyte cell cytopathogenicity. Functional assays showed that both samples caused apoptosis through the mitochondrial pathway and reduced mitochondrial membrane potential and ATP production, while increasing reactive oxygen species (ROS) and nicotinamide adenine dinucleotide phosphate (NADPH) cytochrome-c reductase in the cytosol. Whole transcriptome sequencing of A. castellanii showed the expression of 826 genes, with 447 genes being up-regulated and 379 genes being down-regulated post treatment. The Kyoto Encyclopedia of Genes and Genomes analysis showed that the majority of genes were linked to apoptosis, autophagy, RAP1, AGE-RAGE and oxytocin signalling pathways. Seven genes (PTEN, H3, ARIH1, SDR16C5, PFN, glnA GLUL, and SRX1) were identified as the most significant (Log2 (FC) value 4) for molecular mode of action in vitro. Future in vivo studies with AMS and nanoconjugates are needed to realize the clinical potential of this work.
  9. Siddiqui R, Khodja A, Ibrahim T, Khamis M, Anwar A, Khan NA
    World J Microbiol Biotechnol, 2023 Oct 04;39(12):330.
    PMID: 37792153 DOI: 10.1007/s11274-023-03760-8
    With the rise of antibiotic resistance globally, coupled with evolving and emerging infectious diseases, there is an urgent need for the development of novel antimicrobials. Deep eutectic solvents (DES) are a new generation of eutectic mixtures that depict promising attributes with several biological implications. DES exhibit unique properties such as low toxicity, biodegradability, and high thermal stability. Herein, the antimicrobial properties of DES and their mechanisms of action against a range of microorganisms, including bacteria, amoebae, fungi, viruses, and anti-cancer properties are reviewed. Overall, DES represent a promising class of novel antimicrobial agents as well as possessing other important biological attributes, however, future studies on DES are needed to investigate their underlying antimicrobial mechanism, as well as their in vivo effects, for use in the clinic and public at large.
  10. Siddiqui R, Yee Ong TY, Maciver S, Khan NA
    Ther Deliv, 2023 Aug;14(8):485-490.
    PMID: 37691579 DOI: 10.4155/tde-2023-0032
    Aim: CNS infections due to parasites often prove fatal. In part, this is due to inefficacy of drugs to cross the blood-brain barrier. Methods: Here, we tested intranasal and intravenous route and compared adverse effects of Amphotericin B administration, through blood biochemistry, liver, kidney and brain histopathological evidence of toxicities in vivo post-administration. Results: It was observed that intranasal route limits the adverse side effects of Amphotericin B, in contrast to intravenous route. Conclusion: As parasites such as Naegleria fowleri exhibit unequivocal affinity toward the olfactory bulb and frontal lobe in the central nervous system, intranasal administration would directly reach amoebae bypassing the blood-brain barrier selectivity and achieve the minimum inhibitory concentration at the target site.
  11. Siddiqui R, Maciver SK, Anuar TS, Khan NA
    Am J Vet Res, 2023 Aug 01;84(8).
    PMID: 37353216 DOI: 10.2460/ajvr.23.03.0061
    OBJECTIVE: The objective of this study was to determine bacterial flora throughout the gastrointestinal tract of a saltwater crocodile (Crocodylus porosus) using 16S rRNA gene analysis.

    ANIMALS: A convention on international trade in endangered species (CITES) of wild fauna and flora registered crocodile farm, provided a healthy male saltwater crocodile, Crocodylus porosus for this study.

    PROCEDURES: Three samples were taken from the oral cavity, 3 samples from the proximal region of the small intestine (jejunum), and 3 samples from the distal part of the large intestine of the gastrointestinal tract of C. porosus were obtained using sterile cotton swabs. Next, swabs were placed in 15 mL sterile centrifuge tubes, individually, and kept on ice for immediate transportation to the laboratory. This was followed by 16S rRNA gene analysis using specific primers (341F-CCTAYGGGRBGCASCAG, and 806R-GGACTACNNGGGTATCTAAT). Amplicons were sequenced on Illumina paired-end platform, and bacterial gastrointestinal communities, the relative abundance of taxa, and principal component and coordinate analysis were performed.

    RESULTS: The findings revealed that bacterial community structures from differing regions exhibited several differences. The number of observed bacterial operational taxonomic units (OTUs) was 153 in the oral cavity, 239 in the small intestine, and 119 in the large intestine of C. porosus. The small intestine reflects the highest richness. In contrast, the large intestine exhibited the least richness of microbial communities. Relative abundance of taxa showed that Proteobacteria, Bacteroidetes, and Firmicutes were dominant in all 3 sample sites. Pseudomonas differed in the oral cavity and the large intestine, with the latter exhibiting less distribution of Pseudomonas. Stenotrophomonas and Castellaniella were higher in the oral cavity, while the relative abundance of Comamonas and Salmonella was higher in the small intestine. Conversely, the relative abundance of Salmonella and Pannonibacter was augmented in the large intestine.

    CLINICAL RELEVANCE: For the first time, this study demonstrates the bacterial diversity along the segments of the gastrointestinal tract of C. porosus. Bacterial flora varies throughout the gastrointestinal tract. Although further studies using large cohorts are warranted; however, our findings suggest that microbiome composition may have the potential as a biomarker in determining the overall health and well-being of C. porosus.

  12. Schutte AE, Jafar TH, Poulter NR, Damasceno A, Khan NA, Nilsson PM, et al.
    Cardiovasc Res, 2023 Mar 31;119(2):381-409.
    PMID: 36219457 DOI: 10.1093/cvr/cvac130
    Raised blood pressure (BP) is the leading cause of preventable death in the world. Yet, its global prevalence is increasing, and it remains poorly detected, treated, and controlled in both high- and low-resource settings. From the perspective of members of the International Society of Hypertension based in all regions, we reflect on the past, present, and future of hypertension care, highlighting key challenges and opportunities, which are often region-specific. We report that most countries failed to show sufficient improvements in BP control rates over the past three decades, with greater improvements mainly seen in some high-income countries, also reflected in substantial reductions in the burden of cardiovascular disease and deaths. Globally, there are significant inequities and disparities based on resources, sociodemographic environment, and race with subsequent disproportionate hypertension-related outcomes. Additional unique challenges in specific regions include conflict, wars, migration, unemployment, rapid urbanization, extremely limited funding, pollution, COVID-19-related restrictions and inequalities, obesity, and excessive salt and alcohol intake. Immediate action is needed to address suboptimal hypertension care and related disparities on a global scale. We propose a Global Hypertension Care Taskforce including multiple stakeholders and societies to identify and implement actions in reducing inequities, addressing social, commercial, and environmental determinants, and strengthening health systems implement a well-designed customized quality-of-care improvement framework.
  13. Abdelnasir S, Mungroo MR, Chew J, Siddiqui R, Khan NA, Ahmad I, et al.
    ACS Omega, 2023 Mar 07;8(9):8237-8247.
    PMID: 36910978 DOI: 10.1021/acsomega.2c06050
    Primary amoebic meningoencephalitis and granulomatous amoebic encephalitis are distressing infections of the central nervous system caused by brain-eating amoebae, namely, Naegleria fowleri and Acanthamoeba spp., respectively, and present mortality rates of over 90%. No single drug has been approved for use against these infections, and current therapy is met with an array of obstacles including high toxicity and limited specificity. Thus, the development of alternative effective chemotherapeutic agents for the management of infections due to brain-eating amoebae is a crucial requirement to avert future mortalities. In this paper, we synthesized a conducting polymer-based nanocomposite entailing polyaniline (PANI) and molybdenum disulfide (MoS2) and explored its anti-trophozoite and anti-cyst potentials against Acanthamoeba castellanii and Naegleria fowleri. The intracellular generation of reactive oxygen species (ROS) and ultrastructural appearances of amoeba were also evaluated with treatment. Throughout, treatment with the 1:2 and 1:5 ratios of PANI/MoS2 at 100 μg/mL demonstrated significant anti-amoebic effects toward A. castellanii as well as N. fowleri, appraised to be ROS mediated and effectuate physical alterations to amoeba morphology. Further, cytocompatibility toward human keratinocyte skin cells (HaCaT) and primary human corneal epithelial cells (pHCEC) was noted. For the first time, polymer-based nanocomposites such as PANI/MoS2 are reported in this study as appealing options in the drug discovery for brain-eating amoebae infections.
  14. Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, et al.
    Acta Trop, 2023 Mar;239:106824.
    PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824
    Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
  15. Chang XX, Mubarak NM, Karri RR, Tan YH, Khalid M, Dehghani MH, et al.
    Environ Res, 2023 Feb 15;219:115089.
    PMID: 36529332 DOI: 10.1016/j.envres.2022.115089
    In the present work, the synthesis of cellulose nanowhiskers (CNW)/chitosan nanocomposite films via deep eutectic solvents (DES) changing the chemical structures were carried out. It was observed that a pure chitosan film has broadband at 3180-3400 cm-1, indicating amide and hydroxyl groups. Upon CNW incorporation, the peak gets sharper and stronger and shifts to a greater wavelength. Further, the addition of DES infuses more elements of amide into the nanocomposite films. Moreover, the mechanical properties incorporating CNW filler into a chitosan matrix show an enhancement in tensile strength (TS), Young's modulus (YM), and elongation at break. The TS and YM increase while the elongation decrease as the CNW concentration increases. The YM of biocomposite films is increased to 723 MPa at 25% CNW into chitosan films. Besides, the TS has enhanced to 11.48 MPa at 15% CNW concentration in the biocomposite films. The elongation at break has decreased to 11.7% at 25% CNW concentration. Hence, incorporating CNW into the chitosan matrix via DES can still improve the mechanical properties of the nanocomposite films. Therefore, the application of DES results in a lower YM and TS as the films are hygroscopic. In conclusion, DES can be considered the new green solvent media for synthesizing materials. It has the potential to replace ionic liquids due to its biodegradability and non-toxic properties while preserving the character of low-vapour pressure. Besides that, chitosan can be used as potential material for applications in process industries, such as the biomedical and pharmaceutical industries. Thus, DES can be used as a green solvent and aim to reduce the toxic effect of chemicals on the environment during chemical production.
  16. Md Isa Z, Ismail NH, Mohd Tamil A, Jaafar MH, Ismail R, Mohamed Noor Khan NA, et al.
    BMC Nutr, 2023 Feb 07;9(1):27.
    PMID: 36750888 DOI: 10.1186/s40795-023-00687-z
  17. Majeed Butt O, Shakeel Ahmad M, Kai Lun T, Seng Che H, Fayaz H, Abd Rahim N, et al.
    Waste Manag, 2023 Feb 01;156:1-11.
    PMID: 36424243 DOI: 10.1016/j.wasman.2022.11.016
    The integration of hydrogen in the primary energy mix requires a major technological shift in virtually every energy-related application. This study has attempted to investigate the techno-economic solar photovoltaic (PV) integrated water electrolysis and waste incineration system. Three different strategies, i.e., (i) PV + Battery(Hybrid mode with required batteries); (ii) auto-ignition (Direct coupling); and (iii) PV + Secondary-Electrolyzer(Direct coupling assisted with secondary electrolyzer), have been envisioned. The 'PV + Battery' consume 42.42 % and 15.07 % less energy than the auto-ignition and 'PV + Secondary-Electrolyzer' methods. However, the capital cost of 'PV + Battery' has been calculated to be 15.4 % and 11.8 % more than auto-ignition and 'PV + Secondary-Electrolyzer, respectively.The energy consumption relative to waste input, the 'PV + Battery' method used 80 % less energy, while auto-ignition and 'PV + Secondary-Electrolyzer' showed 70.5 % and 77.5 % less energy, respectively. Furthermore, these approaches showed a vast difference in cost-benefit for the longer run. 'PV + Battery' was forecasted to be 73.3 % and 23.3 % more expensive than auto-ignition and 'PV + Secondary-Electrolyzer' methods, respectively, for 30 years. Overall, this study can benefit from using either of these methods depending on the application, usage scale, and climatic conditions.
  18. Maciver SK, Abdelnasir S, Anwar A, Siddiqui R, Khan NA
    Mol Biochem Parasitol, 2023 Feb;253:111541.
    PMID: 36603708 DOI: 10.1016/j.molbiopara.2022.111541
    Protistan parasitic infections contribute significantly to morbidity and mortality, causing more than 2 billion human infections annually. However, current treatments are often limited; due to ineffective drugs and drug resistance, thus better options are urgently required. In the present context, theranostics agents are those that offer simultaneous detection, diagnosis and even treatment of protistan parasitic diseases. "Nanotheranostics" is the term used to describe such agents, that are around 100 nm or less in size. Anti-parasitic activity of nanoparticles (NPs) has been reported, and many have useful intrinsic imaging properties, but it is perhaps their multifunctional nature that offers the greatest potential. NPs may be used as adapters onto which various subunits with different functions may be attached. These subunits may facilitate targeting parasites, coupled with toxins to eradicate parasites, and probe subunits for detection of particles and/or parasites. The modular nature of nano-platforms promises a "mix and match" approach for the construction of tailored agents by using combinations of these subunits against different protistan parasites. Even though many of the subunits have shown promise alone, these have not yet been put together convincingly enough to form working theranostics against protistan parasites. Although the clinical application of nanotheranostics to protistan parasitic infections in humans requires more research, we conclude that they offer not just a realisation of Paul Ehrlich's long imagined "magic bullet" concept, but potentially are magic bullets combined with tracer bullets.
  19. Khan RA, Khan NA, El Morabet R, Alsubih M, Khan AR, Khan S, et al.
    Environ Res, 2023 Jan 01;216(Pt 1):114437.
    PMID: 36181898 DOI: 10.1016/j.envres.2022.114437
    Pharmaceutical compounds being able to alter, retard, and enhance metabolism has gained attention in recent time as emerging pollutant. However, hospitals which are part of every urban landscape have yet to gain attention in terms of its hospital wastewater treatment to inhibit pharmaceutical compounds from reaching environment. Hence this study evaluated performance of constructed wetland in combination with tubesettler and aeration based on removal efficiency and ecological risk assessment (HQ). The removal efficiency of constructed wetland with plantation was higher by 31% (paracetamol), 102% (ibuprofen), 46%, (carbamazepine), 57% (lorazepam), 54% (erythromycin), 31% (ciprofloxacin) and 20% (simvastatin) against constructed wetland without plantation. Constructed wetland with aeration efficiency increased for paracetamol, ibuprofen, carbamazepine, lorazepam, erythromycin, ciprofloxacin, and simvastatin removal efficiency were higher by 58%, 130%, 52%, 79%, 107%, 57%, and 29% respectively. In constructed wetland with plantation, removal efficiency was higher by 20% (paracetamol), 13% (ibuprofen), 4% (carbamazepine), 14% (lorazepam), 34% (erythromycin), 19% (ciprofloxacin) and 7% (simvastatin). High ecological risk was observed for algae, invertebrate and fish with hazard quotient values in range of 2.5-484, 10-631 and 1-78 respectively. This study concludes that if space is the limitation at hospitals aeration with constructed wetland can be adopted. If space is available, constructed wetland with tubesettler is suitable, economic and environmentally friendly option. Future research works can focus on evaluating other processes combination with constructed wetland.
  20. Sunil Kumar Naik TS, Singh S, N P, Varshney R, Uppara B, Singh J, et al.
    Chemosphere, 2023 Jan;311(Pt 2):137104.
    PMID: 36347345 DOI: 10.1016/j.chemosphere.2022.137104
    In the present study, a simple and sensitive method for detecting bisphenol A (BPA) in various environments, including groundwater, was described using a widespread electrochemical method. BPA is well-known for its endocrine-disrupting properties, which may cause potential toxicological effects oon the nervous, reproductive, and immune systems. A novel metal-organic framework (UiO-66-NDC/GO) was synthesized, and its existence was confirmed by several characterization techniques like FTIR, UV-visible, XRD, SEM-EDX, Raman spectroscopy, and TGA. Due to the excellent electrocatalytic nature, UiO-66-NDC/GO was chosen as the sensor material and integrated on the surface of the bare carbon paste electrode (BCPE). The UiO-66-NDC/GO modified carbon paste electrode (MCPE) was engaged for the detection of BPA using techniques like cyclic Voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The applied sensor exhibited an astonishing outcome for BPA detection with high sensitivity and selectivity. The lower detection limit (LLOD) of 0.025 μM was achieved at the modified sensor with a linear concentration range of 10-70 μM. Moreover, the practical applicability of the sensor was tested on tap water, drinking water, and fresh liquid milk, giving an excellent recovery of BPA in the range of 94.8-99.3 (v.%). The proposed method could be employed for electrochemical device or a solid state device fabrication for the onsite monitoring of BPA.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links