Displaying all 8 publications

Abstract:
Sort:
  1. Yap SC, Choo YM, Hew NF, Yap SF, Khor HT, Ong AS, et al.
    Lipids, 1995 Dec;30(12):1145-50.
    PMID: 8614305
    The oxidative susceptibilities of low density lipoproteins (LDL) isolated from rabbits fed high-fat atherogenic diets containing coconut, palm, or soybean oil were investigated. New Zealand white rabbits were fed atherogenic semisynthetic diets containing 0.5% cholesterol and either (i) 13% coconut oil and 2% corn oil (CNO), (ii) 15% refined, bleached, and deodorized palm olein (RBDPO), (iii) 15% crude palm olein (CPO), (iv) 15% soybean oil (SO), or (v) 15% refined, bleached, and deodorized palm olein without cholesterol supplementation [RBDPO(wc)], for a period of twelve weeks. Total fatty acid compositions of the plasma and LDL were found to be modulated (but not too drastically) by the nature of the dietary fats. Cholesterol supplementation significantly increased the plasma level of vitamin E and effectively altered the plasma composition of long-chain fatty acids in favor of increasing oleic acid. Oxidative susceptibilities of LDL samples were determined by Cu2(+)-catalyzed oxidation which provide the lag times and lag-phase slopes. The plasma LDL from all palm oil diets [RBDPO, CPO, and RBDPO(wc)] were shown to be equally resistant to the oxidation, and the LDL from SO-fed rabbits were most susceptible, followed by the LDL from the CNO-fed rabbits. These results reflect a relationship between the oxidative susceptibility of LDL due to a combination of the levels of polyunsaturated fatty acids and vitamin E.
  2. Khor HT, Chieng DY
    Asia Pac J Clin Nutr, 1997 Mar;6(1):36-40.
    PMID: 24394651
    Syrian Golden hamsters have been widely used as a experimental model for the investigation of the aetiology and development of atherosclerosis and cardiovascular disease. The responses of the hamster to dietary fat manipulations are in many ways similar to that observed in humans. The lipidaemic effect of a tocotrienol rich fraction (TRF) from palm oil on human trials has not been consistent. In this study, the cholesterolaemic effect of tocotrienols and tocopherols were differentiated by using pure tocotrienols (that were isolated from palm oil fatty acid distillate) and pure commercial tocopherols and squalene. A palm oil triacylglycerol fraction (POTG), free of all unsaponifiable matter, was used as the dietary fat in different feeding experiments. Tocotrienols added at 162 ppm to POTG (POTG-T3L) significantly (p<0.05) lowered serum total cholesterol (TC) level as compared to that of the POTG group; but the serum LDL-C , HDL-C and TG levels of the POTG-T3L group were not significantly lower than that of the POTG group (P>0.05). Increasing the level of tocotrienol supplementation to the diet (POTG-T3H) appeared to raise rather then reduce the serum TC, LDL-C and HDL-C levels as compared to that of POTG-T3L group. This observation that lower level of tocotrienol supplementation appeared to exhibit stronger hypocholesterolaemic effect than a higher level of tocotrienol supplementation is interesting; but its explanation is not yet forthcoming. When tocopherols were supplemented at 72 ppm to the POTG diet it was observed that the serum TC, LDL-C and HDL-C levels were all somewhat increased when compared to that of the POTG group. These results suggest that tocotrienols and tocopherols may have opposite cholesterolaemic effects in the hamster, and further experiments need to clarify the mode of action of these vitamin E isomers. In our second series of experiments the cholesterolaemic effects of tocotrienols and tocopherols were studied in the presence of squalene, a key intermediate in the cholesterol synthesis pathway and a controversial cholesterol lowering agent. Squalene added to the diet at 0.1% level significantly lowered (p<0.05) serum TC level when compared to that of the POTG group. The LDL-C, HDL-C and TG levels appeared to be lowered by the squalene supplementation also but the differences between the POTG-SQ and POTG groups were not statistically significant (P>0.05). When tocotrienols or tocopherols were added to the squalene-containing POTG diets, the serum TC and LDL-C levels were further reduced (p<0.01) when compared to that of the POTG and POTG-SQ groups. The HDL-C and TG levels were not affected by tocotrienol or tocopherol supplementation in the presence of squalene. These results indicate that in the presence of tocotrienols and squalene POTG exhibit hypocholesterolaemic action whereas tocopherols may have a hypercholesterolaemic effect in the hamster.
  3. Khor HT, Ng TT
    Int J Food Sci Nutr, 2000;51 Suppl:S3-11.
    PMID: 11271854
    Male hamsters were fed on semi-synthetic diets containing commercial corn oil (CO), isolated corn oil triglycerides (COTG), COTG supplemented with 30 ppm of alpha-tocopherol (COTGTL) and COTG supplemented with 81 ppm of alpha-tocopherol (COTGTH) as the dietary lipid for 45 days. Male albino guinea pigs were fed on commercial chow pellets and treated with different dosages of tocopherol and tocotrienols intra-peritoneally for 6 consecutive days. Serum and liver were taken for analysis. Our results show that stripping corn oil of its unsaponifiable components resulted in COTG which yielded lower serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) and raised high-density lipoprotein cholesterol (HDL-C) and serum triglycerides (TG) levels. These results indicate that the COTG with its fatty acids are responsible for the hypocholesterolemic effect exhibited by corn oil. However, supplementing the COTG diet with alpha-tocopherol (alpha-T) at 30 ppm significantly raised the serum TC, LDL-C and TG levels, but did not alter the HDL-C level, indicating that alpha-T is hypercholesterolemic. Supplementing the COTG diet with alpha-T at 81 ppm raised the serum TC level but to a lesser extent as compared to that obtained with 30-ppm alpha-T supplementation. The increased TC, in this case, was reflected mainly by an increased in HDL-C level as the LDL-C level was unchanged. The TG level was also raised but to a lesser extent than that obtained with a lower alpha-T supplementation. The liver HMG CoA reductase (HMGCR) activity was exhibited (56%) by the COTG as compared to CO. Supplementation of alpha-T at 30 ppm to the COTG diet resulted in further inhibition (76%) of the liver HMGCR activity. On the contrary, supplementation of alpha-T at 81 ppm to COTG diet resulted in a highly stimulatory effect (131%) on the liver HMGCR activity. Short-term studies with guinea pigs treated intra-peritoneally with alpha-T showed that at low dosage (5 mg) the HMGCR activity was inhibited by 46% whereas increasing the dosage of alpha-T to 20 mg yielded lesser inhibition (18%) as compared to that of the control. Further increase in the dosage of alpha-T to 50 mg actually resulted in 90% stimulation of the liver HMGCR activity as compared to the control. These results clearly indicate that the effect of alpha-T on HMGCR activity was dose-dependent. Treatment of the guinea pigs with 10 mg of tocotrienols (T3) resulted in 48% inhibition of the liver HMGCR activity. However, treatment with a mixture of 5 mg of alpha-T with 10 mg of T3 resulted in lesser inhibition (13%) of the liver HMGCR activity as compared to that obtained with 10 mg of T3. The above results indicate that the alpha-T is hypercholesterolemic in the hamster and its effect on liver HMGCR is dose-dependent. T3 exhibited inhibitory effect on liver HMGCR and alpha-T attenuated the inhibitory effect of T3 on liver HMGCR.
  4. Sundram K, Khor HT, Ong AS, Pathmanathan R
    Cancer Res, 1989 Mar 15;49(6):1447-51.
    PMID: 2493981
    Female Sprague-Dawley rats, 50 days of age, were treated with a single dose of 5 mg of 7,12-dimethylbenz(a)anthracene intragastrically. 3 days after carcinogen treatment, the rats were put on semisynthetic diets containing 20% by weight of corn oil (CO), soybean oil (SBO), crude palm oil (CPO), refined, bleached, deodorized palm oil (RBD PO) and metabisulfite-treated palm oil (MCPO) for 5 months. During the course of experiments, rats fed on different dietary fats had similar rate of growth. Rats fed 20% CO or SBO diet have higher tumor incidence than rats fed on palm oil (PO) diets; however differences of mean tumor latency periods among the groups were not statistically significant. At autopsy, rats fed on high CO or SBO diets had significantly more tumors than rats fed on the three PO diets. Our results showed that high PO diets did not promote chemically induced mammary tumorigenesis in female rats when compared to high CO or SBO diets. CO and SBO differ greatly from the palm oils in their contents of tocopherols, tocotrienols, and carotenes. But further experiments would be required to determine whether the observed differences in tumor incidence and tumor numbers were due to the differences in these minor components or due to the unique triglyceride structure of the palm oils. Analysis of the fatty acid profiles of plasma total lipids of tumor-bearing rats and of the tumor total lipids showed that, with the exception of arachidonic acid, the fatty acid profiles reflect the nature of the dietary fats. At autopsy, there were no differences in the plasma total cholesterol contents among rats fed on different dietary fats, but rats fed on palm oil diets had a significantly higher plasma triglyceride level than that of rats fed CO or SBO diets. As for the tumor lipids, there were no significant differences in the triglyceride, diglyceride, and phospholipid levels when the CO or SBO groups were compared to the palm oil groups.
  5. Sundram K, Khor HT, Ong AS
    Lipids, 1990 Apr;25(4):187-93.
    PMID: 2345491
    Male Sprague Dawley rats were fed semipurified diets containing 20% fat for 15 weeks. The dietary fats were corn oil, soybean oil, palm oil, palm olein and palm stearin. No differences in the body and organ weights of rats fed the various diets were evident. Plasma cholesterol levels of rats fed soybean oil were significantly lower than those of rats fed corn oil, palm oil, palm olein or palm stearin. Significant differences between the plasma cholesterol content of rats fed corn oil and rats fed the three palm oils were not evident. HDL cholesterol was raised in rats fed the three palm oil diets compared to the rats fed either corn oil or soybean oil. The cholesterol-phospholipid molar ratio of rat platelets was not influenced by the dietary fat type. The formation of 6-keto-PGF1 alpha was significantly enhanced in palm oil-fed rats compared to all other dietary treatments. Fatty acid compositional changes in the plasma cholesterol esters and plasma triglycerides were diet regulated with significant differences between rats fed the polyunsaturated corn and soybean oil compared to the three palm oils.
  6. Tan DT, Khor HT, Low WH, Ali A, Gapor A
    Am J Clin Nutr, 1991 04;53(4 Suppl):1027S-1030S.
    PMID: 2012011 DOI: 10.1093/ajcn/53.4.1027S
    The effect of a capsulated palm-oil-vitamin E concentrate (palmvitee) on human serum and lipoprotein lipids was assessed. Each palmvitee capsule contains approximately 18, approximately 42, and approximately 240 mg of tocopherols, tocotrienols, and palm olein, respectively. All volunteers took one palmvitee capsule per day for 30 consecutive days. Overnight fasting blood was taken from each volunteer before and after the experiment. Serum lipids and lipoproteins were analyzed by using the enzymatic CHOD-PAP method. Our results showed that palmvitee lowered both serum total cholesterol (TC) and low-density-lipoprotein cholesterol (LDL-C) concentrations in all the volunteers. The magnitude of reduction of serum TC ranged from 5.0% to 35.9% whereas the reduction of LDL-C values ranged from 0.9% to 37.0% when compared with their respective starting values. The effect of palmvitee on triglycerides (TGs) and HDL-C was not consistent. Our results show that the palmvitee has a hypocholesterolemic effect.
  7. Ong KK, Khor HT, Tan DT
    Anal Biochem, 1991 Aug 01;196(2):211-4.
    PMID: 1776669
    A rapid, easy, and sensitive method is described in this paper for the assay of 3-hydroxy-3-methylglutaryl CoA (HMG CoA) reductase, a key enzyme in cholesterol biosynthesis. [14C]HMG CoA was used as the substrate and the product formed, i.e., [14C]mevalonate, was allowed to be converted to its lactone form (mevalonolactone) in the presence of HCl. The reaction mixture was applied to a column containing an anionic exchanger. The column was made up of QAE-Sephadex (A25, formate form) packed to a height of 4 cm in Pasteur pipets. Under these conditions, mevalonolactone was not retained by the column and was eluted with ammonium formate solution while HMG CoA, being negatively charged, was retained by the gel and eluted by HCl above 0.05 M. Determination of the amount of radioactivity in mevalonolactone was then used to quantitate the activity of HMG CoA reductase. This assay has been successfully used for determining the activity of this enzyme in a microsomal fraction prepared from the liver of the rat.
  8. Choo YM, Ma AN, Chuah CH, Khor HT, Bong SC
    Lipids, 2004 Jun;39(6):561-4.
    PMID: 15554155
    The concentration of vitamin E isomers, namely, alpha-tocopherol (alpha-T), alpha-tocotrienol, gamma-tocotrienol, and delta-tocotrienol in palm mesocarp at 4, 8, 12, 16, and 20 wk after anthesis (WAA) were quantified using HPLC coupled with fluorescence detection. alpha-T was detected throughout the palm fruits' maturation process, whereas unsaturated tocotrienols were found only in ripe palm fruits. These developmental results indicate that tocotrienols are synthesized between 16 and 20 WAA.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links