Displaying publications 1 - 20 of 226 in total

Abstract:
Sort:
  1. Chandan K, Saadeh R, Qazza A, Karthik K, Varun Kumar RS, Kumar RN, et al.
    Sci Rep, 2024 Mar 25;14(1):7045.
    PMID: 38528081 DOI: 10.1038/s41598-024-57772-x
    Fins are widely used in many industrial applications, including heat exchangers. They benefit from a relatively economical design cost, are lightweight, and are quite miniature. Thus, this study investigates the influence of a wavy fin structure subjected to convective effects with internal heat generation. The thermal distribution, considered a steady condition in one dimension, is described by a unique implementation of a physics-informed neural network (PINN) as part of machine-learning intelligent strategies for analyzing heat transfer in a convective wavy fin. This novel research explores the use of PINNs to examine the effect of the nonlinearity of temperature equation and boundary conditions by altering the hyperparameters of the architecture. The non-linear ordinary differential equation (ODE) involved with heat transfer is reduced into a dimensionless form utilizing the non-dimensional variables to simplify the problem. Furthermore, Runge-Kutta Fehlberg's fourth-fifth order (RKF-45) approach is implemented to evaluate the simplified equations numerically. To predict the wavy fin's heat transfer properties, an advanced neural network model is created without using a traditional data-driven approach, the ability to solve ODEs explicitly by incorporating a mean squared error-based loss function. The obtained results divulge that an increase in the thermal conductivity variable upsurges the thermal distribution. In contrast, a decrease in temperature profile is caused due to the augmentation in the convective-conductive variable values.
  2. Peffault de Latour R, Röth A, Kulasekararaj AG, Han B, Scheinberg P, Maciejewski JP, et al.
    N Engl J Med, 2024 Mar 14;390(11):994-1008.
    PMID: 38477987 DOI: 10.1056/NEJMoa2308695
    BACKGROUND: Persistent hemolytic anemia and a lack of oral treatments are challenges for patients with paroxysmal nocturnal hemoglobinuria who have received anti-C5 therapy or have not received complement inhibitors. Iptacopan, a first-in-class oral factor B inhibitor, has been shown to improve hemoglobin levels in these patients.

    METHODS: In two phase 3 trials, we assessed iptacopan monotherapy over a 24-week period in patients with hemoglobin levels of less than 10 g per deciliter. In the first, anti-C5-treated patients were randomly assigned to switch to iptacopan or to continue anti-C5 therapy. In the second, single-group trial, patients who had not received complement inhibitors and who had lactate dehydrogenase (LDH) levels more than 1.5 times the upper limit of the normal range received iptacopan. The two primary end points in the first trial were an increase in the hemoglobin level of at least 2 g per deciliter from baseline and a hemoglobin level of at least 12 g per deciliter, each without red-cell transfusion; the primary end point for the second trial was an increase in hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion.

    RESULTS: In the first trial, 51 of the 60 patients who received iptacopan had an increase in the hemoglobin level of at least 2 g per deciliter from baseline, and 42 had a hemoglobin level of at least 12 g per deciliter, each without transfusion; none of the 35 anti-C5-treated patients attained the end-point levels. In the second trial, 31 of 33 patients had an increase in the hemoglobin level of at least 2 g per deciliter from baseline without red-cell transfusion. In the first trial, 59 of the 62 patients who received iptacopan and 14 of the 35 anti-C5-treated patients did not require or receive transfusion; in the second trial, no patients required or received transfusion. Treatment with iptacopan increased hemoglobin levels, reduced fatigue, reduced reticulocyte and bilirubin levels, and resulted in mean LDH levels that were less than 1.5 times the upper limit of the normal range. Headache was the most frequent adverse event with iptacopan.

    CONCLUSIONS: Iptacopan treatment improved hematologic and clinical outcomes in anti-C5-treated patients with persistent anemia - in whom iptacopan showed superiority to anti-C5 therapy - and in patients who had not received complement inhibitors. (Funded by Novartis; APPLY-PNH ClinicalTrials.gov number, NCT04558918; APPOINT-PNH ClinicalTrials.gov number, NCT04820530.).

  3. Ramesh Kumar R, Karthik K, Elumalai PV, Elumalai R, Chandran D, Prakash E, et al.
    Sci Rep, 2024 Mar 05;14(1):5467.
    PMID: 38443484 DOI: 10.1038/s41598-024-56013-5
  4. Ramesh Kumar R, Karthik K, Elumalai PV, Elumalai R, Chandran D, Prakash E, et al.
    Sci Rep, 2024 Feb 13;14(1):3650.
    PMID: 38351203 DOI: 10.1038/s41598-024-52141-0
    Composites are driving positive developments in the automobile sector. In this study investigated the use of composite fins in radiators using computational fluid dynamics (CFD) to analyze the fluid-flow phenomenon of nanoparticles and hydrogen gas. Our world is rapidly transforming, and new technologies are leading to positive revolutions in today's society. In this study successfully analyzed the entire thermal simulation processes of the radiator, as well as the composite fin arrangements with stress efficiency rates. The study examined the velocity path, pressure variations, and temperature distribution in the radiator setup. As found that nanoparticles and composite fins provide superior thermal heat rates and results. The combination of an aluminum radiator and composite fins in future models will support the control of cooling systems in automotive applications. The final investigation statement showed a 12% improvement with nanoparticles, where the velocity was 1.61 m/s and the radiator system's pressure volume was 2.44 MPa. In the fin condition, the stress rate was 3.60 N/mm2.
  5. McCoy D, Kapilashrami A, Kumar R, Rhule E, Khosla R
    Bull World Health Organ, 2024 Feb 01;102(2):130-136.
    PMID: 38313156 DOI: 10.2471/BLT.23.289949
    Colonialism, which involves the systemic domination of lands, markets, peoples, assets, cultures or political institutions to exploit, misappropriate and extract wealth and resources, affects health in many ways. In recent years, interest has grown in the decolonization of global health with a focus on correcting power imbalances between high-income and low-income countries and on challenging ideas and values of some wealthy countries that shape the practice of global health. We argue that decolonization of global health must also address the relationship between global health actors and contemporary forms of colonialism, in particular the current forms of corporate and financialized colonialism that operate through globalized systems of wealth extraction and profiteering. We present a three-part agenda for action that can be taken to decolonize global health. The first part relates to the power asymmetries that exist between global health actors from high-income and historically privileged countries and their counterparts in low-income and marginalized settings. The second part concerns the colonization of the structures and systems of global health governance itself. The third part addresses how colonialism occurs through the global health system. Addressing all forms of colonialism calls for a political and economic anticolonialism as well as social decolonization aimed at ensuring greater national, racial, cultural and knowledge diversity within the structures of global health.
  6. Garg J, Chiu MN, Krishnan S, Kumar R, Rifah M, Ahlawat P, et al.
    Appl Biochem Biotechnol, 2024 Feb;196(2):1008-1043.
    PMID: 37314636 DOI: 10.1007/s12010-023-04570-2
    Over the last few decades, the application of nanoparticles (NPs) gained immense attention towards environmental and biomedical applications. NPs are ultra-small particles having size ranges from 1 to 100 nm. NPs loaded with therapeutic or imaging compounds have proved a versatile approach towards healthcare improvements. Among various inorganic NPs, zinc ferrite (ZnFe2O4) NPs are considered as non-toxic and having an improved drug delivery characteristics . Several studies have reported broader applications of ZnFe2O4 NPs for treating carcinoma and various infectious diseases. Additionally, these NPs are beneficial for reducing organic and inorganic environmental pollutants. This review discusses about various methods to fabricate ZnFe2O4 NPs and their physicochemical properties. Further, their biomedical and environmental applications have also been explored comprehensively.
  7. Thakur P, Arivarasan VK, Kumar G, Pant G, Kumar R, Pandit S, et al.
    Appl Biochem Biotechnol, 2024 Jan;196(1):491-505.
    PMID: 37145344 DOI: 10.1007/s12010-023-04550-6
    The current study reports the synthesis of sustainable nano-hydroxyapatite (nHAp) using a wet chemical precipitation approach. The materials used in the green synthesis of nHAp were obtained from environmental biowastes such as HAp from eggshells and pectin from banana peels. The physicochemical characterization of obtained nHAp was carried out using different techniques. For instance, X-ray diffractometer (XRD) and FTIR spectroscopy were used to study the crystallinity and synthesis of nHAp respectively. In addition, the morphology and elemental composition of nHAP were studied using FESEM equipped with EDX. HRTEM showed the internal structure of nHAP and calculated its grain size which was 64 nm. Furthermore, the prepared nHAp was explored for its antibacterial and antibiofilm activity which has received less attention previously. The obtained results showed the potential of pectin-bound nHAp as an antibacterial agent for various biomedical and healthcare applications.
  8. Paramjot, Wadhwa S, Sharma A, Singh SK, Vishwas S, Kumar R, et al.
    Curr Drug Deliv, 2024;21(1):16-37.
    PMID: 36627785 DOI: 10.2174/1567201820666230110140312
    Amongst different routes of drug delivery systems, ophthalmic drug delivery still requires a careful investigation and strict parameter measurements because the eyes are one of the most sensitive parts of the body and require special attention. The conventional systems for eyes lead to rapid elimination of formulation and hence very small contact time on the ocular epithelium. The current review article covers various types of polymers used in ocular drug delivery along with their applications/ limitations. Polymers are widely used by researchers in prodrug techniques and as a penetration enhancer in ocular delivery. This article covers the role and use of different polymeric systems which makes the final formulation a promising candidate for ophthalmic drug delivery. The researchers are still facing multiple challenges in order to maintain the therapeutic concentration of the drug in the eyes because of its complex structure. There are several barriers that further restrict the intraocular entry of the drug. In order to remove/reduce such challenges, these days various types of polymers are used for ocular delivery in order to develop different drug carrier systems for better efficacy and stability. The polymers used are highly helpful in increasing residence time by increasing the viscosity at the ocular epithelium layer. Such preparations also get easily permeated in ocular cells. The combination of different polymeric properties makes the final formulation stable with prolonged retention, high viscosity, high permeability, and better bioavailability, making the final formulation a promising candidate for ocular drug delivery.
  9. Freedberg DE, Segall L, Liu B, Jacobson JS, Mohan S, George V, et al.
    Kidney360, 2023 Dec 06.
    PMID: 38055708 DOI: 10.34067/KID.0000000000000335
    BACKGROUND: Approaches to treating end-stage kidney disease (ESKD) may vary internationally based on the availability of care and other factors. We performed a systematic review to understand the international variability in ESKD epidemiology, management, and outcomes.

    METHODS: We systematically searched Pubmed for population-based studies of chronic kidney disease (CKD) and ESKD epidemiology and management. Population-level data from 23 pre-designated nations were eligible for inclusion if they pertained to people receiving dialysis or kidney transplant for ESKD. When available, government websites were utilized to identify and extract data from relevant kidney registries . Measures gathered included those related to the prevalence and mortality of ESKD; the availability of nephrologists; per capita healthcare expenditures; and use of erythropoietin stimulating agents (ESAs).

    RESULTS: We obtained data from the United States (US), 7 nations in Eastern Europe, 4 each in Western Europe, Latin America, and Africa, and 3 in Asia. Documented prevalence of ESKD per million population varied from a high of 3,600 (Malaysia) to a low of 67 (Senegal). Annual mortality associated with ESKD varied from 31% (Ethiopia and Senegal) to 10% (UK). Nephrologist availability per million population varied from 40 (Japan) to <1 (South Africa) and was associated with per capita healthcare expenditures.

    CONCLUSIONS: The delivery of kidney care related to ESKD varies widely among countries. Higher per capita healthcare spending is associated with increased delivery of kidney care. However, in part because documentation of kidney disease varies widely, it is difficult to determine how outcomes related to ESKD may vary across nations.

  10. Kanneganti A, Tan BYQ, Nik Ab Rahman NH, Leow AS, Denning M, Goh ET, et al.
    Singapore Med J, 2023 Nov;64(11):667-676.
    PMID: 35139631 DOI: 10.11622/smedj.2022014
    INTRODUCTION: The coronavirus disease 2019 (COVID-19) pandemic has had an unprecedented impact in Asia and has placed significant burden on already stretched healthcare systems. We examined the impact of COVID-19 on the safety attitudes among healthcare workers (HCWs), as well as their associated demographic and occupational factors, and measures of burnout, depression and anxiety.

    METHODS: A cross-sectional survey study utilising snowball sampling was performed involving doctors, nurses and allied health professions from 23 hospitals in Singapore, Malaysia, India and Indonesia between 29 May 2020 and 13 July 2020. This survey collated demographic data and workplace conditions and included three validated questionnaires: the Safety Attitudes Questionnaire (SAQ), Oldenburg Burnout Inventory and Hospital Anxiety and Depression Scale. We performed multivariate mixed-model regression to assess independent associations with the SAQ total percentage agree rate (PAR).

    RESULTS: We obtained 3,163 responses. The SAQ total PARs were found to be 35.7%, 15.0%, 51.0% and 3.3% among the respondents from Singapore, Malaysia, India and Indonesia, respectively. Burnout scores were highest among respondents from Indonesia and lowest among respondents from India (70.9%-85.4% vs. 56.3%-63.6%, respectively). Multivariate analyses revealed that meeting burnout and depression thresholds and shifts lasting ≥12 h were significantly associated with lower SAQ total PAR.

    CONCLUSION: Addressing the factors contributing to high burnout and depression and placing strict limits on work hours per shift may contribute significantly towards improving safety culture among HCWs and should remain priorities during the pandemic.

  11. Rawat J, Kumar V, Ahlawat P, Tripathi LK, Tomar R, Kumar R, et al.
    Appl Biochem Biotechnol, 2023 Oct;195(10):6168-6182.
    PMID: 36847986 DOI: 10.1007/s12010-023-04386-0
    The growing field of nanotechnology and its many applications have led to the irregular release of nanoparticles (NPs), with unintended effects on the environment and continued contamination of water bodies. Metallic NPs are used more frequently in extreme environmental conditions due to their higher efficiency, which attracts more attention in various applications. Due to improper pre-treatment of biosolids, inefficient wastewater treatment practices, and other unregulated agricultural practices continue to contaminate the environment. In particular, the uncontrolled use of NPs in various industrial applications has led to damage to the microbial flora and caused irreplaceable damage to animals and plants. This study focuses on the effect of different doses, types, and compositions of NP on the ecosystem. The review also mentions the impact of various metallic NPs on microbial ecology, their interactions with microorganisms, ecotoxicity studies, and dosage evaluation of the NPs, mainly focused on the review article. However, further research is still needed to understand the complexity of interactions between NPs and microbes in soil and aquatic ecosystems.
  12. Shah MA, Hayder G, Kumar R, Kumar V, Ahamad T, Kalam MA, et al.
    Sci Rep, 2023 Aug 30;13(1):14248.
    PMID: 37648719 DOI: 10.1038/s41598-023-41446-1
    A comprehensive understanding of physiochemical properties, thermal degradation behavior and chemical composition is significant for biomass residues before their thermochemical conversion for energy production. In this investigation, teff straw (TS), coffee husk (CH), corn cob (CC), and sweet sorghum stalk (SSS) residues were characterized to assess their potential applications as value-added bioenergy and chemical products. The thermal degradation behavior of CC, CH, TS and SSS samples is calculated using four different heating rates. The activation energy values ranged from 81.919 to 262.238 and 85.737-212.349 kJ mol-1 and were generated by the KAS and FWO models and aided in understanding the biomass conversion process into bio-products. The cellulose, hemicellulose, and lignin contents of CC, CH, TS, and SSS were found to be in the ranges of 31.56-41.15%, 23.9-32.02%, and 19.85-25.07%, respectively. The calorific values of the residues ranged from 17.3 to 19.7 MJ/kg, comparable to crude biomass. Scanning electron micrographs revealed agglomerated, irregular, and rough textures, with parallel lines providing nutrient and water transport pathways in all biomass samples. Energy Dispersive X-ray spectra and X-ray diffraction analysis indicated the presence of high carbonaceous material and crystalline nature. FTIR analysis identified prominent band peaks at specific wave numbers. Based on these findings, it can be concluded that these residues hold potential as energy sources for various applications, such as the textile, plastics, paints, automobile, and food additive industries.
  13. Chowdhary S, Deka R, Panda K, Kumar R, Solomon AD, Das J, et al.
    Mol Pharm, 2023 Aug 07;20(8):3698-3740.
    PMID: 37486263 DOI: 10.1021/acs.molpharmaceut.2c01080
    Human viral oncogenesis is a complex phenomenon and a major contributor to the global cancer burden. Several recent findings revealed cellular and molecular pathways that promote the development and initiation of malignancy when viruses cause an infection. Even, antiviral treatment has become an approach to eliminate the viral infections and prevent the activation of oncogenesis. Therefore, for a better understanding, the molecular pathogenesis of various oncogenic viruses like, hepatitis virus, human immunodeficiency viral (HIV), human papillomavirus (HPV), herpes simplex virus (HSV), and Epstein-Barr virus (EBV), could be explored, especially, to expand many potent antivirals that may escalate the apoptosis of infected malignant cells while sparing normal and healthy ones. Moreover, contemporary therapies, such as engineered antibodies antiviral agents targeting signaling pathways and cell biomarkers, could inhibit viral oncogenesis. This review elaborates the recent advancements in both natural and synthetic antivirals to control viral oncogenesis. The study also highlights the challenges and future perspectives of using antivirals in viral oncogenesis.
  14. Kumar R, Basu A, Bishayee B, Chatterjee RP, Behera M, Ang WL, et al.
    Environ Res, 2023 Jul 15;229:115881.
    PMID: 37084947 DOI: 10.1016/j.envres.2023.115881
    Tanning and other leather processing methods utilize a large amount of freshwater, dyes, chemicals, and salts and produce toxic waste, raising questions regarding their environmental sensitivity and eco-friendly nature. Total suspended solids, total dissolved solids, chemical oxygen demand, and ions such as chromium, sulfate, and chloride turn tannery wastewater exceedingly toxic for any living species. Therefore, it is imperative to treat tannery effluent, and existing plants must be examined and upgraded to keep up with recent technological developments. Different conventional techniques to treat tannery wastewater have been reported based on their pollutant removal efficiencies, advantages, and disadvantages. Research on photo-assisted catalyst-enhanced deterioration has inferred that both homogeneous and heterogeneous catalysis can be established as green initiatives, the latter being more efficient at degrading organic pollutants. However, the scientific community experiences significant problems developing a feasible treatment technique owing to the long degradation times and low removal efficiency. Hence, there is a chance for an improved solution to the problem of treating tannery wastewater through the development of a hybrid technology that uses flocculation as the primary treatment, a unique integrated photo-catalyst in a precision-designed reactor as the secondary method, and finally, membrane-based tertiary treatment to recover the spent catalyst and reclaimable water. This review gives an understanding of the progressive advancement of a cutting-edge membrane-based system for the management of tanning industrial waste effluents towards the reclamation of clean water. Adaptable routes toward sludge disposal and the reviews on techno-economic assessments have been shown in detail, strengthening the scale-up confidence for implementing such innovative hybrid systems.
  15. Kumar R, Htwe O, Baharudin A, Rhani SA, Ibrahim K, Nanra JS, et al.
    J Spinal Cord Med, 2023 Jul;46(4):682-686.
    PMID: 35604343 DOI: 10.1080/10790268.2022.2067972
    OBJECTIVE: MLC601/MLC901 has demonstrated neuroprotective and neuroregenerative properties that enhance neurological recovery in stroke and traumatic brain injury. We aimed to evaluate its safety and potential efficacy in patients with severe spinal cord injury.

    METHODS: Patients with American Spinal Injury Association (ASIA) Impairment Scale (AIS) A and B were included in an open-label cohort study. Each received a course of MLC601/MLC901 for 6 months in addition to standard care and rehabilitation. Key endpoints were safety, AIS grade and motor scores at month 6 (M6).

    RESULTS: Among 30 patients included (mean age 42.2 ± 17.6 years, 24 men), 20 patients had AIS A while 10 patients had AIS B at baseline. Ten patients experienced 14 adverse events including one serious adverse event and six deaths, none were considered treatment-related. AIS improved in 25% of AIS A and 50% of AIS B. Improvement in ASIA motor score was seen most with cervical injury (median change from baseline 26.5, IQR: 6-55). These findings appear to be better than reported rates of spontaneous recovery for SCI AIS A and B.

    CONCLUSION: MLC601/MLC901 is safe and may have a role in the treatment of patients with SCI. A controlled trial is justified.

  16. Flora B, Kumar R, Tiwari P, Kumar A, Ruokolainen J, Narasimhan AK, et al.
    J Mech Behav Biomed Mater, 2023 Jun;142:105845.
    PMID: 37060714 DOI: 10.1016/j.jmbbm.2023.105845
    A successful attempt has been made to improve the mechanical properties of Hydroxyapatite (HAp) and reduced graphene oxide (rGO) composite nanoparticles (NPs). Various proportions of HAp and rGO were synthesized to improve the mechanical properties. HAp NPs were prepared using the wet precipitation method and further calcined to form crystalline particles. The physicochemical characterization of the HAp NPs revealed that the crystalline size and percentage of crystallinity were calculated to be 42.49 ± 1.2 nm and 44% post calcination. Furthermore, the rGO-HA composites were prepared using ball milling and obtained in the shape of pellets with different ratios of rGO (10, 20, 30, 40, 50% wt.). The mechanical properties have been evaluated through a Universal testing machine. Compared to calcined HAp (cHAp), the strength of variants significantly enhanced with the increased concentration of rGO. The compressive strength of HA-rGO with the ratio of the concentration of 60:40% by weight is a maximum of about 10.39 ± 0.43 MPa. However, the porosity has also been bolstered by increasing the concentration of rGO, which has been evaluated through the liquid displacement method. The mean surface roughness of the composites has also been evaluated from the images through Image J (an image analysis program).
  17. Poudel P, Sharma S, Ansari MNM, Vaish R, Kumar R, Ibrahim SM, et al.
    Glob Chall, 2023 Apr;7(4):2100140.
    PMID: 37020619 DOI: 10.1002/gch2.202100140
    This paper presents a piezoelectric wind energy harvester that operates by a galloping mechanism with different shaped attachments attached to a bluff body. A comparison is made between harvesters that consist of different shaped attachments on a bluff body; these include triangular, circular, square, Y-shaped, and curve-shaped attachments. Simulation of the pressure field and the velocity field variation around the different shaped bluff bodies is performed and it is found that a high pressure difference creates a high lift force on the bluff body with curve-shaped attachments. A theoretical model based on a galloping mechanism is presented, which is verified by experiments. It is observed that the proposed harvester with curve-shaped attachments provides the best performance, where the harvester with a curve-shaped attachments provides the highest voltage and power output compared to the other shaped harvesters examined in this study. This paper provides a new concept for improving the power performance of the piezoelectric wind energy harvesters with modifications made on the bluff body.
  18. Kumar R, Bauri S, Sahu S, Chauhan S, Dholpuria S, Ruokolainen J, et al.
    ACS Appl Bio Mater, 2023 Mar 20;6(3):1122-1132.
    PMID: 36757355 DOI: 10.1021/acsabm.2c00983
    Nanocomposites have significantly contributed to biomedical science due to less aggregation behavior and enhanced physicochemical properties. This study synthesized a MnFe2O4@poly(tBGE-alt-PA) nanocomposite for the first time and physicochemically characterized it. The obtained hybrid nanomaterial was tested in vivo for its toxicological properties before use in drug delivery, tissue engineering fields, and environmental applications. The composite was biocompatible with mouse fibroblast cells and hemocompatible with 2% RBC suspension. This nanocomposite was tested on Drosophila melanogaster due to its small size, well-sequenced genome, and low cost of testing. The larvae's crawling speed and direction were measured after feeding. No abnormal path and altered crawling pattern indicated the nonappearance of abnormal neurological disorder in the larva. The gut organ toxicity was further analyzed using DAPI and DCFH-DA dye to examine the structural anomalies. No apoptosis and necrosis were observed in the gut of the fruit fly. Next, adult flies were examined for phenotypic anomalies after their pupal phases emerged. No defects in the phenotypes, including the eye, wings, abdomen, and bristles, were found in our study. Based on these observations, the MnFe2O4@poly(tBGE-alt-PA) composite may be used for various biomedical and environmental applications.
  19. AlSahow A, AlQallaf A, AlYousef A, Bahbahani H, Bahbahani Y, AlHelal B, et al.
    Int Urol Nephrol, 2023 Mar;55(3):721-727.
    PMID: 36136260 DOI: 10.1007/s11255-022-03368-1
    INTRODUCTION: Hemodialysis (HD) patients are at increased risk of severe COVID-19 infection but infection rates vary. Our objectives are to describe COVID-19 positive HD patients' characteristics, infection rates, and factors associated with mortality in HD COVID-19 cases in Kuwait.

    METHODS: Data on demographics, comorbidities, and treatments received, as well as mortality for HD patients admitted to hospitals for COVID-19, from 1/March to 31/July 2020, prospectively collected and analyzed.

    RESULTS: A total of 141 infected HD patients were admitted (Mean age 58 ± 16.1; Males 56%), representing 7% of the total HD population and 0.2% of all COVID-19 cases during the study period. Of those 141 infected HD patients, 27 (19%) died, and this represents 6% of total COVID-19-related mortality and 27% of the total HD mortality. In contrast, total covid-19-related mortality of all positive cases was only 0.7%, and total HD mortality during the study period was only 5%. COVID-19-positive HD patients who died were older and 59% were males. However, the differences were not statistically significant. Of the 61 infected HD patients who needed to be switched to continuous kidney replacement therapy (CKRT), 34% died, and of the 29 infected HD patients who needed admission to intensive care, 65% died.

    CONCLUSION: HD population represents a small fraction of the total population; however, positive HD COVID-19 cases represent a sizable proportion of COVID-19 cases and a significant percentage of total COVID-19-related mortality, and total HD mortality.

Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links