Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Sumathra M, Sadasivuni KK, Kumar SS, Rajan M
    ACS Omega, 2018 Nov 30;3(11):14620-14633.
    PMID: 30555982 DOI: 10.1021/acsomega.8b02090
    Presently, tissue engineering approaches have been focused toward finding new potential scaffolds with osteoconductivity on bone-disease-affected cells. This work focused on the cisplatin (CDDP)-loaded graphene oxide (GO)/hydroxyapatite (HAP)/chitosan (CS) composite for enhancing the growth of osteoblast cells and prevent the development of osteosarcoma cells. The prepared composites were characterized for the confirmation of composite formation using Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, and X-ray diffraction techniques. A flowerlike morphology was observed for the GO/HAP/CS-3/CDDP composite. UV-vis spectroscopy was used to observe the controlled release of CDDP from the GO/HAP/CS-3/CDDP composite, and 67.34% of CDDP was released from the composite over a time period of 10 days. The GO/HAP/CS-3/CDDP nanocomposites showed higher viability in comparison with GO/HAP/CS-3 on MG63 osteoblast-like cells and higher cytotoxicity against cancer cells (A549). The synthesized composite was found to show enhanced proliferative, adhesive, and osteoinductive effects on the alkaline phosphatase activity of osteoblast-like cells. Our results suggested that the CDDP-loaded GO/HAP/CS-3 nanocomposite has an immense prospective as a bone tissue replacement in the bone-cancer-affected tissues.
  2. Higuchi A, Hirad AH, Kumar SS, Munusamy MA, Alarfaj AA
    Acta Biomater, 2020 10 15;116:162-173.
    PMID: 32911107 DOI: 10.1016/j.actbio.2020.09.010
    Thermoresponsive surfaces enable the detachment of cells or cell sheets by decreasing the temperature of the surface when harvesting the cells. However, human pluripotent stem cells (hPSCs), such as embryonic stem cells and induced pluripotent stem cells, cannot be directly cultured on a thermoresponsive surface; hPSCs need a specific extracellular matrix to bind to the integrin receptors on their surfaces. We prepared a thermoresponsive surface by using poly(N-isopropylacrylamide-co-butylacrylate) and recombinant vitronectin to provide an optimal coating concentration for the hPSC culture. hPSCs can be cultured on the same thermoresponsive surface for 5 passages by partial detachment of the cells from the surface by decreasing the temperature for 30 min; then, the remaining hPSCs were subsequently cultured on the same dishes following the addition of new cultivation media. The detached cells, even after continual culture for five passages, showed high pluripotency, the ability to differentiate into cells derived from the 3 germ layers and the ability to undergo cardiac differentiation.
  3. Priya SP, Sakinah S, Ling MP, Chee HY, Higuchi A, Hamat RA, et al.
    Acta Trop, 2017 Jul;171:213-219.
    PMID: 28427958 DOI: 10.1016/j.actatropica.2017.04.010
    Dengue virus (DENV) has emerged as a major economic concern in developing countries, with 2.5 billion people believed to be at risk. Vascular endothelial cells (ECs) lining the circulatory system from heart to end vessels perform crucial functions in the human body, by aiding gas exchange in lungs, gaseous, nutritional and its waste exchange in all tissues, including the blood brain barrier, filtration of fluid in the glomeruli, neutrophil recruitment, hormone trafficking, as well as maintenance of blood vessel tone and hemostasis. These functions can be deregulated during DENV infection. In this study, BALB/c mice infected with DENV serotype 2 were analyzed histologically for changes in major blood vessels in response to DENV infection. In the uninfected mouse model, blood vessels showed normal architecture with intact endothelial monolayer, tunica media, and tunica adventitia. In the infected mouse model, DENV distorted the endothelium lining and disturbed the smooth muscle, elastic laminae and their supporting tissues causing vascular structural disarrangement. This may explain the severe pathological illness in DENV-infected individuals. The overall DENV-induced damages on the endothelial and it's supporting tissues and the dysregulated immune reactions initiated by the host were discussed.
  4. Priya SP, Sakinah S, Sharmilah K, Hamat RA, Sekawi Z, Higuchi A, et al.
    Acta Trop, 2017 Dec;176:206-223.
    PMID: 28823908 DOI: 10.1016/j.actatropica.2017.08.007
    Immuno-pathogenesis of leptospirosis can be recounted well by following its trail path from entry to exit, while inducing disastrous damages in various tissues of the host. Dysregulated, inappropriate and excessive immune responses are unanimously blamed in fatal leptospirosis. The inherent abilities of the pathogen and inabilities of the host were debated targeting the severity of the disease. Hemorrhagic manifestation through various mechanisms leading to a fatal end is observed when this disease is unattended. The similar vascular destructions and hemorrhage manifestations are noted in infections with different microbes in endemic areas. The simultaneous infection in a host with more than one pathogen or parasite is referred as the coinfection. Notably, common endemic infections such as leptospirosis, dengue, chikungunya, and malaria, harbor favorable environments to flourish in similar climates, which is aggregated with stagnated water and aggravated with the poor personal and environmental hygiene of the inhabitants. These factors aid the spread of pathogens and parasites to humans and potential vectors, eventually leading to outbreaks of public health relevance. Malaria, dengue and chikungunya need mosquitoes as vectors, in contrast with leptospirosis, which directly invades human, although the environmental bacterial load is maintained through other mammals, such as rodents. The more complicating issue is that infections by different pathogens exhibiting similar symptoms but require different treatment management. The current review explores different pathogens expressing specific surface proteins and their ability to bind with array of host proteins with or without immune response to enter into the host tissues and their ability to evade the host immune responses to invade and their affinity to certain tissues leading to the common squeal of hemorrhage. Furthermore, at the host level, the increased susceptibility and inability of the host to arrest the pathogens' and parasites' spread in different tissues, various cytokines accumulated to eradicate the microorganisms and their cellular interactions, the antibody dependent defense and the susceptibility of individual organs bringing the manifestation of the diseases were explored. Lastly, we provided a discussion on the immune trail path of pathogenesis from entry to exit to narrate the similarities and dissimilarities among various hemorrhagic fevers mentioned above, in order to outline future possibilities of prevention, diagnosis, and treatment of coinfections, with special reference to endemic areas.
  5. Kumaran SK, Bakar MFA, Mohd-Padil H, Mat-Sharani S, Sakinah S, Poorani K, et al.
    Acta Trop, 2017 Dec;176:433-439.
    PMID: 28941729 DOI: 10.1016/j.actatropica.2017.09.011
    Leptospirosis is a widespread zoonotic disease caused by pathogenic Leptospira species (Leptospiraceae). LipL32 is an abundant lipoprotein from the outer membrane proteins (OMPs) group, highly conserved among pathogenic and intermediate Leptospira species. Several studies used LipL32 as a specific gene to identify the presence of leptospires. This research was aimed to study the characteristics of LipL32 protein gene code, to fill the knowledge gap concerning the most appropriate gene that can be used as antigen to detect the Leptospira. Here, we investigated the features of LipL32 in fourteen Leptospira pathogenic strains based on comparative analyses of their primary, secondary structures and 3D modeling using a bioinformatics approach. Furthermore, the physicochemical properties of LipL32 in different strains were studied, shedding light on the identity of signal peptides, as well as on the secondary and tertiary structure of the LipL32 protein, supported by 3D modelling assays. The results showed that the LipL32 gene was present in all the fourteen pathogenic Leptospira strains used in this study, with limited diversity in terms of sequence conservation, hydrophobic group, hydrophilic group and number of turns (random coil). Overall, these results add basic knowledge to the characteristics of LipL32 protein, contributing to the identification of potential antigen candidates in future research, in order to ensure prompt and reliable detection of pathogenic Leptospira species.
  6. Lee SC, Tang IP, Singh A, Kumar SS, Singh S
    Auris Nasus Larynx, 2009 Dec;36(6):709-11.
    PMID: 19304419 DOI: 10.1016/j.anl.2009.02.002
    Choanal stenosis has recently been recognized as a late complication of radiation therapy for nasopharyngeal carcinoma. The management of velopharyngeal stenosis is challenging with high risk of restenosis. We report a case of velopharyngeal stenosis post-radiotherapy and illustrated the use of mitomycin-C to prevent restenosis. Mitomycin-C application has being shown useful adjunct to surgical technique in managing nasopharyngeal stenosis for surgeons.
  7. Kumar SS, Hartner AM, Chandran A, Gaythorpe KAM, Li X
    BMC Public Health, 2023 Nov 28;23(1):2351.
    PMID: 38017415 DOI: 10.1186/s12889-023-17082-9
    BACKGROUND: Malaysia introduced the two dose measles-mumps-rubella (MMR) vaccine in 2004 as part of its measles elimination strategy. However, despite high historical coverage of MCV1 and MCV2, Malaysia continues to report high measles incidence. This study suggests a novel indicator for investigating population immunity against measles in the Malaysian population.

    METHODS: We define effective vaccine coverage (EVC) of measles as the proportion of a population vaccinated with measles-containing vaccine (MCV) and effectively protected against measles infection. A quantitative evaluation of EVC throughout the life course of Malaysian birth cohorts was conducted accounting for both vaccine efficacy (VE) and between-dose correlation (BdC). Measles vaccination coverage was sourced from WHO-UNICEF estimates of Malaysia's routine immunisation coverage and supplementary immunisation activities (SIAs). United Nations World population estimates and projections (UNWPP) provided birth cohort sizes stratified by age and year. A step wise joint Bernoulli distribution was used to proportionate the Malaysian population born between 1982, the first year of Malaysia's measles vaccination programme, and 2021, into individuals who received zero dose, one dose and multiple doses of MCV. VE estimates by age and doses received are then adopted to derive EVC. A sensitivity analysis was conducted using 1000 random combinations of BdC and VE parameters.

    RESULTS: This study suggests that no birth cohort in the Malaysian population has achieved > 95% population immunity (EVC) conferred through measles vaccination since the measles immunisation programme began in Malaysia.

    CONCLUSION: The persistence of measles in Malaysia is due to pockets of insufficient vaccination coverage against measles in the population. Monitoring BdC through immunisation surveillance systems may allow for the identification of susceptible subpopulations (primarily zero-dose MCV individuals) and increase the coverage of individuals who are vaccinated with multiple doses of MCV. This study provides a tool for assessment of national-level population immunity of measles conferred through vaccination and does not consider subnational heterogeneity or vaccine waning. This tool can be readily applied to other regions and vaccine-preventable diseases.

  8. Peng IC, Yeh CC, Lu YT, Muduli S, Ling QD, Alarfaj AA, et al.
    Biomaterials, 2016 Jan;76:76-86.
    PMID: 26519650 DOI: 10.1016/j.biomaterials.2015.10.039
    Stem cell culture is typically based on batch-type culture, which is laborious and expensive. Here, we propose a continuous harvest method for stem cells cultured on thermoresponsive nanobrush surfaces. In this method, stem cells are partially detached from the nanobrush surface by reducing the temperature of the culture medium below the critical solution temperature needed for thermoresponse. The detached stem cells are harvested by exchange into fresh culture medium. Following this, the remaining cells are continuously cultured by expansion in fresh culture medium at 37 °C. Thermoresponsive nanobrush surfaces were prepared by coating block copolymers containing polystyrene (for hydrophobic anchoring onto culture dishes) with three types of polymers: (a) polyacrylic acid with cell-binding oligopeptides, (b) thermoresponsive poly-N-isopropylacrylamide, and (c) hydrophilic poly(ethyleneglycol)methacrylate. The optimal coating durations and compositions for these copolymers to facilitate adequate attachment and detachment of human adipose-derived stem cells (hADSCs) and embryonic stem cells (hESCs) were determined. hADSCs and hESCs were continuously harvested for 5 and 3 cycles, respectively, via the partial detachment of cells from thermoresponsive nanobrush surfaces.
  9. Sung TC, Yang JS, Yeh CC, Liu YC, Jiang YP, Lu MW, et al.
    Biomaterials, 2019 Nov;221:119411.
    PMID: 31419657 DOI: 10.1016/j.biomaterials.2019.119411
    Commonly, stem cell culture is based on batch-type culture, which is laborious and expensive. We continuously cultured human pluripotent stem cells (hPSCs) on thermoresponsive dish surfaces, where hPSCs were partially detached on the same thermoresponsive dish by decreasing the temperature of the thermoresponsive dish to be below the lower critical solution temperature for only 30 min. Then, the remaining cells were continuously cultured in fresh culture medium, and the detached stem cells were harvested in the exchanged culture medium. hPSCs were continuously cultured for ten cycles on the thermoresponsive dish surface, which was prepared by coating the surface with poly(N-isopropylacrylamide-co-styrene) and oligovitronectin-grafted poly(acrylic acid-co-styrene) or recombinant vitronectin for hPSC binding sites to maintain hPSC pluripotency. After ten cycles of continuous culture on the thermoresponsive dish surface, the detached cells expressed pluripotency proteins and had the ability to differentiate into cells derived from the three germ layers in vitro and in vivo. Furthermore, the detached cells differentiated into specific cell lineages, such as cardiomyocytes, with high efficiency.
  10. Sung TC, Li HF, Higuchi A, Kumar SS, Ling QD, Wu YW, et al.
    Biomaterials, 2020 02;230:119638.
    PMID: 31810728 DOI: 10.1016/j.biomaterials.2019.119638
    Human induced pluripotent stem cells (hiPSCs) were generated on several biomaterials from human amniotic fluid in completely xeno-free and feeder-free conditions via the transfection of pluripotent genes using a nonintegrating RNA Sendai virus vector. The effect of xeno-free culture medium on the efficiency of the establishment of human amniotic fluid stem cells from amniotic fluid was evaluated. Subsequently, the effect of cell culture biomaterials on the reprogramming efficiency was investigated during the reprogramming of human amniotic fluid stem cells into hiPSCs. Cells cultured in laminin-511, laminin-521, and Synthemax II-coated dishes and hydrogels having optimal elasticity that were engrafted with specific oligopeptides derived from vitronectin could be reprogrammed into hiPSCs with high efficiency. The reprogrammed cells expressed pluripotency proteins and had the capability to differentiate into cells derived from all three germ layers in vitro and in vivo. Human iPSCs could be generated successfully and at high efficiency (0.15-0.25%) in completely xeno-free conditions from the selection of optimal cell culture biomaterials.
  11. Sung TC, Su HC, Ling QD, Kumar SS, Chang Y, Hsu ST, et al.
    Biomaterials, 2020 09;253:120060.
    PMID: 32450407 DOI: 10.1016/j.biomaterials.2020.120060
    The current differentiation process of human pluripotent stem cells (hPSCs) into cardiomyocytes to enhance the purity of hPSC-derived cardiomyocytes requires some purification processes, which are laborious processes. We developed cell sorting plates, which are prepared from coating thermoresponsive poly(N-isopropylacrylamide) and extracellular matrix proteins. After hPSCs were induced into cardiomyocytes on the thermoresponsive surface coated with laminin-521 for 15 days, the temperature of the cell culture plates was decreased to 8-9 °C to detach the cells partially from the thermoresponsive surface. The detached cells exhibited a higher cardiomyocyte marker of cTnT than the remaining cells on the thermoresponsive surface as well as the cardiomyocytes after purification using conventional cell selection. The detached cells expressed several cardiomyocyte markers, such as α-actinin, MLC2a and NKX2.5. This study suggested that the purification of hPSC-derived cardiomyocytes using cell sorting plates with the thermoresponsive surface is a promising method for the purification of hPSC-derived cardiomyocytes without conventional laborious processes.
  12. Chen LH, Sung TC, Lee HH, Higuchi A, Su HC, Lin KJ, et al.
    Biomater Sci, 2019 Aug 14.
    PMID: 31411209 DOI: 10.1039/c9bm00418a
    Recombinant vitronectin-grafted hydrogels were developed by adjusting surface charge of the hydrogels with grafting of poly-l-lysine for optimal culture of human embryonic stem cells (hESCs) under xeno- and feeder-free culture conditions, with elasticity regulated by crosslinking time (10-30 kPa), in contrast to conventional recombinant vitronectin coating dishes, which have a fixed stiff surface (3 GPa). hESCs proliferated on the hydrogels for over 10 passages and differentiated into the cells derived from three germ layers indicating the maintenance of pluripotency. hESCs on the hydrogels differentiated into cardiomyocytes under xeno-free culture conditions with much higher efficiency (80% of cTnT+ cells) than those on conventional recombinant vitronectin or Matrigel-coating dishes just only after 12 days of induction. It is important to have an optimal design of cell culture biomaterials where biological cues (recombinant vitronectin) and physical cues (optimal elasticity) are combined for high differentiation of hESCs into specific cell lineages, such as cardiomyocytes, under xeno-free and feeder-free culture conditions.
  13. Sung TC, Liu CH, Huang WL, Lee YC, Kumar SS, Chang Y, et al.
    Biomater Sci, 2019 Oct 28.
    PMID: 31656967 DOI: 10.1039/c9bm00817a
    Current xeno-free and chemically defined methods for the differentiation of hPSCs (human pluripotent stem cells) into cardiomyocytes are not efficient and are sometimes not reproducible. Therefore, it is necessary to develop reliable and efficient methods for the differentiation of hPSCs into cardiomyocytes for future use in cardiovascular research related to drug discovery, cardiotoxicity screening, and disease modeling. We evaluated two representative differentiation methods that were reported previously, and we further developed original, more efficient methods for the differentiation of hPSCs into cardiomyocytes under xeno-free, chemically defined conditions. The developed protocol successively differentiated hPSCs into cardiomyocytes, approximately 90-97% of which expressed the cardiac marker cTnT, with beating speeds and sarcomere lengths that were similar to those of a healthy adult human heart. The optimal cell culture biomaterials for the cardiac differentiation of hPSCs were also evaluated using extracellular matrix-mimetic material-coated dishes. Synthemax II-coated and Laminin-521-coated dishes were found to be the most effective and efficient biomaterials for the cardiac differentiation of hPSCs according to the observation of hPSC-derived cardiomyocytes with high survival ratios, high beating colony numbers, a similar beating frequency to that of a healthy adult human heart, high purity levels (high cTnT expression) and longer sarcomere lengths similar to those of a healthy adult human heart.
  14. Gothai S, Muniandy K, Gnanaraj C, Ibrahim IAA, Shahzad N, Al-Ghamdi SS, et al.
    Biomed Pharmacother, 2018 Nov;107:1514-1522.
    PMID: 30257369 DOI: 10.1016/j.biopha.2018.08.112
    Colorectal cancer (CRC) is ranked as the fourth most lethal and commonly diagnosed cancer in the world according to the National Cancer Institute's latest report. Treatment methods for CRC are constantly being studied for advancement, which leads for more clinically effective cancer curing strategy. Patients with prolonged chronic inflammation caused by ulcerative colitis or similar inflammatory bowel disease are known to have high risks of developing CRC. But at a molecular level, oxidative stress due to reactive oxygen species (ROS) is an important trigger for cancer. Hence, in recent years, exogenous antioxidants have been immensely experimented in pre-clinical and clinical trials, considering it as a potential cure for CRC. Significantly, potential antioxidant compounds especially derivatives of medicinal plants have received great attention in the current research trend for CRC treatment. Though antioxidant compounds seem to have beneficial properties for the treatment of CRC, there are also limitations for pure compounds to be tested clinically. Therefore, this review aims to delineate the pharmacological awareness among researchers on using antioxidant compounds to treat CRC and the measures taken to prove the effectiveness of such compounds as impending drug candidates for CRC treatment in modern medication.
  15. Ghosh P, Kumar M, Kapoor R, Kumar SS, Singh L, Vijay V, et al.
    Bioresour Technol, 2020 Jan;296:122275.
    PMID: 31683109 DOI: 10.1016/j.biortech.2019.122275
    The present study intends to evaluate the potential of co-digestion for utilizing Organic fraction of Municipal Solid Waste (OFMSW) and sewage sludge (SS) for enhanced biogas production. Metagenomic analysis was performed to identify the dominant bacteria, archaea and fungi, changes in their communities with time and their functional roles during the course of anaerobic digestion (AD). The cumulative biogas yield of 586.2 mL biogas/gVS with the highest methane concentration of 69.5% was observed under an optimum ratio of OFMSW:SS (40:60 w/w). Bacteria and fungi were found to be majorly involved in hydrolysis and initial stages of AD. Probably, the most common archaea Methanosarsina sp. primarily followed the acetoclastic pathway. The hydrogenotrophic pathway was less followed as indicated by the reduction in abundance of syntrophic acetate oxidizers. An adequate understanding of microbial communities is important to manipulate and inoculate the specific microbial consortia to maximize CH4 production through AD.
  16. Kumar SS, Ghosh P, Kataria N, Kumar D, Thakur S, Pathania D, et al.
    Chemosphere, 2021 Oct;280:130601.
    PMID: 33945900 DOI: 10.1016/j.chemosphere.2021.130601
    In the current scenario, alternative energy sources are the need of the hour. Organic wastes having a larger fraction of biodegradable constituents present a sustainable bioenergy source. It has been reported that the calorific value of biogas generated by anaerobic digestion (AD) is 21-25 MJ/m3 with the treatment which makes it an excellent replacement of natural gas and fossil fuels and can reduce more than 80% greenhouse gas emission to the surroundings. However, there are some limitations associated with the AD process for instance ammonia build-up at the first stage reduces the rate of hydrolysis of biomass, whereas, in the last stage it interferes with methane formation. Owing to special physicochemical properties such as high activity, high reactive surface area, and high specificity, tailor-made conductive nanoparticles can improve the performance of the AD process. In the AD process, H2 is used as an electron carrier, referred as mediated interspecies electron transfer (MIET). Due to the diffusion limitation of these electron carriers, the MIET efficiency is relatively low that limits the methanogenesis. Direct interspecies electron transfer (DIET), which enables direct cell-to-cell electron transport between bacteria and methanogen, has been considered an alternative efficient approach to MIET that creates metabolically favorable conditions and results in faster conversion of organic acids and alcohols into methane. This paper discusses in detail the application of conductive nanoparticles to enhance the AD process efficiency. Interaction between microbes in anaerobic conditions for electron transfer with the help of CNPs is discussed. Application of a variety of conductive nanomaterials as an additive is discussed with their potential biogas production and treatment enhancement in the anaerobic digestion process.
  17. Duong JK, Kumar SS, Kirkpatrick CM, Greenup LC, Arora M, Lee TC, et al.
    Clin Pharmacokinet, 2013 May;52(5):373-84.
    PMID: 23475568 DOI: 10.1007/s40262-013-0046-9
    Metformin is contraindicated in patients with renal impairment; however, there is poor adherence to current dosing guidelines. In addition, the pharmacokinetics of metformin in patients with significant renal impairment are not well described. The aims of this study were to investigate factors influencing the pharmacokinetic variability, including variant transporters, between healthy subjects and patients with type 2 diabetes mellitus (T2DM) and to simulate doses of metformin at varying stages of renal function.
  18. Yeh CC, Muduli S, Peng IC, Lu YT, Ling QD, Alarfaj AA, et al.
    Data Brief, 2016 Mar;6:603-8.
    PMID: 26909373 DOI: 10.1016/j.dib.2015.12.056
    This data article contains two figures and one table supporting the research article entitled: "Continuous harvest of stem cells via partial detachment from thermoresponsive nanobrush surface" [1]. The table shows coating conditions of three copolymers, poly(styrene-co-acrylic acid) grafted with oligovitronectin, poly(styrene-co-N-isopropylacrylamide) and poly(styrene-co-polyethylene glycol methacrylate) to prepare thermoresponsive surface. XPS spectra show the nitrogen peak of the polystyrene surface coated with poly(styrene-co-acrylic acid) grafted with oligovitronectin. The surface coating density analyzed from sorption of poly(styrene-co-acrylic acid) grafted with oligovitronectin by UV-vis spectroscopy is also presented.
  19. Mathivanan M, Sabarathinam C, Mohan Viswanathan P, Senapathi V, Nadesan D, Indrani GG, et al.
    Environ Res, 2022 Jan;203:111791.
    PMID: 34333012 DOI: 10.1016/j.envres.2021.111791
    Uranium (U) in groundwater is hazardous to human health, especially if it is present in drinking water. The semiarid regions of southern India chiefly depend on groundwater for drinking purposes. In this regard, a comprehensive sampling strategy was adopted to collect groundwater representing different lithologies of the region. The samples were collected in two different seasons and analysed for major and minor ions along with total U in the groundwater. Two samples during pre monsoon (PRM) and seven samples during post monsoon (POM) had U > 30 μgL-1, which is above the World Health Organization's provisional guideline value. The high concentration of U (188 μgL-1) was observed in the alluvial formation though a few samples showed the release of U near the pink granite (39 μgL-1) and the concentration was low in the lateritic formation (10 μgL-1). The uranyl carbonato complexes UO2(CO3)22- and UO2(CO3)34- were associated with high pH which facilitated the transport of U into groundwater especially during POM. U3O8 is the major form observed in groundwater compared to either UO2 or UO3 in the both seasons. The uranium oxides were observed to be more prevalent at the neutral pH. Though U concentration increases with pH, it is mainly governed by the redox conditions. The principal component analysis (PCA) analysis also suggested redox conditions in groundwater to be the major process facilitating the U release mechanism regardless of the season. The POM season has an additional source of U in groundwater due to the application of nitrogenous fertilizers in the alluvium region. Furthermore, redox mobilization factor was predominantly observed near the coastal region and in the agricultural regions. The process of infiltration of the fertilizer-induced U was enhanced by the agricultural runoff into the surface water bodies in the region. Health risk assessment was also carried out by determining annual effective dose rate, cancer mortality risk, lifetime average daily dose and hazard quotient to assess the portability of groundwater in the study area. Artificial recharge technique and reducing the usage of chemical based fertilizers for irrigation are suggested as sustainable plans to safeguard the vulnerable water resource in this region.
  20. Muniandy K, Gothai S, Tan WS, Kumar SS, Esa NM, Chandramohan G, et al.
    PMID: 32617103 DOI: 10.1155/2020/2705479
    [This corrects the article DOI: 10.1155/2018/3142073.].
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links