Displaying publications 1 - 20 of 79 in total

Abstract:
Sort:
  1. Wong WL, Abdulla MA, Chua KH, Kuppusamy UR, Tan YS, Sabaratnam V
    PMID: 22649470 DOI: 10.1155/2012/170303
    Panus giganteus, a culinary and medicinal mushroom consumed by selected indigenous communities in Malaysia, is currently being considered for large scale cultivation. This study was undertaken to investigate the hepatoprotective effects of P. giganteus against thioacetamide- (TAA-) induced liver injury in Sprague-Dawley rats. The rats were injected intraperitoneally with TAA thrice weekly and were orally administered freeze-dried fruiting bodies of P. giganteus (0.5 or 1 g/kg) daily for two months, while control rats were given vehicle or P. giganteus only. After 60 days, rats administered with P. giganteus showed lower liver body weight ratio, restored levels of serum liver biomarkers and oxidative stress parameters comparable to treatment with the standard drug silymarin. Gross necropsy and histopathological examination further confirmed the hepatoprotective effects of P. giganteus. This is the first report on hepatoprotective effects of P. giganteus. The present study showed that P. giganteus was able to prevent or reduce the severity of TAA-induced liver injury.
  2. Wong KH, Naidu M, David P, Abdulla MA, Abdullah N, Kuppusamy UR, et al.
    PMID: 21941586 DOI: 10.1093/ecam/neq062
    Nerve crush injury is a well-established axonotmetic model in experimental regeneration studies to investigate the impact of various pharmacological treatments. Hericium erinaceus is a temperate mushroom but is now being cultivated in tropical Malaysia. In this study, we investigated the activity of aqueous extract of H. erinaceus fresh fruiting bodies in promoting functional recovery following an axonotmetic peroneal nerve injury in adult female Sprague-Dawley rats by daily oral administration. The aim was to investigate the possible use of this mushroom in the treatment of injured nerve. Functional recovery was assessed in behavioral experiment by walking track analysis. Peroneal functional index (PFI) was determined before surgery and after surgery as rats showed signs of recovery. Histological examinations were performed on peroneal nerve by immunofluorescence staining and neuromuscular junction by combined silver-cholinesterase stain. Analysis of PFI indicated that return of hind limb function occurred earlier in rats of aqueous extract or mecobalamin (positive control) group compared to negative control group. Regeneration of axons and reinnervation of motor endplates in extensor digitorum longus muscle in rats of aqueous extract or mecobalamin group developed better than in negative control group. These data suggest that daily oral administration of aqueous extract of H. erinaceus fresh fruiting bodies could promote the regeneration of injured rat peroneal nerve in the early stage of recovery.
  3. Wong JY, Abdulla MA, Raman J, Phan CW, Kuppusamy UR, Golbabapour S, et al.
    PMID: 24302966 DOI: 10.1155/2013/492976
    Hericium erinaceus is a famous tonic in oriental medicine. The gastroprotective effects of aqueous extract of H. erinaceus against ethanol-induced ulcers in Sprague Dawley rats were investigated. The possible involvements of lipid peroxidation, superoxide dismutase, and catalase were also investigated. Acute toxicity study was performed. The effects of aqueous extract of H. erinaceus on the ulcer areas, ulcer inhibition, gastric wall mucus, gross and histological gastric lesions, antioxidant levels, and malondialdehyde (MDA) contents were evaluated in ethanol-induced ulcer in vivo. In acute toxicity study, a high dose of 5 g/kg did not manifest any toxicological signs in rats. The extract promoted ulcer protection as ascertained by a significant reduction of the ulcer area. Furthermore, it exhibited a significant protection activity against gastric mucosal injury by preventing the depletion of antioxidant enzymes. The level of MDA was also limited in rat stomach tissues when compared with the ulcer control group. Immunohistochemistry showed upregulation of HSP70 protein and downregulation of BAX protein in rats pretreated with the extract. The aqueous extract of H. erinaceus protected gastric mucosa in our in vivo model. It is speculated that the bioactive compounds present in the extract may play a major role in gastroprotective activity.
  4. Wong FN, Chua KH, Kuppusamy UR, Wong CM, Lim SK, Tan JA
    PeerJ, 2016;4:e1908.
    PMID: 27114872 DOI: 10.7717/peerj.1908
    Chronic kidney disease (CKD) is a condition associated with progressive loss of kidney function and kidney damage. The two common causes of CKD are diabetes mellitus and hypertension. Other causes of CKD also include polycystic kidney disease, obstructive uropathy and primary glomerulonephritis. The receptor for advanced glycation end-products (RAGE) is a multi-ligand cell surface receptor of the immunoglobulin superfamily and it has been associated with kidney disease in both non-diabetic and diabetic patients. Presently, data on the association between RAGE polymorphisms and CKD in the Malaysian population is limited, while numerous studies have reported associations of RAGE polymorphisms with diabetic complications in other populations. The present study aims to explore the possibility of using RAGE polymorphisms as candidate markers of CKD in Malaysian population by using association analysis.
  5. Wong FN, Chua KH, Tan JAMA, Wong CM, Kuppusamy UR
    PeerJ, 2018;6:e4421.
    PMID: 29610703 DOI: 10.7717/peerj.4421
    Background: Chronic kidney disease (CKD) is characterised by long-term kidney damage and renal function decline. Diabetic CKD is the principal subtype of kidney disease in Malaysia and is associated with oxidative stress which plays an important role in development and progression of the disease. Glycaemic control slows down the progression of diabetic complications, including diabetic CKD. However, the implication of glycaemic control on enzymatic antioxidants and soluble RAGE (sRAGE) in CKD patients remains elusive. The aim of this study was to investigate the effect of glycaemic control on the levels or activities of glutathione peroxidase (GPx), superoxide dismutase (SOD) and sRAGE in CKD patients.

    Methods: A total of 150 CKD patients and 64 non-CKD patients were enrolled. The type 2 diabetic patients in the recruited study participants were categorised based on their glycaemic control; poor glycaemic control (GC) with haemoglobin A1c (HbA1c) > 7% and good GC with HbA1c ≤ 7%. The levels or activities of GPx, SOD and sRAGE in plasma were measured. These biochemical parameters were analysed using Mann-WhitneyUtest and two-way analysis of variance (ANOVA).

    Results: The activities of GPx and SOD as well as plasma level of sRAGE were not significantly different among the CKD patients with varying glycaemic control status. Irrespective of diabetes status and glycaemic control status, CKD patients also exhibited lower plasma SOD activities compared with non-CKD patients. Among the non-CKD patients, SOD activities were significantly higher in diabetic patients with good GC than diabetic patients with poor GC. Two-way ANOVA revealed that both CKD status and glycaemic control had an interaction effect on SOD activities in diabetic subjects with and without CKD. Follow-up analysis showed that SOD activities were significantly higher in non-CKD patients with good GC. There were no overall significant differences in GPx activities among the study participants. Furthermore, plasma sRAGE levels were higher in diabetic patients with CKD than those without CKD, regardless of glycaemic control status. There were no interaction effects between CKD status and glycaemic control status on GPx and sRAGE. Instead, CKD status showed significant main effects on these parameters, indicating significant differences between diabetic subjects with CKD and diabetic subjects without CKD.

    Conclusion: Glycaemic control did not quantitatively alter GPx, SOD and sRAGE in diabetic CKD patients. Despite the advantages of good glycaemic control, a well-controlled diabetes in CKD did not modulate the activities of enzymatic antioxidants and sRAGE levels, therefore may not be the primary mechanism to handle oxidative stress.

  6. Wong FN, Tan JA, Keng TC, Ng KP, Chua KH, Kuppusamy UR
    Clin Chim Acta, 2016 Jan 30;453:56-61.
    PMID: 26657980 DOI: 10.1016/j.cca.2015.12.002
    BACKGROUND: This study aimed to investigate the relationship between soluble RAGE and estimated glomerular filtration rate (eGFR) in patients with chronic kidney disease (CKD) after controlling for the potential confounding factors such as medication usage and enzymatic antioxidants.
    METHODS: A total of 222 CKD patients whose eGFR is less than 60ml/min/1.73m(2) and 111 non-CKD individuals were recruited. The study subjects were classified based on their diabetes status. The plasma glutathione peroxidase (GPx) and superoxide dismutase (SOD) activities as well as plasma soluble RAGE level were measured.
    RESULTS: The plasma GPx and SOD activities were significantly lower and the plasma soluble RAGE level was significantly higher in the CKD patients than in the non-CKD individuals, regardless of the diabetes status. Soluble RAGE was significantly correlated with eGFR in both diabetic CKD (D-CKD) and non-diabetic CKD (ND-CKD) patients. The association between soluble RAGE and eGFR remained largely unaffected by the confounding factors in D-CKD patients. However, the confounding effect of enzymatic antioxidants in the relationship between eGFR and soluble RAGE was observed in ND-CKD patients.
    CONCLUSION: The increased plasma level of soluble RAGE is a better indicator of renal function decline in diabetic CKD patients instead of non-diabetic CKD patients.
    KEYWORDS: Chronic kidney disease; Diabetes; Enzymatic antioxidants; Glomerular filtration rate; Medications; Soluble RAGE
  7. Teh HX, Phang SJ, Looi ML, Kuppusamy UR, Arumugam B
    Life Sci, 2023 Dec 01;334:122228.
    PMID: 37922981 DOI: 10.1016/j.lfs.2023.122228
    Diabetic wounds are slow healing wounds characterized by disordered healing processes and frequently take longer than three months to heal. One of the defining characteristics of impaired diabetic wound healing is an abnormal and unresolved inflammatory response, which is primarily brought on by abnormal macrophage innate immune signaling activation. The persistent inflammatory state in a diabetic wound may be attributed to inflammatory pathways such as nuclear factor kappa B (NF-ĸB) and nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, which have long been associated with inflammatory diseases. Despite the available treatments for diabetic foot ulcers (DFUs) that include debridement, growth factor therapy, and topical anti-bacterial agents, successful wound healing is still hampered. Further understanding of the molecular mechanism of these pathways could be useful in designing potential therapeutic targets for diabetic wound healing. This review provides an update and novel insights into the roles of NF-ĸB and NLRP3 pathways in the molecular mechanism of diabetic wound inflammation and their potential as therapeutic targets in diabetic wound healing.
  8. Tan YS, Baskaran A, Nallathamby N, Chua KH, Kuppusamy UR, Sabaratnam V
    J Food Sci Technol, 2015 May;52(5):3058-64.
    PMID: 25892809 DOI: 10.1007/s13197-014-1332-8
    Nutritional value of cooked food has been considered to be lower compared to the fresh produce. However, many reports showed that processed fruits and vegetables including mushrooms may retain antioxidant activity. Pleurotus spp. as one of the edible mushroom are in great demand globally and become one of the most popular mushrooms grown worldwide with 25-fold increase in production from 1960-2009. The effects of three different cooking methods (boiling, microwave and pressure cooking) on the antioxidant activities of six different types of oyster mushrooms (Pleurotus eryngii, P citrinopileatus, P. cystidiosus P. flabellatus, P. floridanus and P. pulmonarius) were assessed. Free radical scavenging (DPPH) and reducing power (TEAC) were used to evaluate the antioxidant activities and the total phenolic contents were determined by Folin-Ciocalteu reagent. Pressure cooking improved the scavenging abilities of P. floridanus (>200 %), P. flabellatus (117.6 %), and P. pulmonarius (49.1 %) compared to the uncooked samples. On the other hand, the microwaved Pleurotus eryngii showed 17 % higher in the TEAC value when compared to the uncooked sample. There was, however, no correlation between total phenolic content and antioxidant activities. There could be presence of other bioactive components in the processed mushrooms that may have contributed to the antioxidant activity. These results suggested that customized cooking method can be used to enhance the nutritional value of mushrooms and promote good health.
  9. Tan XC, Chua KH, Ravishankar Ram M, Kuppusamy UR
    Food Chem, 2016 Apr 1;196:242-50.
    PMID: 26593489 DOI: 10.1016/j.foodchem.2015.09.042
    Various strategies have been adopted to combat complications caused by Type 2 diabetes mellitus and controlled diet is one of them. Monoterpenes, major constituents of essential oils, are synthesized and widely used as artificial food flavors. A series of twelve monoterpenes were assessed in the present study. Monoterpenes, exhibited low 2,2-diphenyl-2-picrylhydrazyl hydrate (DPPH) and 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity even at high concentrations. Some monoterpenes inhibited α-amylase and α-glucosidase activity and stimulated glucose uptake and lipolysis. Monoterpenes such as (R)-(+)-limonene stimulated both glucose uptake (17.4%) and lipolysis (17.7%); the mRNA expression of glucose transporter 1 (GLUT1) was upregulated but glucose transporter 4 (GLUT4) was unaffected, and adipose triglyceride lipase (ATGL) was suppressed. Taken together, the selected monoterpenes may not confer strong protection against free radicals but nevertheless, their positive influence on lipid and glucose metabolism may have potential in the control of obesity and Type 2 diabetes mellitus.
  10. Tan WC, Kuppusamy UR, Phan CW, Tan YS, Raman J, Anuar AM, et al.
    Sci Rep, 2015;5:12515.
    PMID: 26213331 DOI: 10.1038/srep12515
    Mushroom cultivation benefits humankind as it deliberately encourages wild mushrooms to be commercially propagated while recycling agricultural wastes. Ganoderma neo-japonicum is a rare polypore mushroom found growing on decaying Schizostachyum brachycladium (a tropical bamboo) clumps in Malaysia. The Malaysian indigenous tribes including the Temuans and Temiars use the basidiocarps of G. neo-japonicum to treat various ailments including diabetes. In this study, the domestication of G. neo-japonicum in artificial logs of different agricultural residues was investigated. Sawdust promoted the mycelia spawn colonisation in the shortest period of 38 ± 0.5 days. However, only sawdust and bamboo dust supported the primodia formation. Complex medium supported mycelium growth in submerged cultures and 27.11 ± 0.43 g/L of mycelia was obtained after 2 weeks of cultivation at 28 °C and 200 rpm. Antioxidant potential in mushroom may be influenced by different cultivation and extraction methods. The different extracts from the wild and cultivated basidiocarps as well as mycelia were then tested for their antioxidant properties. Aqueous and ethanol extracts of mycelia and basidiocarps tested had varying levels of antioxidant activities. To conclude, domestication of wild G. neo-japonicum using agroresidues may ensure a continuous supply of G. neo-japonicum for its medicinal use while ensuring the conservation of this rare species.
  11. Tan WC, Kuppusamy UR, Phan CW, Sabaratnam V
    Int J Med Mushrooms, 2018;20(2):155-163.
    PMID: 29773007 DOI: 10.1615/IntJMedMushrooms.2018025445
    Ganoderma neo-japonicum is an annual polypore that grows on decaying bamboo in the forests of Malaysia. The indigenous Temuan tribe uses this species as a medicinal mushroom to cure fever and epilepsy and to improve body strength. The potential use of G. neo-japonicum in genoprotection and DNA repair was established using a single-cell gel electrophoresis (comet) assay. The effects of the ethanol and hot aqueous extracts from wild and cultivated basidiocarps, solid substrate-fermented (SSF) wheat grains, and mycelia via submerged culture on H2O2-damaged murine RAW264.7 macrophages were investigated. An ethanol extract from wild basidiocarps showed the most significant protective effect on murine RAW264.7 macrophages, followed by ethanol and hot water extracts of cultivated basidiocarps, and this effect was dose dependent. However, only the ethanol extracts from SSF and submerged culture showed significant protective effects compared with the control. As for DNA repair ability, only the ethanol extract from wild and cultivated basidiocarps showed significant results when compared with the negative control. The findings suggest the potential therapeutic use of G. neo-japonicum in genome protection and as a DNA repair stimulator.
  12. Subramaniam S, Sabaratnam V, Kuppusamy UR, Tan YS
    Int J Med Mushrooms, 2014;16(3):259-67.
    PMID: 24941167
    Species of the genus Ganoderma are a cosmopolitan wood decaying white rot fungi, which has been used by the Asians for therapeutic purposes for centuries. In the present study, solid-substrate fermentation (SSF) of wheat grains (Triticum aestivum L.) was carried out with indigenous Ganoderma australe (KUM60813) and G. neo-japonicum (KUM61076) selected based on ethnomycological knowledge. G. lucidum (VITA GL) (a commercial strain) was also included in the study. Antioxidant activities of the crude ethanol and aqueous extracts of the fermented and unfermented wheat grains were investigated by ferric reducing antioxidant power (FRAP), Trolox equivalent antioxidant capacity (TEAC), diphenyl-1-picryl-hydrazyl (DPPH) free radical scavenging ability, and lipid peroxidation assay. Among the six mycelia extracts tested, the ethanol extract from wheat fermented with KUM61076 mycelia showed the most potent antioxidant activities, whereas the ethanol extract of wheat grains fermented with KUM60813 mycelia has a good potential in protecting frying oils against oxidation. Total phenolic content (TPC) in the ethanol extracts were higher than that in the aqueous extract. The wheat grains fermented with G. australe (KUM60813) and G. neo-japonicum KUM61076 have greater antioxidant potential compared to the commercially available G. lucidum (VITA GL). The antioxidant activities of the mycelia extracts had a positive correlation with their phenolic contents. Thus phenolic compounds may play a vital role in the antioxidant activities of the selected Ganoderma spp.
  13. Subramaniam S, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2020;22(1):65-78.
    PMID: 32463999 DOI: 10.1615/IntJMedMushrooms.2020033250
    Ganoderma neo-japonicum is an annual polypore mushroom that is consumed by Malaysian indigenous tribes to treat various ailments including diabetes. The present study aimed to investigate the nutritive composition and in vitro antihyperglycemic effects of G. neo-japonicum extracts on 3T3-L1 preadipocytes. Nutritional analysis of G. neo-japonicum basidiocarps indicated a predominant presence of carbohydrates, proteins, dietary fiber, and microelements. Hot aqueous extract (AE) and its isolated (1,3)(1,6)-β-D-glucan polysaccharide (GNJP) from basidiocarps of G. neo-japonicum were evaluated for their ability to stimulate insulin independent adipogenesis, glucose uptake, adiponectin secretion, and regulate gene expression in 3T3-L1 adipocytes. GNJP showed a dose dependent stimulation of glucose uptake and adiponectin secretion but attenuated lipid accumulation in 3T3-L1 adipocytes. It upregulated the expressions of adiponectin, Aktl (protein kinase B), PPARγ (peroxisome proliferator activated receptor gamma), PRKAG2 (protein kinase, AMP activated), and Slc2a4 (glucose transporter) genes to stimulate glucose uptake in 3T3-L1 cells, which may have contributed to the insulin-mimicking activities observed in this study. In summary, the nutritive compositions and significant glucose uptake stimulatory activities of GNJP indicated that it may have potential use in the formulation of functional food for the management of hyperglycemia, insulin resistance, and related complications.
  14. Subramaniam S, Raman J, Sabaratnam V, Heng CK, Kuppusamy UR
    Int J Med Mushrooms, 2017;19(10):849-859.
    PMID: 29256840 DOI: 10.1615/IntJMedMushrooms.2017024355
    This study was conducted to evaluate the mycochemical composition and antiglycemic and antioxidant activities of Ganoderma neo-japonicum hot aqueous extracts, prepared at different boiling durations, and polysaccharides isolated from them. Ground basidiocarps of G. neo-japonicum were double-boiled at 100°C for 0.5, 3, or 4 hours, and the antiglycemic activity was assessed by α-amylase and α-glucosidase enzyme inhibition assays. The antioxidant capacity of the crude hot aqueous extracts (AE-1, AE-2, AE-3) was assessed by DPPH and ABTS radical scavenging and ferric-reducing antioxidant power assays. The total phenolics, protein, and sugar in the crude extracts were also determined. The hot aqueous extract (AE-3) containing a significant amount of total sugar and having enhanced antiglycemic and antioxidant activities was selected for polysaccharide isolation. The isolated crude polysaccharide was separated and purified using diethylaminoethyl-cellulose-52 and Sepharose 6B column chromatography. Fourier transform infrared spectroscopy studies of the purified polysaccharide fraction (PF) showed the presence of typical bands corresponding to polysaccharides. The estimated β-glucan concentration in the PF was 39.26%. In general, the PF exhibited significantly lower antioxidant activity than AE-3. Nevertheless, its potency in inhibiting carbohydratehydrolyzing enzymes may have potential in the management of diabetes mellitus.
  15. Subramaniam S, Ong KC, Sabaratnam V, Chua KH, Kuppusamy UR
    Int J Med Mushrooms, 2023;25(4):27-42.
    PMID: 37075082 DOI: 10.1615/IntJMedMushrooms.2023047595
    Ganoderma neo-japonicum Imazeki is a medicinal mushroom consumed by the indigenous people in Malaysia as a remedy for diabetes. This study aims to validate the efficacy of G. neo-japonicum polysaccharides (GNJP) on obesity-induced type 2 diabetes mellitus (T2DM) in C57BL/6J mice. Mice were divided into seven groups; normal diet (ND)-control, high-fat-diet (HFD)-control, HFDGNJP-treated (50, 100, 200 mg/kg b.w.), HFDMET (metformin 50 mg/kg; positive-control) and ND-GNJP (200 mg/kg b.w.). Mice were administered GNJP or metformin orally for 10 weeks (thrice/week) and sacrificed after an oral glucose tolerance test. Body weight, serum biochemicals, liver histology, adipocyte gene expressions, glucose and insulin levels were measured. HFD caused obesity, dyslipidemia, and diabetes in the untreated groups. GNJP (50 mg/kg b.w.) supplementation prevented weight gain and liver steatosis, improved serum lipid profile and glucose tolerance and attenuated hyperglycemia and hyperinsulinemia more effectively when compared with the other treatment groups. The prevention of obesity and lipid dysregulation is plausibly attributed to the increased hormone-sensitive lipase and reduced Akt-1 and Ppary gene expressions while the up-regulation of AdipoQ (adiponectin), Prkag2 and Slc2a4 genes served to sensitize insulin and improve glucose uptake. Thus, supplementation with an appropriate dose of GNJP has promising efficacies in preventing HFD aka obesity-induced T2DM and associated metabolic abnormalities.
  16. Phang SJ, Arumugam B, Kuppusamy UR, Fauzi MB, Looi ML
    J Tissue Eng Regen Med, 2021 12;15(12):1051-1068.
    PMID: 34551455 DOI: 10.1002/term.3246
    Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. Many research investigations have been conducted with the aims to uncover the diabetic wound healing mechanisms, develop novel therapeutics, and screen bioactive wound dressings in order to improve the current management of DFU. These would have not been possible without the utilization of an appropriate wound model, especially in a diabetic wound context. This review focuses on the different in vitro research models used in DFU investigations such as the 2D scratch wound assay, 3D skin model, and 3D angiogenesis model as well as their limitations. The current efforts and challenges to apply the 2D and 3D in vitro models in a hyperglycemic context to provide insights into DFU modeling will be reviewed. Perspectives of utilizing 3D bioprinting and skin-on-the-chip model as a diabetic wound model in the future will also be highlighted. By leveraging knowledge from past experiences and current research, an improved experimental model for DFU is anticipated to be established in near future.
  17. Phang SJ, Teh HX, Looi ML, Fauzi MB, Neo YP, Arumugam B, et al.
    Tissue Eng Regen Med, 2024 Feb;21(2):243-260.
    PMID: 37865625 DOI: 10.1007/s13770-023-00590-5
    BACKGROUND: Diabetic foot ulcer (DFU) is a major debilitating complication of diabetes. The lack of effective diabetic wound dressings has been a significant problem in DFU management. In this study, we aim to establish a phlorotannin-incorporated nanofibre system and determine its potential in accelerating hyperglycaemic wound healing.

    METHODS: The effective dose of Ecklonia cava phlorotannins (ECP) for hyperglycaemic wound healing was determined prior to phlorotannin nanofibre fabrication using polyvinyl-alcohol (PVA), polyvinylpyrrolidone (PVP), and ECP. Vapour glutaraldehyde was used for crosslinking of the PVA/PVP nanofibres. The phlorotannin nanofibres were characterised, and their safety and cytocompatibility were validated. Next, the wound healing effect of phlorotannin nanofibres was determined with 2D wound scratch assay, whereas immunofluorescence staining of Collagen-I (Col-I) and Cytokeratin-14 (CK-14) was performed in human dermal fibroblasts (HDF) and human epidermal keratinocytes (HEK), respectively.

    RESULTS: Our results demonstrated that 0.01 μg/mL ECP significantly improved hyperglycaemic wound healing without compromising cell viability and proliferation. Among all nanofibres, PVA/PVP/0.01 wt% ECP nanofibres exhibited the best hyperglycaemic wound healing effect. They displayed a diameter of 334.7 ± 10.1 nm, a porosity of 40.7 ± 3.3%, and a WVTR of 1718.1 ± 32.3 g/m2/day. Besides, the FTIR spectra and phlorotannin release profile validated the successful vapour glutaraldehyde crosslinking and ECP incorporation. We also demonstrated the potential of phlorotannin nanofibres as a non-cytotoxic wound dressing as they support the viability and proliferation of both HDF and HEK. Furthermore, phlorotannin nanofibres significantly ameliorated the impaired hyperglycaemic wound healing and restored the hyperglycaemic-induced Col-I reduction in HDF.

    CONCLUSION: Taken together, our findings show that phlorotannin nanofibres have the potential to be used as a diabetic wound dressing.

  18. Phan CW, David P, Tan YS, Naidu M, Wong KH, Kuppusamy UR, et al.
    ScientificWorldJournal, 2014;2014:378651.
    PMID: 25121118 DOI: 10.1155/2014/378651
    Two strains of Pleurotus giganteus (commercial and wild) were tested for their ability to induce neurite outgrowth in rat pheochromocytoma (PC12) and mouse neuroblastoma-2a (N2a) cells. Treatment with the mushroom extracts resulted in neuronal differentiation and neuronal elongation, but not nerve growth factor (NGF) production. Linoleic acid (4.5-5.0%, w/w) which is a major fatty acid present in the ethanol extract promoted NGF biosynthesis when augmented with low concentration of NGF (5 ng/mL). The two strains of mushroom were found to be high in protein (154-192 g kg(-1)), total polysaccharides, phenolics, and flavonoids as well as vitamins B1, B2, and B3. The total phenolics present in the mushroom extracts were positively correlated to the antioxidant activity (free radical scavenging, ferric reducing power, and lipid peroxidation inhibition). To conclude, P. giganteus could potentially be used in well-balanced diet and as a source of dietary antioxidant to promote neuronal health.
  19. Paravamsivam P, Heng CK, Malek SN, Sabaratnam V, M RR, Kuppusamy UR
    Int J Med Mushrooms, 2016;18(9):821-831.
    PMID: 27910773
    The edible mushroom Pleurotus giganteus was tested for its effect on adipocyte differentiation and glucose uptake activity in 3T3-L1 cells. The basidiocarps of P. giganteus were soaked in methanol to obtain a crude methanol extract and then fractionated to obtain an ethyl acetate extract. In this study, cell proliferation was measured using an MTT assay, lipid accumulation using an Oil Red O assay, and glucose uptake using a fluorescence glucose uptake assay. Gene expression was measured via real-time polymerase chain reaction analysis with TaqMan primer. Ethyl acetate extract significantly enhanced adipogenic differentiation and glucose uptake in 3T3-L1 adipocytes via the expression of sterol regulatory element-binding protein, peroxisome proliferator-activated receptor γ, and phos-phatidylinositol 3-kinase/Akt. Glucose uptake was facilitated by the highly expressed glucose transporters Glut1 and Glut4. Taken together, these results suggest that P. giganteus ethyl acetate extract has an insulin-sensitizing effect on adipocytes and has potential as an adjuvant for the management of type 2 diabetes.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links