Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Liew YM, McLaughlin RA, Chan BT, Abdul Aziz YF, Chee KH, Ung NM, et al.
    Phys Med Biol, 2015 Apr 7;60(7):2715-33.
    PMID: 25768708 DOI: 10.1088/0031-9155/60/7/2715
    Cine MRI is a clinical reference standard for the quantitative assessment of cardiac function, but reproducibility is confounded by motion artefacts. We explore the feasibility of a motion corrected 3D left ventricle (LV) quantification method, incorporating multislice image registration into the 3D model reconstruction, to improve reproducibility of 3D LV functional quantification. Multi-breath-hold short-axis and radial long-axis images were acquired from 10 patients and 10 healthy subjects. The proposed framework reduced misalignment between slices to subpixel accuracy (2.88 to 1.21 mm), and improved interstudy reproducibility for 5 important clinical functional measures, i.e. end-diastolic volume, end-systolic volume, ejection fraction, myocardial mass and 3D-sphericity index, as reflected in a reduction in the sample size required to detect statistically significant cardiac changes: a reduction of 21-66%. Our investigation on the optimum registration parameters, including both cardiac time frames and number of long-axis (LA) slices, suggested that a single time frame is adequate for motion correction whereas integrating more LA slices can improve registration and model reconstruction accuracy for improved functional quantification especially on datasets with severe motion artefacts.
  2. Jahanzad Z, Liew YM, Bilgen M, McLaughlin RA, Leong CO, Chee KH, et al.
    Phys Med Biol, 2015 May 21;60(10):4015-31.
    PMID: 25919317 DOI: 10.1088/0031-9155/60/10/4015
    A segmental two-parameter empirical deformable model is proposed for evaluating regional motion abnormality of the left ventricle. Short-axis tagged MRI scans were acquired from 10 healthy subjects and 10 postinfarct patients. Two motion parameters, contraction and rotation, were quantified for each cardiac segment by fitting the proposed model using a non-rigid registration algorithm. The accuracy in motion estimation was compared to a global model approach. Motion parameters extracted from patients were correlated to infarct transmurality assessed with delayed-contrast-enhanced MRI. The proposed segmental model allows markedly improved accuracy in regional motion analysis as compared to the global model for both subject groups (1.22-1.40 mm versus 2.31-2.55 mm error). By end-systole, all healthy segments experienced radial displacement by ~25-35% of the epicardial radius, whereas the 3 short-axis planes rotated differently (basal: 3.3°; mid:  -1° and apical:  -4.6°) to create a twisting motion. While systolic contraction showed clear correspondence to infarct transmurality, rotation was nonspecific to either infarct location or transmurality but could indicate the presence of functional abnormality. Regional contraction and rotation derived using this model could potentially aid in the assessment of severity of regional dysfunction of infarcted myocardium.
  3. Manaf NA, Aziz MN, Ridzuan DS, Mohamad Salim MI, Wahab AA, Lai KW, et al.
    Med Biol Eng Comput, 2016 Jun;54(6):967-81.
    PMID: 27039402 DOI: 10.1007/s11517-016-1480-2
    Recently, there is an increasing interest in the use of local hyperthermia treatment for a variety of clinical applications. The desired therapeutic outcome in local hyperthermia treatment is achieved by raising the local temperature to surpass the tissue coagulation threshold, resulting in tissue necrosis. In oncology, local hyperthermia is used as an effective way to destroy cancerous tissues and is said to have the potential to replace conventional treatment regime like surgery, chemotherapy or radiotherapy. However, the inability to closely monitor temperature elevations from hyperthermia treatment in real time with high accuracy continues to limit its clinical applicability. Local hyperthermia treatment requires real-time monitoring system to observe the progression of the destroyed tissue during and after the treatment. Ultrasound is one of the modalities that have great potential for local hyperthermia monitoring, as it is non-ionizing, convenient and has relatively simple signal processing requirement compared to magnetic resonance imaging and computed tomography. In a two-dimensional ultrasound imaging system, changes in tissue microstructure during local hyperthermia treatment are observed in terms of pixel value analysis extracted from the ultrasound image itself. Although 2D ultrasound has shown to be the most widely used system for monitoring hyperthermia in ultrasound imaging family, 1D ultrasound on the other hand could offer a real-time monitoring and the method enables quantitative measurement to be conducted faster and with simpler measurement instrument. Therefore, this paper proposes a new local hyperthermia monitoring method that is based on one-dimensional ultrasound. Specifically, the study investigates the effect of ultrasound attenuation in normal and pathological breast tissue when the temperature in tissue is varied between 37 and 65 °C during local hyperthermia treatment. Besides that, the total protein content measurement was also conducted to investigate the relationship between attenuation and tissue denaturation level at different temperature ranges. The tissues were grouped according to their histology results, namely normal tissue with large predominance of cells (NPC), cancer tissue with large predominance of cells (CPC) and cancer with high collagen fiber content (CHF). The result shows that the attenuation coefficient of ultrasound measured following the local hyperthermia treatment increases with the increment of collagen fiber content in tissue as the CHF attenuated ultrasound at the highest rate, followed by NPC and CPC. Additionally, the attenuation increment is more pronounced at the temperature over 55 °C. This describes that the ultrasound wave experienced more energy loss when it propagates through a heated tissue as the tissue structure changes due to protein coagulation effect. Additionally, a significant increase in the sensitivity of attenuation to protein denaturation is also observed with the highest sensitivity obtained in monitoring NPC. Overall, it is concluded that one-dimensional ultrasound can be used as a monitoring method of local hyperthermia since its attenuation is very sensitive to the changes in tissue microstructure during hyperthermia.
  4. Wahab AA, Salim MI, Ahamat MA, Manaf NA, Yunus J, Lai KW
    Med Biol Eng Comput, 2016 Sep;54(9):1363-73.
    PMID: 26463520 DOI: 10.1007/s11517-015-1403-7
    Breast cancer is the most common cancer among women globally, and the number of young women diagnosed with this disease is gradually increasing over the years. Mammography is the current gold-standard technique although it is known to be less sensitive in detecting tumors in woman with dense breast tissue. Detecting an early-stage tumor in young women is very crucial for better survival chance and treatment. The thermography technique has the capability to provide an additional functional information on physiological changes to mammography by describing thermal and vascular properties of the tissues. Studies on breast thermography have been carried out to improve the accuracy level of the thermography technique in various perspectives. However, the limitation of gathering women affected by cancer in different age groups had necessitated this comprehensive study which is aimed to investigate the effect of different density levels on the surface temperature distribution profile of the breast models. These models, namely extremely dense (ED), heterogeneously dense (HD), scattered fibroglandular (SF), and predominantly fatty (PF), with embedded tumors were developed using the finite element method. A conventional Pennes' bioheat model was used to perform the numerical simulation on different case studies, and the results obtained were then compared using a hypothesis statistical analysis method to the reference breast model developed previously. The results obtained show that ED, SF, and PF breast models had significant mean differences in surface temperature profile with a p value <0.025, while HD breast model data pair agreed with the null hypothesis formulated due to the comparable tissue composition percentage to the reference model. The findings suggested that various breast density levels should be considered as a contributing factor to the surface thermal distribution profile alteration in both breast cancer detection and analysis when using the thermography technique.
  5. Khalil A, Faisal A, Ng SC, Liew YM, Lai KW
    J Med Imaging (Bellingham), 2017 Jul;4(3):037001.
    PMID: 28840172 DOI: 10.1117/1.JMI.4.3.037001
    A registration method to fuse two-dimensional (2-D) echocardiography images with cardiac computed tomography (CT) volume is presented. The method consists of two major procedures: temporal and spatial registrations. In temporal registration, the echocardiography frames at similar cardiac phases as the CT volume were interpolated based on electrocardiogram signal information, and the noise of the echocardiography image was reduced using the speckle reducing anisotropic diffusion technique. For spatial registration, an intensity-based normalized mutual information method was applied with a pattern search optimization algorithm to produce an interpolated cardiac CT image. The proposed registration framework does not require optical tracking information. Dice coefficient and Hausdorff distance for the left atrium assessments were [Formula: see text] and [Formula: see text], respectively; for left ventricle, they were [Formula: see text] and [Formula: see text], respectively. There was no significant difference in the mitral valve annulus diameter measurement between the manually and automatically registered CT images. The transformation parameters showed small deviations ([Formula: see text] deviation in translation and [Formula: see text] for rotation) between manual and automatic registrations. The proposed method aids the physician in diagnosing mitral valve disease as well as provides surgical guidance during the treatment procedure.
  6. Khalil A, Faisal A, Lai KW, Ng SC, Liew YM
    Med Biol Eng Comput, 2017 Aug;55(8):1317-1326.
    PMID: 27830464 DOI: 10.1007/s11517-016-1594-6
    This study proposed a registration framework to fuse 2D echocardiography images of the aortic valve with preoperative cardiac CT volume. The registration facilitates the fusion of CT and echocardiography to aid the diagnosis of aortic valve diseases and provide surgical guidance during transcatheter aortic valve replacement and implantation. The image registration framework consists of two major steps: temporal synchronization and spatial registration. Temporal synchronization allows time stamping of echocardiography time series data to identify frames that are at similar cardiac phase as the CT volume. Spatial registration is an intensity-based normalized mutual information method applied with pattern search optimization algorithm to produce an interpolated cardiac CT image that matches the echocardiography image. Our proposed registration method has been applied on the short-axis "Mercedes Benz" sign view of the aortic valve and long-axis parasternal view of echocardiography images from ten patients. The accuracy of our fully automated registration method was 0.81 ± 0.08 and 1.30 ± 0.13 mm in terms of Dice coefficient and Hausdorff distance for short-axis aortic valve view registration, whereas for long-axis parasternal view registration it was 0.79 ± 0.02 and 1.19 ± 0.11 mm, respectively. This accuracy is comparable to gold standard manual registration by expert. There was no significant difference in aortic annulus diameter measurement between the automatically and manually registered CT images. Without the use of optical tracking, we have shown the applicability of this technique for effective fusion of echocardiography with preoperative CT volume to potentially facilitate catheter-based surgery.
  7. Faisal A, Ng SC, Goh SL, Lai KW
    Med Biol Eng Comput, 2018 Apr;56(4):657-669.
    PMID: 28849317 DOI: 10.1007/s11517-017-1710-2
    Quantitative thickness computation of knee cartilage in ultrasound images requires segmentation of a monotonous hypoechoic band between the soft tissue-cartilage interface and the cartilage-bone interface. Speckle noise and intensity bias captured in the ultrasound images often complicates the segmentation task. This paper presents knee cartilage segmentation using locally statistical level set method (LSLSM) and thickness computation using normal distance. Comparison on several level set methods in the attempt of segmenting the knee cartilage shows that LSLSM yields a more satisfactory result. When LSLSM was applied to 80 datasets, the qualitative segmentation assessment indicates a substantial agreement with Cohen's κ coefficient of 0.73. The quantitative validation metrics of Dice similarity coefficient and Hausdorff distance have average values of 0.91 ± 0.01 and 6.21 ± 0.59 pixels, respectively. These satisfactory segmentation results are making the true thickness between two interfaces of the cartilage possible to be computed based on the segmented images. The measured cartilage thickness ranged from 1.35 to 2.42 mm with an average value of 1.97 ± 0.11 mm, reflecting the robustness of the segmentation algorithm to various cartilage thickness. These results indicate a potential application of the methods described for assessment of cartilage degeneration where changes in the cartilage thickness can be quantified over time by comparing the true thickness at a certain time interval.
  8. Khalil A, Ng SC, Liew YM, Lai KW
    Cardiol Res Pract, 2018;2018:1437125.
    PMID: 30159169 DOI: 10.1155/2018/1437125
    Image registration has been used for a wide variety of tasks within cardiovascular imaging. This study aims to provide an overview of the existing image registration methods to assist researchers and impart valuable resource for studying the existing methods or developing new methods and evaluation strategies for cardiac image registration. For the cardiac diagnosis and treatment strategy, image registration and fusion can provide complementary information to the physician by using the integrated image from these two modalities. This review also contains a description of various imaging techniques to provide an appreciation of the problems associated with implementing image registration, particularly for cardiac pathology intervention and treatments.
  9. Latfi ASA, Pramanik S, Poon CT, Gumel AM, Lai KW, Annuar MSM, et al.
    J Biomater Appl, 2019 01;33(6):854-865.
    PMID: 30458659 DOI: 10.1177/0885328218812490
    Natural biopolymers have many attractive medical applications; however, complications due to fibrosis caused a reduction in diffusion and dispersal of nutrients and waste products. Consequently, severe immunocompatibility problems and poor mechanical and degradation properties in synthetic polymers ensue. Hence, the present study investigates a novel hydrogel material synthesized from caprolactone, ethylene glycol, ethylenediamine, polyethylene glycol, ammonium persulfate, and tetramethylethylenediamine via chemo-enzymatic route. Spectroscopic analyses indicated the formation of polyurea and polyhydroxyurethane as the primary building block of the hydrogel starting material. Biocompatibility studies showed positive observation in biosafety test using direct contact cytotoxicity assay in addition to active cellular growth on the hydrogel scaffold based on fluorescence observation. The synthesized hydrogel also exhibited (self)fluorescence properties under specific wavelength excitation. Hence, synthesized hydrogel could be a potential candidate for medical imaging as well as tissue engineering applications as a tissue expander, coating material, biosensor, and drug delivery system.
  10. Meng LK, Khalil A, Ahmad Nizar MH, Nisham MK, Pingguan-Murphy B, Hum YC, et al.
    Curr Med Imaging Rev, 2019;15(10):983-989.
    PMID: 32008525 DOI: 10.2174/1573405615666190724101600
    BACKGROUND: Bone Age Assessment (BAA) refers to a clinical procedure that aims to identify a discrepancy between biological and chronological age of an individual by assessing the bone age growth. Currently, there are two main methods of executing BAA which are known as Greulich-Pyle and Tanner-Whitehouse techniques. Both techniques involve a manual and qualitative assessment of hand and wrist radiographs, resulting in intra and inter-operator variability accuracy and time-consuming. An automatic segmentation can be applied to the radiographs, providing the physician with more accurate delineation of the carpal bone and accurate quantitative analysis.

    METHODS: In this study, we proposed an image feature extraction technique based on image segmentation with the fully convolutional neural network with eight stride pixel (FCN-8). A total of 290 radiographic images including both female and the male subject of age ranging from 0 to 18 were manually segmented and trained using FCN-8.

    RESULTS AND CONCLUSION: The results exhibit a high training accuracy value of 99.68% and a loss rate of 0.008619 for 50 epochs of training. The experiments compared 58 images against the gold standard ground truth images. The accuracy of our fully automated segmentation technique is 0.78 ± 0.06, 1.56 ±0.30 mm and 98.02% in terms of Dice Coefficient, Hausdorff Distance, and overall qualitative carpal recognition accuracy, respectively.

  11. Shoaib MA, Hossain MB, Hum YC, Chuah JH, Mohd Salim MI, Lai KW
    Curr Med Imaging, 2020;16(6):739-751.
    PMID: 32723246 DOI: 10.2174/1573405615666190903143330
    BACKGROUND: Ultrasound (US) imaging can be a convenient and reliable substitute for magnetic resonance imaging in the investigation or screening of articular cartilage injury. However, US images suffer from two main impediments, i.e., low contrast ratio and presence of speckle noise.

    AIMS: A variation of anisotropic diffusion is proposed that can reduce speckle noise without compromising the image quality of the edges and other important details.

    METHODS: For this technique, four gradient thresholds were adopted instead of one. A new diffusivity function that preserves the edge of the resultant image is also proposed. To automatically terminate the iterative procedures, the Mean Absolute Error as its stopping criterion was implemented.

    RESULTS: Numerical results obtained by simulations unanimously indicate that the proposed method outperforms conventional speckle reduction techniques. Nevertheless, this preliminary study has been conducted based on a small number of asymptomatic subjects.

    CONCLUSION: Future work must investigate the feasibility of this method in a large cohort and its clinical validity through testing subjects with a symptomatic cartilage injury.

  12. Nizar MHA, Chan CK, Khalil A, Yusof AKM, Lai KW
    Curr Med Imaging, 2020;16(5):584-591.
    PMID: 32484093 DOI: 10.2174/1573405615666190114151255
    BACKGROUND: Valvular heart disease is a serious disease leading to mortality and increasing medical care cost. The aortic valve is the most common valve affected by this disease. Doctors rely on echocardiogram for diagnosing and evaluating valvular heart disease. However, the images from echocardiogram are poor in comparison to Computerized Tomography and Magnetic Resonance Imaging scan. This study proposes the development of Convolutional Neural Networks (CNN) that can function optimally during a live echocardiographic examination for detection of the aortic valve. An automated detection system in an echocardiogram will improve the accuracy of medical diagnosis and can provide further medical analysis from the resulting detection.

    METHODS: Two detection architectures, Single Shot Multibox Detector (SSD) and Faster Regional based Convolutional Neural Network (R-CNN) with various feature extractors were trained on echocardiography images from 33 patients. Thereafter, the models were tested on 10 echocardiography videos.

    RESULTS: Faster R-CNN Inception v2 had shown the highest accuracy (98.6%) followed closely by SSD Mobilenet v2. In terms of speed, SSD Mobilenet v2 resulted in a loss of 46.81% in framesper- second (fps) during real-time detection but managed to perform better than the other neural network models. Additionally, SSD Mobilenet v2 used the least amount of Graphic Processing Unit (GPU) but the Central Processing Unit (CPU) usage was relatively similar throughout all models.

    CONCLUSION: Our findings provide a foundation for implementing a convolutional detection system to echocardiography for medical purposes.

  13. Foo LS, Larkin JR, Sutherland BA, Ray KJ, Yap WS, Hum YC, et al.
    Magn Reson Med, 2021 04;85(4):2188-2200.
    PMID: 33107119 DOI: 10.1002/mrm.28565
    PURPOSE: To assess the correlation and differences between common amide proton transfer (APT) quantification methods in the diagnosis of ischemic stroke.

    METHODS: Five APT quantification methods, including asymmetry analysis and its variants as well as two Lorentzian model-based methods, were applied to data acquired from six rats that underwent middle cerebral artery occlusion scanned at 9.4T. Diffusion and perfusion-weighted images, and water relaxation time maps were also acquired to study the relationship of these conventional imaging modalities with the different APT quantification methods.

    RESULTS: The APT ischemic area estimates had varying sizes (Jaccard index: 0.544 ≤ J ≤ 0.971) and had varying correlations in their distributions (Pearson correlation coefficient: 0.104 ≤ r ≤ 0.995), revealing discrepancies in the quantified ischemic areas. The Lorentzian methods produced the highest contrast-to-noise ratios (CNRs; 1.427 ≤ CNR ≤ 2.002), but generated APT ischemic areas that were comparable in size to the cerebral blood flow (CBF) deficit areas; asymmetry analysis and its variants produced APT ischemic areas that were smaller than the CBF deficit areas but larger than the apparent diffusion coefficient deficit areas, though having lower CNRs (0.561 ≤ CNR ≤ 1.083).

    CONCLUSION: There is a need to further investigate the accuracy and correlation of each quantification method with the pathophysiology using a larger scale multi-imaging modality and multi-time-point clinical study. Future studies should include the magnetization transfer ratio asymmetry results alongside the findings of the study to facilitate the comparison of results between different centers and also the published literature.

  14. Foo LS, Harston G, Mehndiratta A, Yap WS, Hum YC, Lai KW, et al.
    Quant Imaging Med Surg, 2021 Aug;11(8):3797-3811.
    PMID: 34341751 DOI: 10.21037/qims-20-1339
    Amide proton transfer (APT) magnetic resonance imaging (MRI) is a pH-sensitive imaging technique that can potentially complement existing clinical imaging protocol for the assessment of ischemic stroke. This review aims to summarize the developments in the clinical research of APT imaging of ischemic stroke after 17 years of progress since its first preclinical study in 2003. Three electronic databases: PubMed, Scopus, and Cochrane Library were systematically searched for articles reporting clinical studies on APT imaging of ischemic stroke. Only articles in English published between 2003 to 2020 that involved patients presenting ischemic stroke-like symptoms that underwent APT MRI were included. Of 1,093 articles screened, 14 articles met the inclusion criteria with a total of 282 patients that had been scanned using APT imaging. Generally, the clinical studies agreed APT effect to be hypointense in ischemic tissue compared to healthy tissue, allowing for the detection of ischemic stroke. Other uses of APT imaging have also been investigated in the studies, including penumbra identification, predicting long term clinical outcome, and serving as a biomarker for supportive treatment monitoring. The published results demonstrated the potential of APT imaging in these applications, but further investigations and larger trials are needed for conclusive evidence. Future studies are recommended to report the result of asymmetry analysis at 3.5 ppm along with the findings of the study to reduce this contribution to the heterogeneity of experimental methods observed and to facilitate effective comparison of results between studies and centers. In addition, it is important to focus on the development of fast 3D imaging for full volumetric ischemic tissue assessment for clinical translation.
  15. Teo K, Yong CW, Chuah JH, Hum YC, Tee YK, Xia K, et al.
    Arab J Sci Eng, 2021 Aug 16.
    PMID: 34422543 DOI: 10.1007/s13369-021-06040-5
    Hospital readmission shortly after discharge threatens the quality of patient care and leads to increased medical care costs. In the United States, hospitals with high readmission rates are subject to federal financial penalties. This concern calls for incentives for healthcare facilities to reduce their readmission rates by predicting patients who are at high risk of readmission. Conventional practices involve the use of rule-based assessment scores and traditional statistical methods, such as logistic regression, in developing risk prediction models. The recent advancements in machine learning driven by improved computing power and sophisticated algorithms have the potential to produce highly accurate predictions. However, the value of such models could be overrated. Meanwhile, the use of other flexible models that leverage simple algorithms offer great transparency in terms of feature interpretation, which is beneficial in clinical settings. This work presents an overview of the current trends in risk prediction models developed in the field of readmission. The various techniques adopted by researchers in recent years are described, and the topic of whether complex models outperform simple ones in readmission risk stratification is investigated.
  16. Abu Bakar AR, Lai KW, Hamzaid NA
    Neurosci Lett, 2021 11 20;765:136250.
    PMID: 34536511 DOI: 10.1016/j.neulet.2021.136250
    Hearing loss is a common neurodegenerative disease that can start at any stage of life. Misalignment of the auditory neural impairment may impose challenges in processing incoming auditory stimulus that can be measured using electroencephalography (EEG). The electrophysiological behaviour response emanated from EEG auditory evoked potential (AEP) requires highly trained professionals for analysis and interpretation. Reliable automated methods using techniques of machine learning would assist the auditory assessment process for informed treatment and practice. It is thus highly required to develop models that are more efficient and precise by considering the characteristics of brain signals. This study aims to provide a comprehensive review of several state-of-the-art techniques of machine learning that adopt EEG evoked response for the auditory assessment within the last 13 years. Out of 161 initially screened articles, 11 were retained for synthesis. The outcome of the review presented that the Support Vector Machine (SVM) classifier outperformed with over 80% accuracy metric and was recognized as the best suited model within the field of auditory research. This paper discussed the comprehensive iterative properties of the proposed computed algorithms and the feasible future direction in hearing impaired rehabilitation.
  17. Zamzam AH, Abdul Wahab AK, Azizan MM, Satapathy SC, Lai KW, Hasikin K
    Front Public Health, 2021;9:753951.
    PMID: 34646808 DOI: 10.3389/fpubh.2021.753951
    Medical equipment highly contributes to the effectiveness of healthcare services quality. Generally, healthcare institutions experience malfunctioning and unavailability of medical equipment that affects the healthcare services delivery to the public. The problems are frequently due to a deficiency in managing and maintaining the medical equipment condition by the responsible party. The assessment of the medical equipment condition is an important activity during the maintenance and management of the equipment life cycle to increase availability, performance, and safety. The study aimed to perform a systematic review in extracting and categorising the input parameters applied in assessing the medical equipment condition. A systematic searching was undertaken in several databases, including Web of Science, Scopus, PubMed, Science Direct, IEEE Xplore, Emerald, Springer, Medline, and Dimensions, from 2000 to 2020. The searching processes were conducted in January 2020. A total of 16 articles were included in this study by adopting Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA). The review managed to classify eight categories of medical equipment reliability attributes, namely equipment features, function, maintenance requirement, performance, risk and safety, availability and readiness, utilisation, and cost. Applying the eight attributes extracted from computerised asset maintenance management system will assist the clinical engineers in assessing the reliability of medical equipment utilised in healthcare institution. The reliability assessment done in these eight attributes will aid clinical engineers in executing a strategic maintenance action, which can increase the equipment's availability, upkeep the performance, optimise the resources, and eventually contributes in providing effective healthcare service to the community. Finally, the recommendations for future works are presented at the end of this study.
  18. Khalil A, Rahimi A, Luthfi A, Azizan MM, Satapathy SC, Hasikin K, et al.
    Front Public Health, 2021;9:752509.
    PMID: 34621723 DOI: 10.3389/fpubh.2021.752509
    A process that involves the registration of two brain Magnetic Resonance Imaging (MRI) acquisitions is proposed for the subtraction between previous and current images at two different follow-up (FU) time points. Brain tumours can be non-cancerous (benign) or cancerous (malignant). Treatment choices for these conditions rely on the type of brain tumour as well as its size and location. Brain cancer is a fast-spreading tumour that must be treated in time. MRI is commonly used in the detection of early signs of abnormality in the brain area because it provides clear details. Abnormalities include the presence of cysts, haematomas or tumour cells. A sequence of images can be used to detect the progression of such abnormalities. A previous study on conventional (CONV) visual reading reported low accuracy and speed in the early detection of abnormalities, specifically in brain images. It can affect the proper diagnosis and treatment of the patient. A digital subtraction technique that involves two images acquired at two interval time points and their subtraction for the detection of the progression of abnormalities in the brain image was proposed in this study. MRI datasets of five patients, including a series of brain images, were retrieved retrospectively in this study. All methods were carried out using the MATLAB programming platform. ROI volume and diameter for both regions were recorded to analyse progression details, location, shape variations and size alteration of tumours. This study promotes the use of digital subtraction techniques on brain MRIs to track any abnormality and achieve early diagnosis and accuracy whilst reducing reading time. Thus, improving the diagnostic information for physicians can enhance the treatment plan for patients.
  19. Latha S, Muthu P, Lai KW, Khalil A, Dhanalakshmi S
    Front Aging Neurosci, 2021;13:828214.
    PMID: 35153728 DOI: 10.3389/fnagi.2021.828214
    Atherosclerotic plaque deposit in the carotid artery is used as an early estimate to identify the presence of cardiovascular diseases. Ultrasound images of the carotid artery are used to provide the extent of stenosis by examining the intima-media thickness and plaque diameter. A total of 361 images were classified using machine learning and deep learning approaches to recognize whether the person is symptomatic or asymptomatic. CART decision tree, random forest, and logistic regression machine learning algorithms, convolutional neural network (CNN), Mobilenet, and Capsulenet deep learning algorithms were applied in 202 normal images and 159 images with carotid plaque. Random forest provided a competitive accuracy of 91.41% and Capsulenet transfer learning approach gave 96.7% accuracy in classifying the carotid artery ultrasound image database.
  20. Zamzam AH, Al-Ani AKI, Wahab AKA, Lai KW, Satapathy SC, Khalil A, et al.
    Front Public Health, 2021;9:782203.
    PMID: 34869194 DOI: 10.3389/fpubh.2021.782203
    The advancement of technology in medical equipment has significantly improved healthcare services. However, failures in upkeeping reliability, availability, and safety affect the healthcare services quality and significant impact can be observed in operations' expenses. The effective and comprehensive medical equipment assessment and monitoring throughout the maintenance phase of the asset life cycle can enhance the equipment reliability, availability, and safety. The study aims to develop the prioritisation assessment and predictive systems that measure the priority of medical equipment's preventive maintenance, corrective maintenance, and replacement programmes. The proposed predictive model is constructed by analysing features of 13,352 medical equipment used in public healthcare clinics in Malaysia. The proposed system comprises three stages: prioritisation analysis, model training, and predictive model development. In this study, we proposed 16 combinations of novel features to be used for prioritisation assessment and prediction of preventive maintenance, corrective maintenance, and replacement programme. The modified k-Means algorithm is proposed during the prioritisation analysis to automatically distinguish raw data into three main clusters of prioritisation assessment. Subsequently, these clusters are fed into and tested with six machine learning algorithms for the predictive prioritisation system. The best predictive models for medical equipment's preventive maintenance, corrective maintenance, and replacement programmes are selected among the tested machine learning algorithms. Findings indicate that the Support Vector Machine performs the best in preventive maintenance and replacement programme prioritisation predictive systems with the highest accuracy of 99.42 and 99.80%, respectively. Meanwhile, K-Nearest Neighbour yielded the highest accuracy in corrective maintenance prioritisation predictive systems with 98.93%. Based on the promising results, clinical engineers and healthcare providers can widely adopt the proposed prioritisation assessment and predictive systems in managing expenses, reporting, scheduling, materials, and workforce.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links