Displaying publications 1 - 20 of 49 in total

Abstract:
Sort:
  1. Peng P, Wu D, Huang LJ, Wang J, Zhang L, Wu Y, et al.
    Interdiscip Sci, 2024 Mar;16(1):39-57.
    PMID: 37486420 DOI: 10.1007/s12539-023-00580-0
    Breast cancer is commonly diagnosed with mammography. Using image segmentation algorithms to separate lesion areas in mammography can facilitate diagnosis by doctors and reduce their workload, which has important clinical significance. Because large, accurately labeled medical image datasets are difficult to obtain, traditional clustering algorithms are widely used in medical image segmentation as an unsupervised model. Traditional unsupervised clustering algorithms have limited learning knowledge. Moreover, some semi-supervised fuzzy clustering algorithms cannot fully mine the information of labeled samples, which results in insufficient supervision. When faced with complex mammography images, the above algorithms cannot accurately segment lesion areas. To address this, a semi-supervised fuzzy clustering based on knowledge weighting and cluster center learning (WSFCM_V) is presented. According to prior knowledge, three learning modes are proposed: a knowledge weighting method for cluster centers, Euclidean distance weights for unlabeled samples, and learning from the cluster centers of labeled sample sets. These strategies improve the clustering performance. On real breast molybdenum target images, the WSFCM_V algorithm is compared with currently popular semi-supervised and unsupervised clustering algorithms. WSFCM_V has the best evaluation index values. Experimental results demonstrate that compared with the existing clustering algorithms, WSFCM_V has a higher segmentation accuracy than other clustering algorithms, both for larger lesion regions like tumor areas and for smaller lesion areas like calcification point areas.
  2. Hu X, Xie Y, Zhao H, Sheng G, Lai KW, Zhang Y
    PeerJ Comput Sci, 2024;10:e1874.
    PMID: 38481705 DOI: 10.7717/peerj-cs.1874
    Epilepsy is a chronic, non-communicable disease caused by paroxysmal abnormal synchronized electrical activity of brain neurons, and is one of the most common neurological diseases worldwide. Electroencephalography (EEG) is currently a crucial tool for epilepsy diagnosis. With the development of artificial intelligence, multi-view learning-based EEG analysis has become an important method for automatic epilepsy recognition because EEG contains difficult types of features such as time-frequency features, frequency-domain features and time-domain features. However, current multi-view learning still faces some challenges, such as the difference between samples of the same class from different views is greater than the difference between samples of different classes from the same view. In view of this, in this study, we propose a shared hidden space-driven multi-view learning algorithm. The algorithm uses kernel density estimation to construct a shared hidden space and combines the shared hidden space with the original space to obtain an expanded space for multi-view learning. By constructing the expanded space and utilizing the information of both the shared hidden space and the original space for learning, the relevant information of samples within and across views can thereby be fully utilized. Experimental results on a dataset of epilepsy provided by the University of Bonn show that the proposed algorithm has promising performance, with an average classification accuracy value of 0.9787, which achieves at least 4% improvement compared to single-view methods.
  3. Teoh YX, Othmani A, Lai KW, Goh SL, Usman J
    Comput Methods Programs Biomed, 2023 Dec;242:107807.
    PMID: 37778138 DOI: 10.1016/j.cmpb.2023.107807
    BACKGROUND AND OBJECTIVE: Knee osteoarthritis (OA) is a debilitating musculoskeletal disorder that causes functional disability. Automatic knee OA diagnosis has great potential of enabling timely and early intervention, that can potentially reverse the degenerative process of knee OA. Yet, it is a tedious task, concerning the heterogeneity of the disorder. Most of the proposed techniques demonstrated single OA diagnostic task widely based on Kellgren Lawrence (KL) standard, a composite score of only a few imaging features (i.e. osteophytes, joint space narrowing and subchondral bone changes). However, only one key disease pattern was tackled. The KL standard fails to represent disease pattern of individual OA features, particularly osteophytes, joint-space narrowing, and pain intensity that play a fundamental role in OA manifestation. In this study, we aim to develop a multitask model using convolutional neural network (CNN) feature extractors and machine learning classifiers to detect nine important OA features: KL grade, knee osteophytes (both knee, medial fibular: OSFM, medial tibial: OSTM, lateral fibular: OSFL, and lateral tibial: OSTL), joint-space narrowing (medial: JSM, and lateral: JSL), and patient-reported pain intensity from plain radiography.

    METHODS: We proposed a new feature extraction method by replacing fully-connected layer with global average pooling (GAP) layer. A comparative analysis was conducted to compare the efficacy of 16 different convolutional neural network (CNN) feature extractors and three machine learning classifiers.

    RESULTS: Experimental results revealed the potential of CNN feature extractors in conducting multitask diagnosis. Optimal model consisted of VGG16-GAP feature extractor and KNN classifier. This model not only outperformed the other tested models, it also outperformed the state-of-art methods with higher balanced accuracy, higher Cohen's kappa, higher F1, and lower mean squared error (MSE) in seven OA features prediction.

    CONCLUSIONS: The proposed model demonstrates pain prediction on plain radiographs, as well as eight OA-related bony features. Future work should focus on exploring additional potential radiological manifestations of OA and their relation to therapeutic interventions.

  4. Foo LS, Larkin JR, Sutherland BA, Ray KJ, Yap WS, Goh CH, et al.
    Quant Imaging Med Surg, 2023 Dec 01;13(12):7879-7892.
    PMID: 38106293 DOI: 10.21037/qims-23-510
    BACKGROUND: When an ischemic stroke happens, it triggers a complex signalling cascade that may eventually lead to neuronal cell death if no reperfusion. Recently, the relayed nuclear Overhauser enhancement effect at -1.6 ppm [NOE(-1.6 ppm)] has been postulated may allow for a more in-depth analysis of the ischemic injury. This study assessed the potential utility of NOE(-1.6 ppm) in an ischemic stroke model.

    METHODS: Diffusion-weighted imaging, perfusion-weighted imaging, and chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) data were acquired from five rats that underwent scans at 9.4 T after middle cerebral artery occlusion.

    RESULTS: The apparent diffusion coefficient (ADC), cerebral blood flow (CBF), and apparent exchange-dependent relaxations (AREX) at 3.5 ppm and NOE(-1.6 ppm) were quantified. AREX(3.5 ppm) and NOE(-1.6 ppm) were found to be hypointense and exhibited different signal patterns within the ischemic tissue. The NOE(-1.6 ppm) deficit areas were equal to or larger than the ADC deficit areas, but smaller than the AREX(3.5 ppm) deficit areas. This suggested that NOE(-1.6 ppm) might further delineate the acidotic tissue estimated using AREX(3.5 ppm). Since NOE(-1.6 ppm) is closely related to membrane phospholipids, NOE(-1.6 ppm) potentially highlighted at-risk tissue affected by lipid peroxidation and membrane damage. Altogether, the ADC/NOE(-1.6 ppm)/AREX(3.5 ppm)/CBF mismatches revealed four zones of increasing sizes within the ischemic tissue, potentially reflecting different pathophysiological information.

    CONCLUSIONS: Using CEST coupled with ADC and CBF, the ischemic tissue may thus potentially be separated into four zones to better understand the pathophysiology after stroke and improve ischemic tissue fate definition. Further verification of the potential utility of NOE(-1.6 ppm) may therefore lead to a more precise diagnosis.

  5. Voon W, Hum YC, Tee YK, Yap WS, Nisar H, Mokayed H, et al.
    Sci Rep, 2023 Nov 22;13(1):20518.
    PMID: 37993544 DOI: 10.1038/s41598-023-46619-6
    Debates persist regarding the impact of Stain Normalization (SN) on recent breast cancer histopathological studies. While some studies propose no influence on classification outcomes, others argue for improvement. This study aims to assess the efficacy of SN in breast cancer histopathological classification, specifically focusing on Invasive Ductal Carcinoma (IDC) grading using Convolutional Neural Networks (CNNs). The null hypothesis asserts that SN has no effect on the accuracy of CNN-based IDC grading, while the alternative hypothesis suggests the contrary. We evaluated six SN techniques, with five templates selected as target images for the conventional SN techniques. We also utilized seven ImageNet pre-trained CNNs for IDC grading. The performance of models trained with and without SN was compared to discern the influence of SN on classification outcomes. The analysis unveiled a p-value of 0.11, indicating no statistically significant difference in Balanced Accuracy Scores between models trained with StainGAN-normalized images, achieving a score of 0.9196 (the best-performing SN technique), and models trained with non-normalized images, which scored 0.9308. As a result, we did not reject the null hypothesis, indicating that we found no evidence to support a significant discrepancy in effectiveness between stain-normalized and non-normalized datasets for IDC grading tasks. This study demonstrates that SN has a limited impact on IDC grading, challenging the assumption of performance enhancement through SN.
  6. Koo JC, Ke Q, Hum YC, Goh CH, Lai KW, Yap WS, et al.
    Quant Imaging Med Surg, 2023 Sep 01;13(9):5902-5920.
    PMID: 37711826 DOI: 10.21037/qims-23-46
    BACKGROUND: Renal cancer is one of the leading causes of cancer-related deaths worldwide, and early detection of renal cancer can significantly improve the patients' survival rate. However, the manual analysis of renal tissue in the current clinical practices is labor-intensive, prone to inter-pathologist variations and easy to miss the important cancer markers, especially in the early stage.

    METHODS: In this work, we developed deep convolutional neural network (CNN) based heterogeneous ensemble models for automated analysis of renal histopathological images without detailed annotations. The proposed method would first segment the histopathological tissue into patches with different magnification factors, then classify the generated patches into normal and tumor tissues using the pre-trained CNNs and lastly perform the deep ensemble learning to determine the final classification. The heterogeneous ensemble models consisted of CNN models from five deep learning architectures, namely VGG, ResNet, DenseNet, MobileNet, and EfficientNet. These CNN models were fine-tuned and used as base learners, they exhibited different performances and had great diversity in histopathological image analysis. The CNN models with superior classification accuracy (Acc) were then selected to undergo ensemble learning for the final classification. The performance of the investigated ensemble approaches was evaluated against the state-of-the-art literature.

    RESULTS: The performance evaluation demonstrated the superiority of the proposed best performing ensembled model: five-CNN based weighted averaging model, with an Acc (99%), specificity (Sp) (98%), F1-score (F1) (99%) and area under the receiver operating characteristic (ROC) curve (98%) but slightly inferior recall (Re) (99%) compared to the literature.

    CONCLUSIONS: The outstanding robustness of the developed ensemble model with a superiorly high-performance scores in the evaluated metrics suggested its reliability as a diagnosis system for assisting the pathologists in analyzing the renal histopathological tissues. It is expected that the proposed ensemble deep CNN models can greatly improve the early detection of renal cancer by making the diagnosis process more efficient, and less misdetection and misdiagnosis; subsequently, leading to higher patients' survival rate.

  7. Zhao Z, Chuah JH, Lai KW, Chow CO, Gochoo M, Dhanalakshmi S, et al.
    Front Comput Neurosci, 2023;17:1038636.
    PMID: 36814932 DOI: 10.3389/fncom.2023.1038636
    Alzheimer's disease (AD) is a neurodegenerative disorder that causes memory degradation and cognitive function impairment in elderly people. The irreversible and devastating cognitive decline brings large burdens on patients and society. So far, there is no effective treatment that can cure AD, but the process of early-stage AD can slow down. Early and accurate detection is critical for treatment. In recent years, deep-learning-based approaches have achieved great success in Alzheimer's disease diagnosis. The main objective of this paper is to review some popular conventional machine learning methods used for the classification and prediction of AD using Magnetic Resonance Imaging (MRI). The methods reviewed in this paper include support vector machine (SVM), random forest (RF), convolutional neural network (CNN), autoencoder, deep learning, and transformer. This paper also reviews pervasively used feature extractors and different types of input forms of convolutional neural network. At last, this review discusses challenges such as class imbalance and data leakage. It also discusses the trade-offs and suggestions about pre-processing techniques, deep learning, conventional machine learning methods, new techniques, and input type selection.
  8. Haw YH, Lai KW, Chuah JH, Bejo SK, Husin NA, Hum YC, et al.
    PeerJ Comput Sci, 2023;9:e1325.
    PMID: 37346512 DOI: 10.7717/peerj-cs.1325
    Oil palm is a key agricultural resource in Malaysia. However, palm disease, most prominently basal stem rot caused at least RM 255 million of annual economic loss. Basal stem rot is caused by a fungus known as Ganoderma boninense. An infected tree shows few symptoms during early stage of infection, while potentially suffers an 80% lifetime yield loss and the tree may be dead within 2 years. Early detection of basal stem rot is crucial since disease control efforts can be done. Laboratory BSR detection methods are effective, but the methods have accuracy, biosafety, and cost concerns. This review article consists of scientific articles related to the oil palm tree disease, basal stem rot, Ganoderma Boninense, remote sensors and deep learning that are listed in the Web of Science since year 2012. About 110 scientific articles were found that is related to the index terms mentioned and 60 research articles were found to be related to the objective of this research thus included in this review article. From the review, it was found that the potential use of deep learning methods were rarely explored. Some research showed unsatisfactory results due to limitations on dataset. However, based on studies related to other plant diseases, deep learning in combination with data augmentation techniques showed great potentials, showing remarkable detection accuracy. Therefore, the feasibility of analyzing oil palm remote sensor data using deep learning models together with data augmentation techniques should be studied. On a commercial scale, deep learning used together with remote sensors and unmanned aerial vehicle technologies showed great potential in the detection of basal stem rot disease.
  9. Neo EX, Hasikin K, Lai KW, Mokhtar MI, Azizan MM, Hizaddin HF, et al.
    PeerJ Comput Sci, 2023;9:e1306.
    PMID: 37346549 DOI: 10.7717/peerj-cs.1306
    BACKGROUND: The environment has been significantly impacted by rapid urbanization, leading to a need for changes in climate change and pollution indicators. The 4IR offers a potential solution to efficiently manage these impacts. Smart city ecosystems can provide well-designed, sustainable, and safe cities that enable holistic climate change and global warming solutions through various community-centred initiatives. These include smart planning techniques, smart environment monitoring, and smart governance. An air quality intelligence platform, which operates as a complete measurement site for monitoring and governing air quality, has shown promising results in providing actionable insights. This article aims to highlight the potential of machine learning models in predicting air quality, providing data-driven strategic and sustainable solutions for smart cities.

    METHODS: This study proposed an end-to-end air quality predictive model for smart city applications, utilizing four machine learning techniques and two deep learning techniques. These include Ada Boost, SVR, RF, KNN, MLP regressor and LSTM. The study was conducted in four different urban cities in Selangor, Malaysia, including Petaling Jaya, Banting, Klang, and Shah Alam. The model considered the air quality data of various pollution markers such as PM2.5, PM10, O3, and CO. Additionally, meteorological data including wind speed and wind direction were also considered, and their interactions with the pollutant markers were quantified. The study aimed to determine the correlation variance of the dependent variable in predicting air pollution and proposed a feature optimization process to reduce dimensionality and remove irrelevant features to enhance the prediction of PM2.5, improving the existing LSTM model. The study estimates the concentration of pollutants in the air based on training and highlights the contribution of feature optimization in air quality predictions through feature dimension reductions.

    RESULTS: In this section, the results of predicting the concentration of pollutants (PM2.5, PM10, O3, and CO) in the air are presented in R2 and RMSE. In predicting the PM10 and PM2.5concentration, LSTM performed the best overall high R2values in the four study areas with the R2 values of 0.998, 0.995, 0.918, and 0.993 in Banting, Petaling, Klang and Shah Alam stations, respectively. The study indicated that among the studied pollution markers, PM2.5,PM10, NO2, wind speed and humidity are the most important elements to monitor. By reducing the number of features used in the model the proposed feature optimization process can make the model more interpretable and provide insights into the most critical factor affecting air quality. Findings from this study can aid policymakers in understanding the underlying causes of air pollution and develop more effective smart strategies for reducing pollution levels.

  10. Kulathilake KASH, Abdullah NA, Sabri AQM, Lai KW
    Complex Intell Systems, 2023;9(3):2713-2745.
    PMID: 34777967 DOI: 10.1007/s40747-021-00405-x
    Computed Tomography (CT) is a widely use medical image modality in clinical medicine, because it produces excellent visualizations of fine structural details of the human body. In clinical procedures, it is desirable to acquire CT scans by minimizing the X-ray flux to prevent patients from being exposed to high radiation. However, these Low-Dose CT (LDCT) scanning protocols compromise the signal-to-noise ratio of the CT images because of noise and artifacts over the image space. Thus, various restoration methods have been published over the past 3 decades to produce high-quality CT images from these LDCT images. More recently, as opposed to conventional LDCT restoration methods, Deep Learning (DL)-based LDCT restoration approaches have been rather common due to their characteristics of being data-driven, high-performance, and fast execution. Thus, this study aims to elaborate on the role of DL techniques in LDCT restoration and critically review the applications of DL-based approaches for LDCT restoration. To achieve this aim, different aspects of DL-based LDCT restoration applications were analyzed. These include DL architectures, performance gains, functional requirements, and the diversity of objective functions. The outcome of the study highlights the existing limitations and future directions for DL-based LDCT restoration. To the best of our knowledge, there have been no previous reviews, which specifically address this topic.
  11. Shoaib MA, Chuah JH, Ali R, Hasikin K, Khalil A, Hum YC, et al.
    Comput Intell Neurosci, 2023;2023:4208231.
    PMID: 36756163 DOI: 10.1155/2023/4208231
    Cardiac health diseases are one of the key causes of death around the globe. The number of heart patients has considerably increased during the pandemic. Therefore, it is crucial to assess and analyze the medical and cardiac images. Deep learning architectures, specifically convolutional neural networks have profoundly become the primary choice for the assessment of cardiac medical images. The left ventricle is a vital part of the cardiovascular system where the boundary and size perform a significant role in the evaluation of cardiac function. Due to automatic segmentation and good promising results, the left ventricle segmentation using deep learning has attracted a lot of attention. This article presents a critical review of deep learning methods used for the left ventricle segmentation from frequently used imaging modalities including magnetic resonance images, ultrasound, and computer tomography. This study also demonstrates the details of the network architecture, software, and hardware used for training along with publicly available cardiac image datasets and self-prepared dataset details incorporated. The summary of the evaluation matrices with results used by different researchers is also presented in this study. Finally, all this information is summarized and comprehended in order to assist the readers to understand the motivation and methodology of various deep learning models, as well as exploring potential solutions to future challenges in LV segmentation.
  12. Li C, Yang M, Zhang Y, Lai KW
    Int J Environ Res Public Health, 2022 Nov 14;19(22).
    PMID: 36429697 DOI: 10.3390/ijerph192214976
    PURPOSE: Mental health assessments that combine patients' facial expressions and behaviors have been proven effective, but screening large-scale student populations for mental health problems is time-consuming and labor-intensive. This study aims to provide an efficient and accurate intelligent method for further psychological diagnosis and treatment, which combines artificial intelligence technologies to assist in evaluating the mental health problems of college students.

    MATERIALS AND METHODS: We propose a mixed-method study of mental health assessment that combines psychological questionnaires with facial emotion analysis to comprehensively evaluate the mental health of students on a large scale. The Depression Anxiety and Stress Scale-21(DASS-21) is used for the psychological questionnaire. The facial emotion recognition model is implemented by transfer learning based on neural networks, and the model is pre-trained using FER2013 and CFEE datasets. Among them, the FER2013 dataset consists of 48 × 48-pixel face gray images, a total of 35,887 face images. The CFEE dataset contains 950,000 facial images with annotated action units (au). Using a random sampling strategy, we sent online questionnaires to 400 college students and received 374 responses, and the response rate was 93.5%. After pre-processing, 350 results were available, including 187 male and 153 female students. First, the facial emotion data of students were collected in an online questionnaire test. Then, a pre-trained model was used for emotion recognition. Finally, the online psychological questionnaire scores and the facial emotion recognition model scores were collated to give a comprehensive psychological evaluation score.

    RESULTS: The experimental results of the facial emotion recognition model proposed to show that its classification results are broadly consistent with the mental health survey results. This model can be used to improve efficiency. In particular, the accuracy of the facial emotion recognition model proposed in this paper is higher than that of the general mental health model, which only uses the traditional single questionnaire. Furthermore, the absolute errors of this study in the three symptoms of depression, anxiety, and stress are lower than other mental health survey results and are only 0.8%, 8.1%, 3.5%, and 1.8%, respectively.

    CONCLUSION: The mixed method combining intelligent methods and scales for mental health assessment has high recognition accuracy. Therefore, it can support efficient large-scale screening of students' psychological problems.

  13. Voon W, Hum YC, Tee YK, Yap WS, Salim MIM, Tan TS, et al.
    Sci Rep, 2022 Nov 10;12(1):19200.
    PMID: 36357456 DOI: 10.1038/s41598-022-21848-3
    Computer-aided Invasive Ductal Carcinoma (IDC) grading classification systems based on deep learning have shown that deep learning may achieve reliable accuracy in IDC grade classification using histopathology images. However, there is a dearth of comprehensive performance comparisons of Convolutional Neural Network (CNN) designs on IDC in the literature. As such, we would like to conduct a comparison analysis of the performance of seven selected CNN models: EfficientNetB0, EfficientNetV2B0, EfficientNetV2B0-21k, ResNetV1-50, ResNetV2-50, MobileNetV1, and MobileNetV2 with transfer learning. To implement each pre-trained CNN architecture, we deployed the corresponded feature vector available from the TensorFlowHub, integrating it with dropout and dense layers to form a complete CNN model. Our findings indicated that the EfficientNetV2B0-21k (0.72B Floating-Point Operations and 7.1 M parameters) outperformed other CNN models in the IDC grading task. Nevertheless, we discovered that practically all selected CNN models perform well in the IDC grading task, with an average balanced accuracy of 0.936 ± 0.0189 on the cross-validation set and 0.9308 ± 0.0211on the test set.
  14. Khairuddin MZF, Lu Hui P, Hasikin K, Abd Razak NA, Lai KW, Mohd Saudi AS, et al.
    Int J Environ Res Public Health, 2022 Oct 27;19(21).
    PMID: 36360843 DOI: 10.3390/ijerph192113962
    Forecasting the severity of occupational injuries shall be all industries' top priority. The use of machine learning is theoretically valuable to assist the predictive analysis, thus, this study attempts to propose a feature-optimized predictive model for anticipating occupational injury severity. A public database of 66,405 occupational injury records from OSHA is analyzed using five sets of machine learning models: Support Vector Machine, K-Nearest Neighbors, Naïve Bayes, Decision Tree, and Random Forest. For model comparison, Random Forest outperformed other models with higher accuracy and F1-score. Therefore, it highlighted the potential of ensemble learning as a more accurate prediction model in the field of occupational injury. In constructing the model, this study also proposed the feature optimization technique that revealed the three most important features; 'nature of injury', 'type of event', and 'affected body part' in developing model. The accuracy of the Random Forest model was improved by 0.5% or 0.895 and 0.954 for the prediction of hospitalization and amputation, respectively by redeveloping and optimizing the model with hyperparameter tuning. The feature optimization is essential in providing insight knowledge to the Safety and Health Practitioners for future injury corrective and preventive strategies. This study has shown promising potential for smart workplace surveillance.
  15. Ohara H, Shimizu H, Kasamatsu T, Kajita A, Uno K, Lai KW, et al.
    Neuroradiology, 2022 Oct;64(10):2085-2089.
    PMID: 35809100 DOI: 10.1007/s00234-022-03010-y
    A 23-year-old previously healthy man (Patient 1) and a 33-year-old woman with a past history of depression (Patient 2) developed neurological symptoms approximately 1 week after receipt of the first COVID-19 mRNA vaccination and deteriorated over the next week. Patient 1 reported nausea, headache, a high fever, and retrograde amnesia. Patient 2 reported visual disturbance, headache, dysarthria, a left forearm tremor, dysesthesia of the mouth and distal limbs, and visual agnosia. PCR test results for SARS-CoV-2 were negative. Complete blood cell count, biochemistry, and antibody test and cerebrospinal fluid test findings were unremarkable. Diffusion-weighted and fluid-attenuated inversion recovery MRI of the brain showed a high signal intensity lesion at the midline of the splenium of the corpus callosum compatible with cytotoxic lesions of the corpus callosum (CLOCCs). High-dose intravenous methylprednisolone improved their symptoms and imaging findings. CLOCCs should be considered in patients with neurological manifestation after COVID-19 vaccination.
  16. Nair AS, Priya RS, Rajagopal P, Pradeepa C, Senthil R, Dhanalakshmi S, et al.
    Front Psychiatry, 2022;13:1042641.
    PMID: 36532166 DOI: 10.3389/fpsyt.2022.1042641
    BACKGROUND: The importance of strategies and services by caregivers and family members substantially impact the psychological and emotional wellbeing of autistic children. The rapid research developments in clinical and non-clinical methods benefit the features of autistic children. Among various internal and external factors, the influence of the built environment also impacts the characteristics of autistic children. This study investigates primarily the psychological effect of light and colors on the mood and behavior of autistic children to identify the most favorable and preferred indoor lights and color shades.

    METHODS: A questionnaire survey was conducted at an autism center among autistic children and their parents. This study included autistic children aged between 6 and 16 (45 males, 42 females, mean age 8.7 years, standard deviation 2.3). Eighty-seven participants were involved in the survey to determine the sensory perceptions, intolerance, preferences, and sensitivities of children with an autism spectrum disorder toward colors and lighting. The margin of error at the statistical analysis's 95% confidence level is ± 0.481.

    RESULTS: As per this case report, the children have various color preferences and respond differently to different shades. Different hues have varying effects on autistic children, with many neutral tones and mellow shades proven to be autistic-friendly with their calming and soothing effect, while bright, bold, and intense colors are refreshing and stimulating. The stimulus of bright-lighting causes behavioral changes in autistic children prone to light sensitivity.

    CONCLUSION: The insights gained from this interaction with parents and caretakers of autistic children could be helpful for designers to incorporate specific autistic-friendly design elements that make productive interior spaces. A complete understanding of the effect of factors like color and lighting on the learning ability and engagement of autistic children in an indoor environment is essential for designers and clinicians. The main findings of this study could be helpful for a designer and clinicians to address designing an autism-friendly built environment with a color palette and lighting scheme conducive to their wellbeing and to maximize their cognitive functioning.

  17. Muthu P, Tan Y, Latha S, Dhanalakshmi S, Lai KW, Wu X
    Front Public Health, 2022;10:1030656.
    PMID: 36699937 DOI: 10.3389/fpubh.2022.1030656
    Assistive technology for the differently abled and older adults has made remarkable achievements in providing rehabilitative, adaptive, and assistive devices. It provides huge assistance for people with physical impairments to lead a better self-reliant daily life, in terms of mobility, education, rehabilitation, etc. This technology ranges from simple hand-held devices to complex robotic accessories which promote the individual's independence. This study aimed at identifying the assistance required by differently-abled individuals, and the solutions proposed by different researchers, and reviewed their merits and demerits. It provides a detailed discussion on the state of art assistive technologies, their applications, challenges, types, and their usage for rehabilitation. The study also identifies different unexplored research areas related to assistive technology that can improve the daily life of individuals and advance the field. Despite their high usage, assistive technologies have some limitations which have been briefly described in the study. This review, therefore, can help understand the utilization, and pros and cons of assistive devices in rehabilitation engineering and assistive technologies.
  18. Neo EX, Hasikin K, Mokhtar MI, Lai KW, Azizan MM, Razak SA, et al.
    Front Public Health, 2022;10:851553.
    PMID: 35664109 DOI: 10.3389/fpubh.2022.851553
    Environmental issues such as environmental pollutions and climate change are the impacts of globalization and become debatable issues among academics and industry key players. One of the environmental issues which is air pollution has been catching attention among industrialists, researchers, and communities around the world. However, it has always neglected until the impacts on human health become worse, and at times, irreversible. Human exposure to air pollutant such as particulate matters, sulfur dioxide, ozone and carbon monoxide contributed to adverse health hazards which result in respiratory diseases, cardiorespiratory diseases, cancers, and worst, can lead to death. This has led to a spike increase of hospitalization and emergency department visits especially at areas with worse pollution cases that seriously impacting human life and health. To address this alarming issue, a predictive model of air pollution is crucial in assessing the impacts of health due to air pollution. It is also critical in predicting the air quality index when assessing the risk contributed by air pollutant exposure. Hence, this systemic review explores the existing studies on anticipating air quality impact to human health using the advancement of Artificial Intelligence (AI). From the extensive review, we highlighted research gaps in this field that are worth to inquire. Our study proposes to develop an AI-based integrated environmental and health impact assessment system using federated learning. This is specifically aims to identify the association of health impact and pollution based on socio-economic activities and predict the Air Quality Index (AQI) for impact assessment. The output of the system will be utilized for hospitals and healthcare services management and planning. The proposed solution is expected to accommodate the needs of the critical and prioritization of sensitive group of publics during pollution seasons. Our finding will bring positive impacts to the society in terms of improved healthcare services quality, environmental and health sustainability. The findings are beneficial to local authorities either in healthcare or environmental monitoring institutions especially in the developing countries.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links