Displaying publications 1 - 20 of 68 in total

Abstract:
Sort:
  1. Cheng Y, Lai OM, Tan CP, Panpipat W, Cheong LZ, Shen C
    ACS Appl Mater Interfaces, 2021 Jan 27;13(3):4146-4155.
    PMID: 33440928 DOI: 10.1021/acsami.0c17134
    Immobilization can be used to improve the stability of lipases and enhances lipase recovery and reusability, which increases its commercial value and industrial applications. Nevertheless, immobilization frequently causes conformational changes of the lipases, which decrease lipase catalytic activity. in the present work, we synthesized UIO-66 and grafted UIO-66 crystals with proline for immobilization of Candida rugosa lipase (CRL). As indicated by steady-state fluorescence microscopy, grafting of proline onto UIO-66 crystals induced beneficial conformational change in CRL. CRL immobilized on UIO-66/Pro (CRL@UIO-66/Pro) demonstrated higher enzyme activity and better recyclability than that immobilized on UIO-66 (CRL@UIO-66) in both hydrolysis (CRL@UIO-66/Pro: 0.34 U; CRL@UIO-66: 0.15 U) and transesterification (CRL@UIO-66/Pro: 0.93 U; CRL@UIO-66: 0.25 U) reactions. The higher values of kcat and kcat/Km of CRL@UIO-66/Pro also showed that it had better catalytic efficiency as compared to CRL@UIO-66. It is also worth noting that CRL@UIO-66/Pro (0.93 U) demonstrated a much higher transesterification activity as compared to free CRL (0.11 U), indicating that UIO-66/Pro has increased the solvent stability of CRL. Both CRL@UIO-66 and CRL@UIO-66/Pro were also used for the fabrication of biosensors for nitrofen with a wide linear range (0-100 μM), lower limit of detection, and good recovery rate.
  2. Cheng C, Shen C, Lai OM, Tan CP, Cheong LZ
    Anal Methods, 2021 Nov 04;13(42):4974-4984.
    PMID: 34661208 DOI: 10.1039/d1ay01307f
    Protox inhibiting herbicides such as nitrofen have detrimental effects on the environment and human health. The current work aims to fabricate a Candida rugosa lipase (CRL)-based electrochemical sensor for rapid and sensitive detection of protox inhibiting herbicides (nitrofen). We proposed the use of poly(vinylpyrrolidone) (PVP) and amino-acids to promote accumulation of Zn2+ ions at the surfaces of Candida rugosa lipase (CRL) and subsequently induce self-assembly of a CRL-zeolitic imidazolate framework (ZIF) structure. This process can be easily and rapidly achieved via a one-pot facile self-assembly method. Steady-state fluorescence spectroscopy indicated that CRL has undergone a conformational change following encapsulation within the ZIF structure. This conformational change is beneficial as the prepared PVP/Glu/CRL@ZIF-8 exhibited enhanced catalytic activity (207% of native CRL), and higher substrate affinity (lower Km than native CRL) and showed high stability under harsh denaturing conditions. PVP/Glu/CRL@ZIF-8 was finally used for electrochemical biosensing of nitrofen. The fabricated biosensor has a wide linear detection range (0-100 μM), a lower limit of detection and a good recovery rate.
  3. Khoramnia A, Ebrahimpour A, Ghanbari R, Ajdari Z, Lai OM
    Biomed Res Int, 2013;2013:954542.
    PMID: 23971051 DOI: 10.1155/2013/954542
    Coconut oil is a rich source of beneficial medium chain fatty acids (MCFAs) particularly lauric acid. In this study, the oil was modified into a value-added product using direct modification of substrate through fermentation (DIMOSFER) method. A coconut-based and coconut-oil-added solid-state cultivation using a Malaysian lipolytic Geotrichum candidum was used to convert the coconut oil into MCFAs-rich oil. Chemical characteristics of the modified coconut oils (MCOs) considering total medium chain glyceride esters were compared to those of the normal coconut oil using ELSD-RP-HPLC. Optimum amount of coconut oil hydrolysis was achieved at 29% moisture content and 10.14% oil content after 9 days of incubation, where the quantitative amounts of the modified coconut oil and MCFA were 0.330 mL/g of solid media (76.5% bioconversion) and 0.175 mL/g of solid media (53% of the MCO), respectively. MCOs demonstrated improved antibacterial activity mostly due to the presence of free lauric acid. The highest MCFAs-rich coconut oil revealed as much as 90% and 80% antibacterial activities against Staphylococcus aureus and Escherichia coli, respectively. The results of the study showed that DIMOSFER by a local lipolytic G. candidum can be used to produce MCFAs as natural, effective, and safe antimicrobial agent. The produced MCOs and MCFAs could be further applied in food and pharmaceutical industries.
  4. Kimura Y, Maeda M, Kimupa M, Lai OM, Tan SH, Hon SM, et al.
    Biosci Biotechnol Biochem, 2002 Apr;66(4):820-7.
    PMID: 12036055
    A basic glycoprotein, which was recognized by IgE from oil palm pollinosis patients, has been purified from oil palm pollen (Elaeis guineensis Jacq.), which is a strong allergen and causes severe pollinosis in Malaysia and Singapore. Soluble proteins were extracted from defatted palm pollen with both Tris-HCl buffer (pH 7.8) and Na-acetate buffer (pH 4.0). The allergenic glycoprotein was purified from the total extract to homogeneity with 0.4% yield by a combination of DEAE- and CM-cellulose, SP-HPLC, and gel filtration. The purified oil palm pollen glycoprotein with molecular mass of 31 kDa was recognized by the beta1-2 xylose specific antibody, suggesting this basic glycoprotein bears plant complex type N-glycan(s). The palm pollen basic glycoprotein, designated Ela g Bd 31 K, was recognized by IgE of palm pollinosis patients, suggesting Ela g Bd 31 K should be one of the palm pollen allergens. The preliminary structural analysis of N-glycans linked to glycoproteins of palm pollens showed that the antigenic N-glycans having alpha1-3 fucose and alpha1-2 xylose residues (GlcNAc(2 to approximately 0)Man3Xyl1Fuc(1 to approximately 0)GlcNAc2) actually occur on the palm pollen glycoproteins, in addition to the high-mannose type structures (Man(9 to approximately 5)GlcNAc2).
  5. Lee YY, Tang TK, Phuah ET, Tan CP, Wang Y, Li Y, et al.
    Crit Rev Food Sci Nutr, 2020;60(15):2509-2525.
    PMID: 31418288 DOI: 10.1080/10408398.2019.1650001
    Diacylglycerol (DAG) is a world leading anti-obesity functional cooking oil synthesized via structural modification of conventional fats and oils. DAG exits in three stereoisomers namely sn-1,2-DAG, sn-1,3-DAG, and sn-2,3-DAG. DAG particularly sn-1,3-DAG demonstrated to have the potential in suppressing body fat accumulation and lowering postprandial serum triacylglycerol, cholesterol and glucose level. DAG also showed to improve bone health. This is attributed to DAG structure itself that caused it to absorb and digest via different metabolic pathway than conventional fats and oils. With its purported health benefits, many studies attempt to enzymatically or chemically synthesis DAG through various routes. DAG has also received wide attention as low calorie fat substitute and has been incorporated into various food matrixes. Despite being claimed as healthy cooking oil the safety of DAG still remained uncertain. DAG was banned from sale as it was found to contain probable carcinogen glycidol fatty acid esters. The article aims to provide a comprehensive and latest review of DAG emphasizing on its structure and properties, safety and regulation, process developments, metabolism and beneficial health attributes as well as its applications in the food industry.
  6. Lee YY, Tang TK, Chan ES, Phuah ET, Lai OM, Tan CP, et al.
    PMID: 33480262 DOI: 10.1080/10408398.2021.1873729
    Structured lipid is a type of modified form of lipid that is "fabricated" with the purpose to improve the nutritional and functional properties of conventional fats and oils derived from animal and plant sources. Such healthier choice of lipid received escalating attention from the public for its capability to manage the rising prevalence of metabolic syndrome. Of which, medium-chain triacylglycerol (MCT) and medium-and long-chain triacylglycerol (MLCT) are the few examples of the "new generation" custom-made healthful lipids which are mainly composed of medium chain fatty acid (MCFA). MCT is made up exclusively of MCFA whereas MLCT contains a mixture of MCFA and long chain fatty acid (LCFA), respectively. Attributed by the unique metabolism of MCFA which is rapidly metabolized by the body, MCFA and MCT showed to acquire multiple physiological and functional properties in managing and reversing certain health disorders. Several chemically or enzymatically oils and fats modification processes catalyzed by a biological or chemical catalyst such as acidolysis, interesterification and esterification are adopted to synthesis MCT and MLCT. With their purported health benefits, MCT and MLCT are widely being used as nutraceutical in food and pharmaceutical sectors. This article aims to provide a comprehensive review on MCT and MLCT, with an emphasis on the basic understanding of its structures, properties, unique metabolism; the current status of the touted health benefits; latest routes of production; its up-to-date applications in the different food systems; relevant patents filed and its drawbacks.
  7. Yap JW, Lee YY, Tang TK, Chong LC, Kuan CH, Lai OM, et al.
    Crit Rev Food Sci Nutr, 2023;63(21):5231-5246.
    PMID: 34913758 DOI: 10.1080/10408398.2021.2015681
    Insect-based food or ingredients have received tremendous attention worldwide because of their potential to ensure food and nutrition security, mitigating the reliance on land-dependent agricultural products. Indeed, insect-farming has low environmental impacts with reduced land, water and energy input. More importantly, insects are rich in high quality proteins and fats. They are also excellent sources of minerals, vitamins and bioactive compounds. Insect-based lipids are intriguing because they may contain high levels of unsaturated fatty acids particularly linoleic and α-linolenic acids. Besides, the insect-based lipids also show a considerable amount of bioactive components such as tocols, sterols and carotenoids. However, their fatty acid compositions and the nutritional values may vary depending on species, feed composition, developmental stage, geographical locations, and extraction techniques. Therefore, the present article aims to provide a comprehensive review on the fatty acid composition, the minor bioactive constituents and the physicochemical properties of fats and oils derived from insects of different orders (Coleoptera, Lepidoptera, Hymenoptera, Orthoptera, Hemiptera and Diptera). The various parameters affecting the nutritional compositions of the insect-based lipids will also be highlighted. These information will definitely provide a detailed insight on the potential applications of these fats in various food systems based on their unique properties.
  8. Mo SY, Lai OM, Chew BH, Ismail R, Bakar SA, Jabbar NA, et al.
    Eur J Nutr, 2019 Aug;58(5):1873-1885.
    PMID: 29872922 DOI: 10.1007/s00394-018-1738-6
    PURPOSE: We aim to investigate the postprandial effects of palm olein (PO) and chemically interesterified palm olein (IPO) with different proportions of palmitic acid at the sn-2 position using high oleic sunflower oil (HOS) as control fat on concentrations of gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters in type 2 diabetic (T2D) subjects.

    METHODS: Using a randomised double-blind crossover design, 21 (men = 6, women = 15) T2D subjects consumed test meals (3.65 MJ) consisting of a high fat muffin (containing 50 g test fats provided as PO, IPO or HOS) and a milkshake. Postprandial changes in gut hormones, glucose homeostasis, satiety, lipid and inflammatory parameters after meals were analysed. Some of the solid fractions of the IPO were removed and thus the fatty acid composition of the PO and IPO was not entirely equal (PO vs IPO: palmitate 39.8 vs 38.7; oleate 43.6 vs 45.1). PO, IPO and HOS contained 9.7, 38.9 and 0.2 g/100 g total fatty acids of palmitic acid at the sn-2 position, respectively. At 37 °C, IPO contained 4.2% SFC whereas PO and HOS were completely melted.

    RESULTS: Our novel observation shows that the incremental area under curve (iAUC) 0-6 h of plasma GIP concentration was on average 16% lower following IPO meal compared with PO and HOS (P 

  9. Lee YY, Tang TK, Ab Karim NA, Alitheen NB, Lai OM
    Food Funct, 2014 Jan;5(1):57-64.
    PMID: 24247642 DOI: 10.1039/c3fo60358j
    Structured lipid medium- and long-chain triacylglycerols (MLCT) are claimed to be able to manage obesity. The present study investigated the body fat influence of enzymatically interesterifed palm-based medium- and long-chain triacylglycerols (P-MLCT) on diet-induced obesity (DIO) C57BL/6J mice compared with commercial MLCT oil (C-MLCT) and a control, which was the non enzymatically modified palm kernel and palm oil blend (PKO-PO blend). It also investigated the low fat and high fat effects of P-MLCT. DIO C57BL/6J mice were fed ad libitum with low fat (7%) and high fat (30%) experimental diets for 8 weeks before being sacrificed to obtain blood serum for analysis. From the results, there is a trend that P-MLCT fed mice were found to have the lowest body weight, body weight gain, total fat pad accumulation (perirenal, retroperitoneal, epididymal and mesenteric), total triglyceride levels and efficiency in controlling blood glucose level, compared with C-MLCT and the PKO-PO blend in both low fat and high fat diets. Nevertheless, the PKO-PO blend and P-MLCT caused significantly (P < 0.05) higher total cholesterol levels compared to C-MLCT. P-MLCT present in low fat and high fat dosage were shown to be able to suppress body fat accumulation. This effect is more prominent with the low fat dosage.
  10. Li G, Lee WJ, Tan CP, Lai OM, Wang Y, Qiu C
    Food Funct, 2021 Nov 29;12(23):11732-11746.
    PMID: 34698749 DOI: 10.1039/d1fo01883c
    Pickering water-in-oil (W/O) emulsions were fabricated by using medium-long chain diacylglycerol (MLCD)-based solid lipid nanoparticles (SLNs) and the connection between the characteristics of the SLNs and the colloidal stability of the emulsions was established. Via melt-emulsification and ultrasonication, MLCD-based SLNs with particle sizes of 120-300 nm were obtained with or without other surfactants. The particle size of the SLNs was influenced by the chemical properties of the surfactants, and surfactants decreased the contact angle of SLNs at the oil-water interface. Gelation was observed in SLNs modified by sodium stearoyl lactylate and lecithin, whereas the addition of Tween 20 resulted in a homogeneous SLN solution. The adsorption of surfactants onto SLN surfaces caused the production of higher amounts of α crystals accompanied by delayed crystallization onset which contributed to the reduction of particle size, interfacial tension and oil wetting ability. The W/O emulsions with higher rigidity and physical stability can be obtained by varying surfactant types and by increasing SLN mass ratios to 60%, whereby more SLNs are adsorbed at the droplet surface as a Pickering stabilizer. This study provides useful insights for the development of diacylglycerol-based SLNs and Pickering W/O emulsions which have great potential for food, cosmetic and pharmaceutical applications.
  11. Tiong SH, Nair A, Abd Wahid SA, Saparin N, Ab Karim NA, Ahmad Sabri MP, et al.
    PMID: 34407744 DOI: 10.1080/19440049.2021.1960430
    Chlorinated compounds such as sphingolipid-based organochlorine compounds are precursors for the formation of 3-monochlororopanediol (3-MCPD) esters in palm oil. This study evaluates the effects of several factors within the palm oil supply chain on the levels of sphingolipid-based organochlorine, which in turn may influence the formation of 3-MCPD esters during refining. These factors include application of inorganic chlorinated fertiliser in the oil palm plantation, bruising and degradation of oil palm fruits after harvest, recycling of steriliser condensate as water for dilution of crude oil during oil palm milling, water washing of palm oil and different refining conditions. It was observed that bruised and degraded oil palm fruits showed higher content of sphingolipid-based organochlorine than control. In addition, recycling steriliser condensate during milling resulted in elevated content of sphingolipid-based organochlorine in palm oil. However, the content of sphingolipid-based organochlorine compounds was reduced by neutralisation, degumming and bleaching steps during refining. Although water washing of crude palm oils (CPO) prior to refining did not reduce the content of sphingolipid-based organochlorine, it did reduce the formation of 3-MCPD esters through the removal of water-soluble chlorinated compounds. It was found that the use of inorganic chlorinated fertiliser in plantations did not increase the content of chlorinated compounds in oil palm fruits and extracted oil, and hence chlorinated fertiliser does not seem to play a role in the formation of 3-MCPD esters in palm oil. Overall, this study concluded that lack of freshness and damage to the fruits during transport to mills, combined with water and oil recycling in mills are the major contributors of chlorinated precursor for 3-MCPD esters formation in palm oil.
  12. Latip RA, Lee YY, Tang TK, Phuah ET, Tan CP, Lai OM
    Food Chem, 2013 Dec 15;141(4):3938-46.
    PMID: 23993569 DOI: 10.1016/j.foodchem.2013.05.114
    The stearin fraction of palm-based diacylglycerol (PDAGS) was produced from dry fractionation of palm-based diacylglycerol (PDAG). Bakery shortening blends were produced by mixing PDAGS with either palm mid fraction, PMF (PDAGS/PMF), palm olein, POL(PDAGS/POL) or sunflower oil, SFO (PDAGS/SFO) at PDAGS molar fraction of XPDAGS=0.4%, 0.5%, 0.6%, 0.7%, 0.8%, 0.9%. The physicochemical results obtained indicated that C16:0 and C18:1 were the dominant fatty acids for PDAGS/PMF and PDAGS/POL, while C18:1 and C18:2 were dominant in the PDAGS/SFO mixtures. SMP and SFC of the PDAGS were reduced with the addition of PMF, POL and SFO. Binary mixtures of PDAGS/PMF had better structural compatibility and full miscibility with each other. PDAGS/PMF and PDAGS/SFO crystallised in β'+β polymorphs in the presence of 0.4-0.5% PDAGS while PDAGS/POL resulted in β polymorphs crystal. The results gave indication that PDAGS: PMF at 50%:50% and 60%:40% (w/w) were the most suitable fat blend to be used as bakery shortening.
  13. Zulkurnain M, Lai OM, Latip RA, Nehdi IA, Ling TC, Tan CP
    Food Chem, 2012 Nov 15;135(2):799-805.
    PMID: 22868161 DOI: 10.1016/j.foodchem.2012.04.144
    The formation of 3-monochloropropane-1,2-diol (3-MCPD) esters in refined palm oil during deodorisation is attributed to the intrinsic composition of crude palm oil. Utilising D-optimal design, the effects of the degumming and bleaching processes on the reduction in 3-MCPD ester formation in refined palm oil from poor-quality crude palm oil were studied relative to the palm oil minor components that are likely to be their precursors. Water degumming remarkably reduced 3-MCPD ester formation by up to 84%, from 9.79 mg/kg to 1.55 mg/kg. Bleaching with synthetic magnesium silicate caused a further 10% reduction, to 0.487 mg/kg. The reduction in 3-MCPD ester formation could be due to the removal of related precursors prior to the deodorisation step. The phosphorus content of bleached palm oil showed a significant correlation with 3-MCPD ester formation.
  14. Thoo YY, Abas F, Lai OM, Ho CW, Yin J, Hedegaard RV, et al.
    Food Chem, 2013 Jun 1;138(2-3):1215-9.
    PMID: 23411234 DOI: 10.1016/j.foodchem.2012.11.013
    The synergistic antioxidant effects of ethanolic extracts of Centella asiatica (CE), and α-tocopherol have been studied. The types of interactions exhibited by CE and α-tocopherol combined at different ratios were measured using three assays: 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) diammonium salt (ABTS) radical-scavenging capacity, the β-carotene bleaching system and liposome peroxidation assays. Fixed-fraction isobolographic analysis was used to detect any inducement of the antioxidant activity compared with the individual activities of CE and α-tocopherol. Of all synergistic combinations of CE and α-tocopherol, only fraction 2/3 showed the synergistic combination that fits well in three different assays and can be explained by the regeneration of α-tocopherol by CE despite the interaction effect of β-carotene present in the analytical assay. This phenomenon involved complex interactions between CE and α-tocopherol to exhibit different degrees of interactions that eventually increased antioxidant activity.
  15. He Z, Tan JS, Lai OM, Ariff AB
    Food Chem, 2015 Aug 15;181:19-24.
    PMID: 25794715 DOI: 10.1016/j.foodchem.2014.11.166
    In this study, the methods for extraction and purification of miraculin from Synsepalum dulcificum were investigated. For extraction, the effect of different extraction buffers (phosphate buffer saline, Tris-HCl and NaCl) on the extraction efficiency of total protein was evaluated. Immobilized metal ion affinity chromatography (IMAC) with nickel-NTA was used for the purification of the extracted protein, where the influence of binding buffer pH, crude extract pH and imidazole concentration in elution buffer upon the purification performance was explored. The total amount of protein extracted from miracle fruit was found to be 4 times higher using 0.5M NaCl as compared to Tris-HCl and phosphate buffer saline. On the other hand, the use of Tris-HCl as binding buffer gave higher purification performance than sodium phosphate and citrate-phosphate buffers in IMAC system. The optimum purification condition of miraculin using IMAC was achieved with crude extract at pH 7, Tris-HCl binding buffer at pH 7 and the use of 300 mM imidazole as elution buffer, which gave the overall yield of 80.3% and purity of 97.5%. IMAC with nickel-NTA was successfully used as a single step process for the purification of miraculin from crude extract of S. dulcificum.
  16. Mou B, Liu Y, Yang W, Song S, Shen C, Lai OM, et al.
    Food Chem, 2021 Dec 01;364:130426.
    PMID: 34175616 DOI: 10.1016/j.foodchem.2021.130426
    Present work investigated the effects of processing (homogenization, sterilization) and cold storage on physicochemical properties, in vitro digestion and Caco-2 cellular uptake of bovine milk. Extreme heat sterilization and low temperature storage have significant impact on particle size and phospholipidome of bovine milk. In addition, cold storage of bovine milks led to formation of β' polymorphs crystals and endothermic peak with Toffset higher than body temperature. Processing and cold storage also increased the initial digestibility but reduced the overall digestibility of bovine milk. This might be related to the decreased particle size of the milk fat globules, changed in the phospholipidome of the MFGM and formation of β' polymorphs crystals in frozen milk. It is interesting to note that PE has relatively faster digestion meanwhile SM has relatively slower digestion. HTST milk which demonstrated lesser changed in terms of phospholipidome demonstrated highest cellular uptakes of most fatty acids.
  17. Wu Y, Wang K, Liu Q, Liu X, Mou B, Lai OM, et al.
    Food Chem, 2022 Jan 15;367:130700.
    PMID: 34352694 DOI: 10.1016/j.foodchem.2021.130700
    Present study prepared curcumin-loaded nanoliposomes using bovine milk, krill phospholipids and cholesterol; and investigated the effects of cholesterol on membrane characteristics, storage stability and antibacterial properties of the curcumin nanoliposomes. Bovine milk phospholipids which have higher saturation than krill phospholipids resulted in formation of curcumin-loaded nanoliposomes with higher encapsulation efficiency (84.78%), larger absolute value of zeta potential and vesicle size (size: 159.15 ± 5.27 nm, zeta potential: -28.3 ± 0.62 mV). Cholesterol helps to formation of a more hydrophobic, compact and tighter bilayer membrane structure which improved the storage stability of nanoliposomes under alkaline (66.25 ± 0.46%), heat (43.25 ± 0.69%) and sunlight (49.44 ± 1.78%) conditions. In addition, curcumin-loaded nanoliposomes can effectively target infectious bacteria which secrete pore-forming toxins such as Staphylococcus aureus by causing the bacterial cell wall to lysis. Findings from present work can guide future development of novel antibacterial agents for use in food preservation.
  18. Goh KM, Lai OM, Abas F, Tan CP
    Food Chem, 2017 Jan 15;215:200-8.
    PMID: 27542468 DOI: 10.1016/j.foodchem.2016.07.146
    Soy sauce fermentation was simulated in a laboratory and subjected to 10min of sonication. A full factorial design, including different cycles, probe size, and amplitude was used. The composition of 17 free-amino acids (FAAs) was determined by the AccQ-Tag method with fluorescent detection. Main effect plots showed total FAAs extraction was favoured under continuous sonication at 100% amplitude using a 14mm diameter transducer probe, reaching 1214.2±64.3mg/100ml of total FAAs. Moreover, after 7days of fermentation, sonication treatment caused significantly higher levels (p<0.05) of glutamic acids (343.0±22.09mg/100g), total FAAs (1720.0±70.6mg/100g), and essential FAAs (776.3±7.0mg/100g) 3days sooner than the control. Meanwhile, enzymatic and microbial behaviours remained undisturbed. Collectively, the sonication to moromi resulted in maturation 57% faster than the untreated control.
  19. Wong YH, Muhamad H, Abas F, Lai OM, Nyam KL, Tan CP
    Food Chem, 2017 Mar 15;219:126-130.
    PMID: 27765207 DOI: 10.1016/j.foodchem.2016.09.130
    The effects of frying duration, frying temperature and concentration of sodium chloride on the formation of 3-monochloropropane-1,2-diol (3-MCPD) esters and glycidyl esters (GEs) of refined, bleached and deodorized (RBD) palm olein during deep-fat frying (at 160°C and 180°C) of potato chips (0%, 1%, 3% and 5% NaCl) for 100min/d for five consecutive days in eight systems were compared in this study. All oil samples collected after each frying cycle were analyzed for 3-MCPD esters, GEs, free fatty acid (FFA) contents, specific extinction at 232 and 268 nm (K232 and K268), p-anisidine value (pAV), and fatty acid composition. The 3-MCPD ester trend was decreasing when the frying duration increased, whereas the trend was increasing when frying temperature and concentration of NaCl increased. The GEs trend was increasing when the frying temperature, frying duration and concentration of NaCl increased. All of the oil qualities were within the safety limit.
  20. Hew KS, Asis AJ, Tan TB, Yusoff MM, Lai OM, Nehdi IA, et al.
    Food Chem, 2020 Mar 01;307:125545.
    PMID: 31654951 DOI: 10.1016/j.foodchem.2019.125545
    Corresponding the high presence of 3-monochloropropane-1,2-diol esters (3-MCPDE) and glycidyl esters (GE) in refined palm oil, this paper re-evaluated degumming and bleaching processes of physical palm oil refining to reduce the amount of said contaminants. Separation-free water degumming was incorporated into the process, and this significantly (p 
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links