Displaying publications 1 - 20 of 144 in total

  1. Zhao J, Ma H, Wu W, Ali Bacar M, Wang Q, Gao M, et al.
    Bioresour Technol, 2023 Jan;368:128375.
    PMID: 36414142 DOI: 10.1016/j.biortech.2022.128375
    Substrate toxicity would limit the upgrading of waste biomass to medium-chain fatty acids (MCFAs). In this work, two fermentation modes of electro-fermentation (EF) and traditional fermentation (TF) with different concentration of liquor fermentation waste (20%, 40%, 60%) were used for MCFAs production as well as mechanism investigation. The highest caproate (4.04 g/L) and butyrate (13.96 g/L) concentrations were obtained by EF at 40% substrate concentration. TF experiments showed that the substrate concentration above 40% severely inhibited ethanol oxidation and products formation. Compared with TF mode, the total substrates consumption and product yields under EF mode were significantly increased by 2.6%-43.5% and 54.0%-83.0%, respectively. Microbial analysis indicated that EF effectively alleviated substrate toxicity and enriched chain elongation bacteria, particularly Clostridium_sensu_stricto 12, thereby promoting ethanol oxidation and products formation. Caproiciproducens tolerated high-concentration substrates to ensure normal lactate metabolism. This study provides a new way to produce MCFAs from high concentration wastewater.
  2. Zhang K, Teng Z, Shao W, Wang Y, Li M, Lam SS
    J Hazard Mater, 2020 10 05;397:122754.
    PMID: 32361140 DOI: 10.1016/j.jhazmat.2020.122754
    Phosphate solubilizing bacteria (PSBs) shows high potential to be used for lead passivation in sediments due to the abilities of releasing phosphate and the subsequent formation of insoluble Pb-phosphate compounds. In this research, microbial capsules implemented with sodium alginate and CaCl2, containing Leclercia adecarboxylata L15 (a lead resistant PSB) and Ca3(PO4)2, were developed and the performance on lead passivation under different conditions was examined. The optimal concentrations of sodium alginate and CaCl2 for formulating the capsules were determined to be 0.3% and 10%, respectively. The removal efficiency of Pb2+ by capsules containing L15 and Ca3(PO4)2 was up to 98% with a capsule dosage of 2%, initial Pb2+ concentration of 1mM and pH of 3.0, which was better than that of free L15 (18%) and capsules containing only L15 (34%). Lead was immobilized via the formation of Pb5(PO4)3Cl on the surface and Pb3(PO4)2 in the interior of the capsules. The simulated sediment remediation experiments showed that the acid soluble fraction of lead reduced from 28% to 14% and transformed into more stable fractions after 10 days. The experiment results indicated that PSBs capsules coupled with phosphate materials have a great promise for application in remediation of lead contaminated sediments.
  3. Yue X, Ma NL, Sonne C, Guan R, Lam SS, Van Le Q, et al.
    J Hazard Mater, 2021 03 05;405:124138.
    PMID: 33092884 DOI: 10.1016/j.jhazmat.2020.124138
    Indoor air pollution with toxic volatile organic compounds (VOCs) and fine particulate matter (PM2.5) is a threat to human health, causing cancer, leukemia, fetal malformation, and abortion. Therefore, the development of technologies to mitigate indoor air pollution is important to avoid adverse effects. Adsorption and photocatalytic oxidation are the current approaches for the removal of VOCs and PM2.5 with high efficiency. In this review we focus on the recent development of indoor air pollution mitigation materials based on adsorption and photocatalytic decomposition. First, we review on the primary indoor air pollutants including formaldehyde, benzene compounds, PM2.5, flame retardants, and plasticizer: Next, the recent advances in the use of adsorption materials including traditional biochar and MOF (metal-organic frameworks) as the new emerging porous materials for VOCs absorption is reviewed. We review the mechanism for mitigation of VOCs using biochar (noncarbonized organic matter partition and adsorption) and MOF together with parameters that affect indoor air pollution removal efficiency based on current mitigation approaches including the mitigation of VOCs using photocatalytic oxidation. Finally, we bring forward perspectives and directions for the development of indoor air mitigation technologies.
  4. Yek PNY, Peng W, Wong CC, Liew RK, Ho YL, Wan Mahari WA, et al.
    J Hazard Mater, 2020 08 05;395:122636.
    PMID: 32298946 DOI: 10.1016/j.jhazmat.2020.122636
    We developed an innovative single-step pyrolysis approach that combines microwave heating and activation by CO2 or steam to transform orange peel waste (OPW) into microwave activated biochar (MAB). This involves carbonization and activation simultaneously under an inert environment. Using CO2 demonstrates dual functions in this approach, acting as purging gas to provide an inert environment for pyrolysis while activating highly porous MAB. This approach demonstrates rapid heating rate (15-120 °C/min), higher temperature (> 800 °C) and shorter process time (15 min) compared to conventional method using furnace (> 1 h). The MAB shows higher mass yield (31-44 wt %), high content of fixed carbon (58.6-61.2 wt %), Brunauer Emmett Teller (BET) surface area (158.5-305.1 m2/g), low ratio of H/C (0.3) and O/C (0.2). Activation with CO2 produces more micropores than using steam that generates more mesopores. Steam-activated MAB records a higher adsorption efficiency (136 mg/g) compared to CO2 activation (91 mg/g), achieving 89-93 % removal of Congo Red dye. The microwave pyrolysis coupled with steam or CO2 activation thereby represents a promising approach to transform fruit-peel waste to microwave-activated biochar that remove hazardous dye.
  5. Yek PNY, Liew RK, Osman MS, Lee CL, Chuah JH, Park YK, et al.
    J Environ Manage, 2019 Apr 15;236:245-253.
    PMID: 30735943 DOI: 10.1016/j.jenvman.2019.01.010
    Microwave-steam activation (MSA), an innovative pyrolysis approach combining the use of microwave heating and steam activation, was investigated for its potential production of high grade activated carbon (AC) from waste palm shell (WPS) for methylene blue removal. MSA was performed via pyrolytic carbonization of WPS to produce biochar as the first step followed by steam activation of the biochar using microwave heating to form AC. Optimum yield and adsorption efficiency of methylene blue were obtained using response surface methodology involving several key process parameters. The resulting AC was characterized for its porous characteristics, surface morphology, proximate analysis and elemental compositions. MSA provided a high activation temperature above 500 °C with short process time of 15 min and rapid heating rate (≤150 °C/min). The results from optimization showed that one gram of AC produced from steam activation under 10 min of microwave heating at 550 °C can remove up to 38.5 mg of methylene blue. The AC showed a high and uniform surface porosity consisting high fixed carbon (73 wt%), micropore and BET surface area of 763.1 and 570.8 m2/g respectively, hence suggesting the great potential of MSA as a promising approach to produce high grade adsorbent for dye removal.
  6. Yek PNY, Wan Mahari WA, Kong SH, Foong SY, Peng W, Ting H, et al.
    Bioresour Technol, 2022 Mar;347:126687.
    PMID: 35007740 DOI: 10.1016/j.biortech.2022.126687
    Thermal co-processing of lignocellulosic and aquatic biomass, such as algae and shellfish waste, has shown synergistic effects in producing value-added energy products with higher process efficiency than the traditional method, highlighting the importance of scaling up to pilot-scale operations. This article discusses the design and operation of pilot-scale reactors for torrefaction, pyrolysis, and gasification, as well as the key parameters of co-processing biomass into targeted and improved quality products for use as fuel, agricultural application, and environmental remediation. Techno-economic analysis reveals that end product selling price, market dynamics, government policies, and biomass cost are crucial factors influencing the sustainability of thermal co-processing as a feasible approach to utilize the biomass. Because of its simplicity, pyrolysis allows greater energy recovery, while gasification has the highest net present value (profitability). Integration of liquefaction, hydrothermal, and fermentation pre-treatment technology has the potential to increase energy efficiency while reducing process residues.
  7. Yang Y, Liew RK, Tamothran AM, Foong SY, Yek PNY, Chia PW, et al.
    Environ Chem Lett, 2021 Jan 13.
    PMID: 33462541 DOI: 10.1007/s10311-020-01177-5
    Dwindling fossil fuels and improper waste management are major challenges in the context of increasing population and industrialization, calling for new waste-to-energy sources. For instance, refuse-derived fuels can be produced from transformation of municipal solid waste, which is forecasted to reach 2.6 billion metric tonnes in 2030. Gasification is a thermal-induced chemical reaction that produces gaseous fuel such as hydrogen and syngas. Here, we review refuse-derived fuel gasification with focus on practices in various countries, recent progress in gasification, gasification modelling and economic analysis. We found that some countries that replace coal by refuse-derived fuel reduce CO2 emission by 40%, and decrease the amount municipal solid waste being sent to landfill by more than 50%. The production cost of energy via refuse-derived fuel gasification is estimated at 0.05 USD/kWh. Co-gasification by using two feedstocks appears more beneficial over conventional gasification in terms of minimum tar formation and improved process efficiency.
  8. Yang F, Jin C, Wang S, Wang Y, Wei L, Zheng L, et al.
    Chemosphere, 2023 May;323:138245.
    PMID: 36841450 DOI: 10.1016/j.chemosphere.2023.138245
    Due to increasing antibiotic pollution in the water environment, green and efficient adsorbents are urgently needed to solve this problem. Here we prepare magnetic bamboo-based activated carbon (MDBAC) through delignification and carbonization using ZnCl2 as activator, resulting in production of an activated carbon with large specific surface area (1388.83 m2 g-1). The influencing factors, such as solution pH, initial sulfadiazine (SD) concentration, temperature, and contact time, were assessed in batch adsorption experiments. The Langmuir isotherm model demonstrated that MDBAC adsorption capacity on SD was 645.08 mg g-1 at its maximum, being higher than majority of previously reported adsorbents. In SD adsorption, the kinetic adsorption process closely followed the pseudo-second kinetic model, and the thermodynamic adsorption process was discovered to be exothermic and spontaneous in nature. The MDBAC exhibited excellent physicochemical stability, facile magnetic recovery and acceptable recyclability properties. Moreover, the synergistic interactions between MDBAC and SD mainly involved electrostatic forces, hydrogen bonding, π-π stacking, and chelation. Within the benefits of low cost, ease of production and excellent adsorption performance, the MDBAC biosorbent shows promising utilization in removing antibiotic contaminants from wastewater.
  9. Yan S, Ren T, Wan Mahari WA, Feng H, Xu C, Yun F, et al.
    Sci Total Environ, 2021 Aug 24;802:149835.
    PMID: 34461468 DOI: 10.1016/j.scitotenv.2021.149835
    Soil carbon supplementation is known to stimulate plant growth by improving soil fertility and plant nutrient uptake. However, the underlying process and chemical mechanism that could explain the interrelationship between soil carbon supplementation, soil micro-ecology, and the growth and quality of plant remain unclear. In this study, we investigated the influence and mechanism of soil carbon supplementation on the bacterial community, chemical cycling, mineral nutrition absorption, growth and properties of tobacco leaves. The soil carbon supplementation increased amino acid, carbohydrates, chemical energy metabolism, and bacterial richness in the soil. This led to increased content of sugar (23.75%), starch (13.25%), and chlorophyll (10.56%) in tobacco leaves. Linear discriminant analysis revealed 49 key phylotypes and significant increment of some of the Plant Growth-Promoting Rhizobacteria (PGPR) genera (Bacillus, Novosphingobium, Pseudomonas, Sphingomonas) in the rhizosphere, which can influence the tobacco growth. Partial Least Squares Path Modeling (PLS-PM) showed that soil carbon supplementation positively affected the sugar and starch contents in tobacco leaves by possibly altering the photosynthesis pathway towards increasing the aroma of the leaves, thus contributing to enhanced tobacco flavor. These findings are useful for understanding the influence of soil carbon supplementation on bacterial community for improving the yields and quality of tobacco in industrial plantation.
  10. Yan L, Le QV, Sonne C, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 04 05;407:124771.
    PMID: 33388721 DOI: 10.1016/j.jhazmat.2020.124771
    Soil and water contaminated with radionuclides threaten the environment and public health during leaks from nuclear power plants. Remediation of radionuclides at the contaminated sites uses mainly physical and chemical methods such as vitrification, chemical immobilization, electro-kinetic remediation and soil excavation, capping and washing being among the preferred methods. These traditional technologies are however costly and less suitable for dealing with large-area pollution. In contrast to this, cost-effective and environment-friendly alternatives such as phytoremediation using plants to remove radionuclides from polluted sites in situ represent promising alternatives for environmental cleanup. Understanding the physiology and molecular mechanisms of radionuclides accumulation in plants is essential to optimize and improve this new remediation technology. Here, we give an overview of radionuclide contamination in the environment and biochemical characteristics for uptake, transport, and compartmentation of radionuclides in plants that characterize phytoextraction and its efficiency. Phytoextraction is an eco-friendly and efficient method for environmental removal of radionuclides at contaminated sites such as mine tailings. Selecting the most proper plant for the specific purpose, however, is important to obtain the best result together with, for example, applying soil amendments such as citric acid. In addition, using genetic engineering and optimizing agronomic management practices including regulation of atmospheric CO2 concentration, reasonable measures of fertilization and rational water management are important as well. For future application, the technique needs commercialization in order to fully exploit the technique at mining activities and nuclear industries.
  11. Yan L, Chen W, Wang C, Liu S, Liu C, Yu L, et al.
    Chemosphere, 2022 Feb;288(Pt 2):132510.
    PMID: 34627823 DOI: 10.1016/j.chemosphere.2021.132510
    Tetracycline is a potentially hazardous residual antibiotic detected in various sewages. High concentration (mg/L) of tetracycline is found in pharmaceutical/hospital wastewater and wastewater derived from livestock and poultry. So far, only antibiotics in μg/L level have been reported in granulation of aerobic sludge during wastewater treatment, but its effects in high concentration are rarely reported. In this study, the influence of tetracycline in high concentration (∼2 mg/L) on the formation of granular sludge, structure, and metabolic function of the microbial community during the granulation of aerobic sludge was investigated to improve the understanding of the aerobic granular sludge formation under high-level of tetracycline. The role of extracellular polymers substances (EPSs) derived from granular sludge in the granulation and tetracycline removal process was also investigated, showing that tetracycline improved the relative hydrophobicity, flocculability and protein/polysaccharide ratio of EPSs, accelerating the granulation of sludge. Succession of microbial communities occurred during the domestication of functional bacteria present in the sludge and was accompanied with regulation of metabolic function. The addition of tetracycline lead to an increase of tetracycline-degrading bacteria or antibiotic resistance genus. Those findings provide new perspectives of the influence of tetracycline on aerobic sludge granulation and the removal mechanism of tetracycline.
  12. Xiang Y, Jiang L, Zhou Y, Luo Z, Zhi D, Yang J, et al.
    J Hazard Mater, 2022 Jan 15;422:126843.
    PMID: 34419846 DOI: 10.1016/j.jhazmat.2021.126843
    Nowadays, a growing number of microplastics are released into the environment due to the extensive use and inappropriate management of plastic products. With the increasing body of evidence about the pollution and hazards of microplastics, microplastics have drawn major attention from governments and the scientific community. As a kind of emerging and persistent environmental pollutants, microplastics have recently been detected on a variety of substrates in the world. Therefore, this paper reviews the recent progress in identifying the sources of microplastics in soil, water, and atmosphere and describing the transport and fate of microplastics in the terrestrial, aquatic and atmospheric ecosystems for revealing the circulation of microplastics in the ecosystem. In addition, considering the persistence of microplastics, this study elucidates the interactions of microplastics with other pollutants in the environment (i.e., organic pollutants, heavy metals) with emphasis on toxicity and accumulation, providing a novel insight into the ecological risks of microplastics in the environment. The negative impacts of microplastics on organisms and environmental health are also reviewed to reveal the environmental hazards of microplastics. The knowledge gaps and key research priorities of microplastics are identified to better understand and mitigate the environmental risks of microplastics.
  13. Xia C, Lam SS, Sonne C
    Science, 2021 03 19;371(6535):1214.
    PMID: 33737479 DOI: 10.1126/science.abh3100
  14. Xia C, Lam SS, Sonne C
    Science, 2020 Oct 30;370(6516):539.
    PMID: 33122375 DOI: 10.1126/science.abf0461
  15. Xia C, Lam SS, Zhong H, Fabbri E, Sonne C
    Science, 2022 Nov 25;378(6622):842.
    PMID: 36423283 DOI: 10.1126/science.ade9069
  16. Wu Y, Ge S, Xia C, Cai L, Mei C, Sonne C, et al.
    Bioresour Technol, 2020 Oct;313:123675.
    PMID: 32563796 DOI: 10.1016/j.biortech.2020.123675
    An innovative approach was developed by incorporating high-pressure CO2 into the separate hydrolysis-fermentation of aspen leftover branches, aiming to enhance the bioethanol production efficiency. The high-pressure CO2 significantly increased the 72-h enzymatic hydrolysis yield of converting aspen into glucose from 53.8% to 82.9%. The hydrolysis process was performed with low enzyme loading (10 FPU g-1 glucan) with the aim of reducing the cost of fuel bioethanol production. The ethanol yield from fermentation of the hydrolyzed glucose using yeast (Saccharomyces cerevisiae) was 8.7 g L-1, showing increment of 10% compared with the glucose control. Techno-economic analysis indicated that the energy consumption of fuel bioethanol production from aspen branch chips was reduced by 35% and the production cost was cut 44% to 0.615 USD L-1, when 68 atm CO2 was introduced into the process. These results furtherly emphasized the low carbon footprint of this sustainable energy production approach.
  17. Wu Y, Liang Y, Mei C, Cai L, Nadda A, Le QV, et al.
    Chemosphere, 2022 Jan;286(Pt 3):131891.
    PMID: 34416587 DOI: 10.1016/j.chemosphere.2021.131891
    Nanocellulose based gas barrier materials have become an increasingly important subject, since it is a widespread environmentally friendly natural polymer. Previous studies have shown that super-high gas barrier can be achieved with pure and hierarchical nanocellulose films fabricated through simple suspension or layer-by-layer technique either by itself or incorporating with other polymers or nanoparticles. Improved gas barrier properties were observed for nanocellulose-reinforced composites, where nanocellulose partially impermeable nanoparticles decreased gas permeability effectively. However, for nanocellulose-based materials, the higher gas barrier performance is jeopardized by water absorption and shape deformation under high humidity conditions which is a challenge for maintaining properties in material applications. Thus, numerous investigations have been done to solve the problem of water absorption in nanocellulose-based materials. In this literature review, gas barrier properties of pure, layer-by-layer and composite nanocellulose films are investigated. The possible theoretical gas barrier mechanisms are described, and the prospects for nanocellulose-based materials are discussed.
  18. Wong CY, Lim JW, Chong FK, Lam MK, Uemura Y, Tan WN, et al.
    Environ Res, 2020 06;185:109458.
    PMID: 32247911 DOI: 10.1016/j.envres.2020.109458
    The conventional practice in enhancing the larvae growths is by co-digesting the low-cost organic wastes with palatable feeds for black soldier fly larvae (BSFL). In circumventing the co-digestion practice, this study focused the employment of exo-microbes in a form of bacterial consortium powder to modify coconut endosperm waste (CEW) via fermentation process in enhancing the palatability of BSFL to accumulate more larval lipid and protein. Accordingly, the optimum fermentation condition was attained by inoculating 0.5 wt% of bacterial consortium powder into CEW for 14-21 days. The peaks of BSFL biomass gained and growth rate were initially attained whilst feeding the BSFL with optimum fermented CEW. These were primarily attributed by the lowest energy loss via metabolic cost, i.e., as high as 22% of ingested optimum fermented CEW was effectively bioconverted into BSFL biomass. The harvested BSFL biomass was then found containing about 40 wt% of lipid, yielding 98% of fatty acid methyl esters of biodiesel upon transesterification. Subsequently, the protein content was also analyzed to be 0.32 mg, measured from 20 harvested BSFL with a corrected-chitin of approximately 8%. Moreover, the waste reduction index which represents the BSFL valorization potentiality was recorded at 0.31 g/day 20 BSFL. The benefit of fermenting CEW was lastly unveiled, accentuating the presence of surplus acid-producing bacteria. Thus, it was propounded the carbohydrates in CEW were rapidly hydrolysed during fermentation, releasing substantial organic acids and other nutrients to incite the BSFL assimilation into lipid for biodiesel and protein productions simultaneously.
  19. Wijekoon P, Koliyabandara PA, Cooray AT, Lam SS, Athapattu BCL, Vithanage M
    J Hazard Mater, 2021 Jul 12;421:126627.
    PMID: 34343881 DOI: 10.1016/j.jhazmat.2021.126627
    The escalating loads of municipal solid waste (MSW) end up in open dumps and landfills, producing continuous flows of landfill leachate. The risk of incorporating highly toxic landfill leachate into environment is important to be evaluated and measured in order to facilitate decision making for landfill leachate management and treatment. Leachate pollution index (LPI) provides quantitative measures of the potential environmental pollution by landfill leachate and information about the environmental quality adjacent to a particular landfill. According to LPI values, most developing countries show high pollution potentials from leachate, mainly due to high organic waste composition and low level of waste management techniques. A special focus on leachate characterization studies with LPI and its integration to treatment, which has not been focused in previous reviews on landfill leachate, is given here. Further, the current review provides a summary related to leachate generation, composition, characterization, risk assessment and treatment together with challenges and perspectives in the sector with its focus to developing nations. Potential commercial and industrial applications of landfill leachate is discussed in the study to provide insights into its sustainable management which is original for the study.
  20. Wei Z, Van Le Q, Peng W, Yang Y, Yang H, Gu H, et al.
    J Hazard Mater, 2021 02 05;403:123658.
    PMID: 33264867 DOI: 10.1016/j.jhazmat.2020.123658
    There is a global need to use plants to restore the ecological environment. There is no systematic review of phytoremediation mechanisms and the parameters for environmental pollution. Here, we review this situation and describe the purification rate of different plants for different pollutants, as well as methods to improve the purification rate of plants. This is needed to promote the use of plants to restore the ecosystems and the environment. We found that plants mainly use their own metabolism including the interaction with microorganisms to repair their ecological environment. In the process of remediation, the purification factors of plants are affected by many conditions such as light intensity, stomatal conductance, temperature and microbial species. In addition the efficiency of phytoremediation is depending on the plants species-specific metabolism including air absorption and photosynthesis, diversity of soil microorganisms and heavy metal uptake. Although the use of nanomaterials and compost promote the restoration of plants to the environment, a high dose may have negative impacts on the plants. In order to improve the practicability of the phytoremediation on environmental restoration, further research is needed to study the effects of different kinds of catalysts on the efficiency of phytoremediation. Thus, the present review provides a recent update for development and applications of phytoremediation in different environments including air, water, and soil.
Related Terms
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links