Displaying all 2 publications

Abstract:
Sort:
  1. Lim J, Razi ZR, Law J, Nawi AM, Idrus RB, Ng MH
    Cytotherapy, 2016 12;18(12):1493-1502.
    PMID: 27727016 DOI: 10.1016/j.jcyt.2016.08.003
    BACKGROUND AIMS: Human Wharton's jelly-derived mesenchymal stromal cells (hWJMSCs) are possibly the most suitable allogeneic cell source for stromal cell therapy and tissue engineering applications because of their hypo-immunogenic and non-tumorigenic properties, easy availability and minimal ethical concerns. Furthermore, hWJMSCs possess unique properties of both adult mesenchymal stromal cells and embryonic stromal cells. The human umbilical cord (UC) is approximately 50-60 cm long and the existing studies in the literature have not provided information on which segment of the UC was studied. In this study, hWJMSCs derived from three anatomical segments of the UC are compared.

    METHODS: Three segments of the whole UC, each 3 cm in length, were identified anatomically as the maternal, middle and fetal segments. The hWJMSCs from the different segments were analyzed via trypan blue exclusion assay to determine the growth kinetics and cell viability, flow cytometry for immunophenotyping and immunofluorescence and reverse transcriptase polymerase chain reaction (RT-PCR) for expression of stromal cell transcriptional factors. Furthermore, the trilineage differentiation potential (osteogenic, adipogenic and chondrogenic) of these cells was also assessed.

    RESULTS: hWJMSCs isolated from the maternal and fetal segments displayed greater viability and possessed a significantly higher proliferation rate compared with cells from the middle segment. Immunophenotyping revealed that hWJMSCs derived from all three segments expressed the MSC markers CD105, CD73, CD90, CD44, CD13 and CD29, as well as HLA-ABC and HLA-DR, but were negative for hematopoietic markers CD14, CD34 and CD45. Analysis of the embryonic markers showed that all three segments expressed Nanog and Oct 3/4, but only the maternal and fetal segments expressed SSEA 4 and TRA-160. Cells from all three segments were able to differentiate into chondrogenic, osteogenic and adipogenic lineages with the middle segments showing much lower differentiation potential compared with the other two segments.

    CONCLUSIONS: hWJMSCs derived from the maternal and fetal segments of the UC are a good source of MSCs compared with cells from the middle segment because of their higher proliferation rate and viability. Fetal and maternal segments are the preferred cell source for bone regeneration.

  2. Liau LL, Ruszymah BHI, Ng MH, Law JX
    Curr Res Transl Med, 2020 01;68(1):5-16.
    PMID: 31543433 DOI: 10.1016/j.retram.2019.09.001
    Mesenchymal stromal cells (MSCs) are widely used in the clinic because they involve fewer ethical issues and safety concerns compared to other stem cells such as embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs). MSCs derived from umbilical cord Wharton's jelly (WJ-MSCs) have excellent proliferative potential and a faster growth rate and can retain their multipotency for more passages in vitro compared to adult MSCs from bone marrow or adipose tissue. WJ-MSCs are used clinically for repairing tissue injuries of the spinal cord, liver and heart with the aim of regenerating tissue. On the other hand, WJ-MSCs are also used clinically to ameliorate immune-mediated diseases based on their ability to modulate immune responses. In the field of tissue engineering, WJ-MSCs capable of differentiating into multiple cell lineages have been used to produce a variety of engineered tissues in vitro that can then be transplanted in vivo. This review discusses the characteristics of WJ-MSCs, the differences between WJ-MSCs and adult MSCs, clinical studies involving WJ-MSCs and future perspectives of WJ-MSC research and clinical applications. To summarize, WJ-MSCs have shown promise in treating a variety of diseases clinically. However, most clinical trials/studies reported thus far are relatively smaller in scale. The collected evidence is insufficient to support the routine use of WJ-MSC therapy in the clinic. Thus, rigorous clinical trials are needed in the future to obtain more information on WJ-MSC therapy safety and efficacy.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links