Displaying publications 1 - 20 of 54 in total

Abstract:
Sort:
  1. Mercière M, Boulord R, Carasco-Lacombe C, Klopp C, Lee YP, Tan JS, et al.
    Fungal Biol, 2017 Jun-Jul;121(6-7):529-540.
    PMID: 28606348 DOI: 10.1016/j.funbio.2017.01.001
    Wood rot fungi form one of the main classes of phytopathogenic fungus. The group includes many species, but has remained poorly studied. Many species belonging to the Ganoderma genus are well known for causing decay in a wide range of tree species around the world. Ganoderma boninense, causal agent of oil palm basal stem rot, is responsible for considerable yield losses in Southeast Asian oil palm plantations. In a large-scale sampling operation, 357 sporophores were collected from oil palm plantations spread over peninsular Malaysia and Sumatra and genotyped using 11 SSR markers. The genotyping of these samples made it possible to investigate the population structure and demographic history of G. boninense across the oldest known area of interaction between oil palm and G. boninense. Results show that G. boninense possesses a high degree of genetic diversity and no detectable genetic structure at the scale of Sumatra and peninsular Malaysia. The fact that few duplicate genotypes were found in several studies including this one supports the hypothesis of spore dispersal in the spread of G. boninense. Meanwhile, spatial autocorrelation analysis shows that G. boninense is able to disperse across both short and long distances. These results bring new insight into mechanisms by which G. boninense spreads in oil palm plantations. Finally, the use of approximate Bayesian computation (ABC) modelling indicates that G. boninense has undergone a demographic expansion in the past, probably before the oil palm was introduced into Southeast Asia.
  2. Ho CL, Kwan YY, Choi MC, Tee SS, Ng WH, Lim KA, et al.
    BMC Genomics, 2007;8:381.
    PMID: 17953740
    Oil palm is the second largest source of edible oil which contributes to approximately 20% of the world's production of oils and fats. In order to understand the molecular biology involved in in vitro propagation, flowering, efficient utilization of nitrogen sources and root diseases, we have initiated an expressed sequence tag (EST) analysis on oil palm.
  3. Thai BT, Tan MH, Lee YP, Gan HM, Tran TT, Austin CM
    Mol Biol Rep, 2016 May;43(5):391-6.
    PMID: 26922181 DOI: 10.1007/s11033-016-3966-2
    The marine clam Lutraria rhynchaena is gaining popularity as an aquaculture species in Asia. Lutraria populations are present in the wild throughout Vietnam and several stocks have been established and translocated for breeding and aquaculture grow-out purposes. In this study, we demonstrate the feasibility of utilising Illumina next-generation sequencing technology to streamline the identification and genotyping of microsatellite loci from this clam species. Based on an initial partial genome scan, 48 microsatellite markers with similar melting temperatures were identified and characterised. The 12 most suitable polymorphic loci were then genotyped using 51 individuals from a population in Quang Ninh Province, North Vietnam. Genetic variation was low (mean number of alleles per locus = 2.6; mean expected heterozygosity = 0.41). Two loci showed significant deviation from Hardy-Weinberg equilibrium (HWE) and the presence of null alleles, but there was no evidence of linkage disequilibrium among loci. Three additional populations were screened (n = 7-36) to test the geographic utility of the 12 loci, which revealed 100 % successful genotyping in two populations from central Vietnam (Nha Trang). However, a second population from north Vietnam (Co To) could not be successfully genotyped and morphological evidence and mitochondrial variation suggests that this population represents a cryptic species of Lutraria. Comparisons of the Qang Ninh and Nha Trang populations, excluding the 2 loci out of HWE, revealed statistically significant allelic variation at 4 loci. We reported the first microsatellite loci set for the marine clam Lutraria rhynchaena and demonstrated its potential in differentiating clam populations. Additionally, a cryptic species population of Lutraria rhynchaena was identified during initial loci development, underscoring the overlooked diversity of marine clam species in Vietnam and the need to genetically characterise population representatives prior to microsatellite development. The rapid identification and validation of microsatellite loci using next-generation sequencing technology warrant its integration into future microsatellite loci development for key aquaculture species in Vietnam and more generally, aquaculture countries in the South East Asia region.
  4. Lamb AM, Gan HM, Greening C, Joseph L, Lee YP, Morán-Ordóñez A, et al.
    Mol Ecol, 2018 02;27(4):898-918.
    PMID: 29334409 DOI: 10.1111/mec.14488
    Diversifying selection between populations that inhabit different environments can promote lineage divergence within species and ultimately drive speciation. The mitochondrial genome (mitogenome) encodes essential proteins of the oxidative phosphorylation (OXPHOS) system and can be a strong target for climate-driven selection (i.e., associated with inhabiting different climates). We investigated whether Pleistocene climate changes drove mitochondrial selection and evolution within Australian birds. First, using phylogeographic analyses of the mitochondrial ND2 gene for 17 songbird species, we identified mitochondrial clades (mitolineages). Second, using distance-based redundancy analyses, we tested whether climate predicts variation in intraspecific genetic divergence beyond that explained by geographic distances and geographic position. Third, we analysed 41 complete mitogenome sequences representing each mitolineage of 17 species using codon models in a phylogenetic framework and a biochemical approach to identify signals of selection on OXPHOS protein-coding genes and test for parallel selection in mitolineages of different species existing in similar climates. Of 17 species examined, 13 had multiple mitolineages (range: 2-6). Climate was a significant predictor of mitochondrial variation in eight species. At least two amino acid replacements in OXPHOS complex I could have evolved under positive selection in specific mitolineages of two species. Protein homology modelling showed one of these to be in the loop region of the ND6 protein channel and the other in the functionally critical helix HL region of ND5. These findings call for direct tests of the functional and evolutionary significance of mitochondrial protein candidates for climate-associated selection.
  5. Tan MH, Gan HM, Lee YP, Bracken-Grissom H, Chan TY, Miller AD, et al.
    Sci Rep, 2019 Jul 24;9(1):10756.
    PMID: 31341205 DOI: 10.1038/s41598-019-47145-0
    The emergence of cost-effective and rapid sequencing approaches has resulted in an exponential rise in the number of mitogenomes on public databases in recent years, providing greater opportunity for undertaking large-scale comparative genomic and systematic research. Nonetheless, current datasets predominately come from small and disconnected studies on a limited number of related species, introducing sampling biases and impeding research of broad taxonomic relevance. This study contributes 21 crustacean mitogenomes from several under-represented decapod infraorders including Polychelida and Stenopodidea, which are used in combination with 225 mitogenomes available on NCBI to investigate decapod mitogenome diversity and phylogeny. An overview of mitochondrial gene orders (MGOs) reveals a high level of genomic variability within the Decapoda, with a large number of MGOs deviating from the ancestral arthropod ground pattern and unevenly distributed among infraorders. Despite the substantial morphological and ecological variation among decapods, there was limited evidence for correlations between gene rearrangement events and species ecology or lineage specific nucleotide substitution rates. Within a phylogenetic context, predicted scenarios of rearrangements show some MGOs to be informative synapomorphies for some taxonomic groups providing strong independent support for phylogenetic relationships. Additional comparisons for a range of mitogenomic features including nucleotide composition, strand asymmetry, unassigned regions and codon usage indicate several clade-specific trends that are of evolutionary and ecological interest.
  6. Lee YP, Yoon SE, Song Y, Kim SJ, Yoon DH, Chen TY, et al.
    Int J Hematol, 2021 Sep;114(3):355-362.
    PMID: 34302593 DOI: 10.1007/s12185-021-03179-7
    Cutaneous T-cell lymphomas (CTCLs) are a group of T-cell lymphomas with low incidence. Due to their indolent characteristics, treatment strategies have not yet been established for advanced CTCLs. In this study, relative incidence of CTCLs in Asia was estimated and the therapeutic outcomes presented based on various treatments currently used in clinics for advanced CTCLs. As part of a prospective registry study of peripheral T-cell lymphoma (PTCL) conducted across Asia, including Korea, China, Taiwan, Singapore, Malaysia, and Indonesia, subgroup analysis was performed for patients with CTCLs. Among 486 patients with PTCL, 37 with CTCL (7.6%) were identified between April 2016 and February 2019. Primary cutaneous ALK-negative anaplastic large cell lymphoma (ALCL, 35.1%) was the most common subtype. With a median follow-up period of 32.1 months, median progression-free survival (PFS) was 53.5 months (95% CI 0.0-122.5), and overall survival was not reached. 14 patients (48.2%) underwent subsequent treatment after the first relapse, but the response rate was 20% with a PFS of 2.2 months (95% CI 0.3-4.0). Six patients received autologous stem cell transplantation (auto-SCT). However, auto-SCT did not result in better outcomes. Additional studies are needed on standard care treatment of advanced or refractory and relapsed CTCLs.
  7. Austin CM, Tan MH, Harrisson KA, Lee YP, Croft LJ, Sunnucks P, et al.
    Gigascience, 2017 08 01;6(8):1-6.
    PMID: 28873963 DOI: 10.1093/gigascience/gix063
    One of the most iconic Australian fish is the Murray cod, Maccullochella peelii (Mitchell 1838), a freshwater species that can grow to ∼1.8 metres in length and live to age ≥48 years. The Murray cod is of a conservation concern as a result of strong population contractions, but it is also popular for recreational fishing and is of growing aquaculture interest. In this study, we report the whole genome sequence of the Murray cod to support ongoing population genetics, conservation, and management research, as well as to better understand the evolutionary ecology and history of the species. A draft Murray cod genome of 633 Mbp (N50 = 109 974bp; BUSCO and CEGMA completeness of 94.2% and 91.9%, respectively) with an estimated 148 Mbp of putative repetitive sequences was assembled from the combined sequencing data of 2 fish individuals with an identical maternal lineage; 47.2 Gb of Illumina HiSeq data and 804 Mb of Nanopore data were generated from the first individual while 23.2 Gb of Illumina MiSeq data were generated from the second individual. The inclusion of Nanopore reads for scaffolding followed by subsequent gap-closing using Illumina data led to a 29% reduction in the number of scaffolds and a 55% and 54% increase in the scaffold and contig N50, respectively. We also report the first transcriptome of Murray cod that was subsequently used to annotate the Murray cod genome, leading to the identification of 26 539 protein-coding genes. We present the whole genome of the Murray cod and anticipate this will be a catalyst for a range of genetic, genomic, and phylogenetic studies of the Murray cod and more generally other fish species of the Percichthydae family.
  8. Tan MH, Gan HM, Lee YP, Poore GC, Austin CM
    PeerJ, 2017;5:e2982.
    PMID: 28265498 DOI: 10.7717/peerj.2982
    BACKGROUND: Whole mitochondrial DNA is being increasingly utilized for comparative genomic and phylogenetic studies at deep and shallow evolutionary levels for a range of taxonomic groups. Although mitogenome sequences are deposited at an increasing rate into public databases, their taxonomic representation is unequal across major taxonomic groups. In the case of decapod crustaceans, several infraorders, including Axiidea (ghost shrimps, sponge shrimps, and mud lobsters) and Caridea (true shrimps) are still under-represented, limiting comprehensive phylogenetic studies that utilize mitogenomic information.

    METHODS: Sequence reads from partial genome scans were generated using the Illumina MiSeq platform and mitogenome sequences were assembled from these low coverage reads. In addition to examining phylogenetic relationships within the three infraorders, Axiidea, Gebiidea, and Caridea, we also investigated the diversity and frequency of codon usage bias and mitogenome gene order rearrangements.

    RESULTS: We present new mitogenome sequences for five shrimp species from Australia that includes two ghost shrimps, Callianassa ceramica and Trypaea australiensis, along with three caridean shrimps, Macrobrachium bullatum, Alpheus lobidens, and Caridina cf. nilotica. Strong differences in codon usage were discovered among the three infraorders and significant gene order rearrangements were observed. While the gene order rearrangements are congruent with the inferred phylogenetic relationships and consistent with taxonomic classification, they are unevenly distributed within and among the three infraorders.

    DISCUSSION: Our findings suggest potential for mitogenome rearrangements to be useful phylogenetic markers for decapod crustaceans and at the same time raise important questions concerning the drivers of mitogenome evolution in different decapod crustacean lineages.

  9. Sulaiman S, Othman NQ, Tan JS, Lee YP
    Data Brief, 2020 Apr;29:105167.
    PMID: 32025548 DOI: 10.1016/j.dib.2020.105167
    Ganoderma boninense is a soil-borne Basidiomycete pathogenic fungus that eminent as the key causal of devastating disease in oil palm, named basal stem rot. Being a threat to sustainable palm oil production, it is essential to comprehend the fundamental view of this fungus. However, there is gap of information due to its limited number of genome sequence that is available for this pathogenic fungus. This implies the hitches in performing biological research to unravel the mechanism underlying the pathogen attack in oil palm. Therefore, here we report a dataset of draft genome of G. boninense that was sequenced using Illumina Hiseq 2000. The raw reads were deposited into NCBI database (SRX7136614 and SRX7136615) and can be accessed via Bioproject accession number PRJNA503786.
  10. Tan MH, Austin CM, Hammer MP, Lee YP, Croft LJ, Gan HM
    Gigascience, 2018 03 01;7(3):1-6.
    PMID: 29342277 DOI: 10.1093/gigascience/gix137
    Background: Some of the most widely recognized coral reef fishes are clownfish or anemonefish, members of the family Pomacentridae (subfamily: Amphiprioninae). They are popular aquarium species due to their bright colours, adaptability to captivity, and fascinating behavior. Their breeding biology (sequential hermaphrodites) and symbiotic mutualism with sea anemones have attracted much scientific interest. Moreover, there are some curious geographic-based phenotypes that warrant investigation. Leveraging on the advancement in Nanopore long read technology, we report the first hybrid assembly of the clown anemonefish (Amphiprion ocellaris) genome utilizing Illumina and Nanopore reads, further demonstrating the substantial impact of modest long read sequencing data sets on improving genome assembly statistics.

    Results: We generated 43 Gb of short Illumina reads and 9 Gb of long Nanopore reads, representing approximate genome coverage of 54× and 11×, respectively, based on the range of estimated k-mer-predicted genome sizes of between 791 and 967 Mbp. The final assembled genome is contained in 6404 scaffolds with an accumulated length of 880 Mb (96.3% BUSCO-calculated genome completeness). Compared with the Illumina-only assembly, the hybrid approach generated 94% fewer scaffolds with an 18-fold increase in N50 length (401 kb) and increased the genome completeness by an additional 16%. A total of 27 240 high-quality protein-coding genes were predicted from the clown anemonefish, 26 211 (96%) of which were annotated functionally with information from either sequence homology or protein signature searches.

    Conclusions: We present the first genome of any anemonefish and demonstrate the value of low coverage (∼11×) long Nanopore read sequencing in improving both genome assembly contiguity and completeness. The near-complete assembly of the A. ocellaris genome will be an invaluable molecular resource for supporting a range of genetic, genomic, and phylogenetic studies specifically for clownfish and more generally for other related fish species of the family Pomacentridae.

  11. Kavousi N, Eng WW, Lee YP, Tan LH, Thuraisingham R, Yule CM, et al.
    Genome Announc, 2016;4(2).
    PMID: 26941132 DOI: 10.1128/genomeA.00023-16
    We report here the first high-quality draft genome sequence of Pasteurella multocida sequence type 128, which was isolated from the infected finger bone of an adult female who was bitten by a domestic dog. The draft genome will be a valuable addition to the scarce genomic resources available for P. multocida.
  12. Seow SC, Chai P, Lee YP, Chan YH, Kwok BW, Yeo TC, et al.
    J. Card. Fail., 2007 Aug;13(6):476-81.
    PMID: 17675062
    Prognostic indicators and mortality in multiethnic Southeast Asian patients with heart failure (HF) may be different.
  13. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, et al.
    PLoS One, 2016;11(3):e0151893.
    PMID: 26991500 DOI: 10.1371/journal.pone.0151893
    BACKGROUND: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome.

    METHODS: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline.

    RESULTS: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders.

    CONCLUSIONS: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.

  14. Haupa KA, Ong WS, Lee YP
    Phys Chem Chem Phys, 2020 Mar 18;22(11):6192-6201.
    PMID: 32129366 DOI: 10.1039/c9cp06279c
    Acetamide (CH3CONH2) is the largest molecule containing an amide bond that has been detected in an interstellar medium; it is considered to be a precursor for complex organic molecules (COM). We utilized the advantages of a para-hydrogen (p-H2) quantum-solid matrix host to perform efficient reactions of hydrogen atoms with CH3CONH2. The H-abstraction reaction from the methyl group of CH3CONH2 to produce the 2-amino-2-oxoethyl radical, ˙CH2CONH2, was observed as the sole reaction channel in solid p-H2 at 3.3 K, consistent with theoretical predictions that this reaction has the smallest barrier among all possible channels. Our results show that the amide bond of acetamide is unaffected by hydrogen exposure, but the hydrogen abstraction activates this molecule to react with other species on its methyl site to extend its size or to include other functional groups as a first step to form COM under prebiotic or abiotic conditions. This previously neglected path should be considered in the astrochemical modeling. The photolysis of ˙CH2CONH2 at wavelengths 380-450 nm produces ketene; this step might provide a plausible mechanism to explain the anti-correlated abundance of ketene and acetamide in some astronomical observations.
  15. Polter SJ, Caraballo AA, Lee YP, Eng WW, Gan HM, Wheatley MS, et al.
    Genome Announc, 2015;3(4).
    PMID: 26227604 DOI: 10.1128/genomeA.00847-15
    Here, we report the isolation, identification, whole-genome sequencing, and annotation of four Bacillus species from internal stem tissue of the insulin plant Costus igneus, grown in Puerto Rico. The plant is of medicinal importance, as extracts from its leaves have been shown to lower blood sugar levels of hyperglycemic rats.
  16. Pavlova A, Harrisson KA, Turakulov R, Lee YP, Ingram BA, Gilligan D, et al.
    Mol Ecol Resour, 2021 Dec 04.
    PMID: 34863023 DOI: 10.1111/1755-0998.13569
    Sex-specific ecology has management implications, but rapid sex-chromosome turnover in fishes hinders sex-marker development for monomorphic species. We used annotated genomes and reduced-representation sequencing data for two Australian percichthyids, Macquarie perch Macquaria australasica and golden perch M. ambigua, and whole genome resequencing for 50 Macquarie perch of each sex, to identify sex-linked loci and develop an affordable sexing assay. In silico pool-seq tests of 1,492,004 Macquarie perch SNPs revealed that a 275-kb scaffold was enriched for gametologous loci. Within this scaffold, 22 loci were sex-linked in a predominantly XY system, with females being homozygous for the X-linked allele at all 22, and males having the Y-linked allele at >7. Seven XY-gametologous loci (all males, but no females, are heterozygous or homozygous for the male-specific allele) were within a 146-bp region. A PCR-RFLP sexing assay targeting one Y-linked SNP, tested in 66 known-sex Macquarie perch and two of each sex of three confamilial species, plus amplicon sequencing of 400 bp encompassing the 146-bp region, revealed that the few sex-linked positions differ between species and between Macquarie perch populations. This indicates sex-chromosome lability in Percichthyidae, supported by nonhomologous scaffolds containing sex-linked loci for Macquarie- and golden perches. The present resources facilitate genomic research in Percichthyidae, including formulation of hypotheses about candidate genes of interest such as transcription factor SOX1b that occurs in the 275-kb scaffold ~38 kb downstream of the 146-bp region containing seven XY-gametologous loci. Sex-linked markers will be useful for determining genetic sex in some populations and studying sex chromosome turnover.
  17. Gan HM, Takahashi H, Hammer MP, Tan MH, Lee YP, Voss JM, et al.
    Mitochondrial DNA B Resour, 2017 Feb 06;2(1):73-75.
    PMID: 33473721 DOI: 10.1080/23802359.2017.1285206
    The complete mitochondrial genomes of four fish species of the commercially important family Latidae were sequenced using the Illumina MiSeq, thereby significantly increasing the mitogenomic resources for the family. Whole mitogenome-based phylogenetic analysis supports the monophyly of the genus Lates and more generally the family Latidae. The mitogenome sequences from this study will be useful for future assessments of the diversity within and between Lates species and studies of phylogenetic relationships within the diverse and taxonomically challenging perciform fishes.
  18. Rovie-Ryan JJ, Gani M, Lee YP, Gan HM, Abdullah MT
    Data Brief, 2019 Aug;25:104058.
    PMID: 31211204 DOI: 10.1016/j.dib.2019.104058
    This data article presents the first complete mitochondrial genome (mitogenome) of an endangered slow loris subspecies, Nycticebus coucang insularis Robinson, 1917 from Tioman Island, Pahang. Once considered as extinct, an individual of the subspecies was captured alive from the island during the 2016 Biodiversity Inventory Programme as highlighted in the related research article entitled "Rediscovery of Nycticebus coucang insularis Robinson, 1917 (Primates: Lorisidae) at Tioman Island and its mitochondrial genetic assessment" Rovie-Ryan et al., 2018. Using MiSeq™ sequencing system, the entire mitogenome recovered is 16,765 bp in length, made up of 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one control region. The mitogenome has been deposited at DDBJ/EMBL/GenBank under the accession number NC_040292.1/MG515246.
  19. Gan HM, Tan MH, Lee YP, Schultz MB, Horwitz P, Burnham Q, et al.
    Mol Phylogenet Evol, 2018 01;118:88-98.
    PMID: 28966124 DOI: 10.1016/j.ympev.2017.09.022
    To further understand the evolutionary history and mitogenomic features of Australia's highly distinctive freshwater crayfish fauna, we utilized a recently described rapid mitogenome sequencing pipeline to generate 24 new crayfish mitogenomes including a diversity of burrowing crayfish species and the first for Astacopsis gouldi, the world's largest freshwater invertebrate. Whole mitogenome-based phylogeny estimates using both Bayesian and Maximum Likelihood methods substantially strengthen existing hypotheses for systematic relationships among Australian freshwater crayfish with evidence of pervasive diversifying selection and accelerated mitochondrial substitution rate among the members of the clade representing strongly burrowing crayfish that may reflect selection pressures for increased energy requirement for adaptation to terrestrial environment and a burrowing lifestyle. Further, gene rearrangements are prevalent in the burrowing crayfish mitogenomes involving both tRNA and protein coding genes. In addition, duplicated control regions were observed in two closely related Engaeus species, together with evidence for concerted evolution. This study significantly adds to the understanding of Australian freshwater crayfish evolutionary relationships and suggests a link between mitogenome evolution and adaptation to terrestrial environments and a burrowing lifestyle in freshwater crayfish.
  20. Gan HM, Lee YP, Austin CM
    Front Microbiol, 2017;8:1880.
    PMID: 29046667 DOI: 10.3389/fmicb.2017.01880
    We improved upon the previously reported draft genome of Hydrogenophaga intermedia strain PBC, a 4-aminobenzenesulfonate-degrading bacterium, by supplementing the assembly with Nanopore long reads which enabled the reconstruction of the genome as a single contig. From the complete genome, major genes responsible for the catabolism of 4-aminobenzenesulfonate in strain PBC are clustered in two distinct genomic regions. Although the catabolic genes for 4-sulfocatechol, the deaminated product of 4-aminobenzenesulfonate, are only found in H. intermedia, the sad operon responsible for the first deamination step of 4-aminobenzenesulfonate is conserved in various Hydrogenophaga strains. The absence of pabB gene in the complete genome of H. intermedia PBC is consistent with its p-aminobenzoic acid (pABA) auxotrophy but surprisingly comparative genomics analysis of 14 Hydrogenophaga genomes indicate that pABA auxotrophy is not an uncommon feature among members of this genus. Of even more interest, several Hydrogenophaga strains do not possess the genomic potential for hydrogen oxidation, calling for a revision to the taxonomic description of Hydrogenophaga as "hydrogen eating bacteria."
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links