Displaying publications 1 - 20 of 50 in total

Abstract:
Sort:
  1. Thumboo J, Fong KY, Chan SP, Leong KH, Feng PH, Thio ST, et al.
    Lupus, 1999;8(7):514-20.
    PMID: 10483028 DOI: 10.1191/096120399678840747
    OBJECTIVE: To validate the Medical Outcomes Study Family and Marital Functioning Measures (FMM and MFM) in a multi-ethnic, urban Asian population in Singapore.
    METHODS: English speaking Chinese, Malay or Indian SLE patients (n=120) completed a self-administered questionnaire containing the FFM and MFM at baseline, after 2 weeks and after 6 months. Lupus activity, disease-related damage and quality of life were assessed using the British Isles Lupus Assessment Group (BILAG), Systemic Lupus International Collaborating Clinics/American College of Rheumatology (SLICC/ACR) Damage Index and SF-36 Health Survey respectively. Scale psychometric properties were assessed through factor analysis, Cronbach's alpha, quantifying test-retest differences and known-groups construct validity.
    RESULTS: Factor analysis of scores obtained at baseline and after 6 months identified 3 factors corresponding to the FFM (1 factor) and the MFM (2 factors). Both scales showed acceptable internal consistency, with Cronbach's alpha of 0.95 for the FFM and 0.70 for the MFM. Mean (s.d.) test-retest differences were -0.31 (3.82) points for the FFM and -0.70 (4.26) points for the MFM. Eleven out of 13 a priori hypotheses relating both the FFM and MFM to demographic, disease and quality of life variables were confirmed, supporting the construct validity of these scales.
    CONCLUSION: The FFM and MFM are valid and reliable measures of family and marital functioning in a multi-ethnic cohort of Asian SLE patients in Singapore.
  2. Idris N, Leong KH, Wong EH, Abdul Rahim N
    J Antibiot (Tokyo), 2023 Dec;76(12):711-719.
    PMID: 37821539 DOI: 10.1038/s41429-023-00659-2
    Polymyxins are last-line antibiotics against multidrug-resistant Klebsiella pneumoniae but using polymyxins alone may not be effective due to emerging resistance. A previous study found that combining polymyxin B with chloramphenicol effectively kills MDR K. pneumoniae, although the bone marrow toxicity of chloramphenicol is concerning. The aim of this study is to assess the antibacterial efficacy and cytotoxicity of polymyxin B when combined with chloramphenicol and its derivatives, namely thiamphenicol and florfenicol (reported to have lesser toxicity compared to chloramphenicol). The antibacterial activity was evaluated with antimicrobial susceptibility testing using broth microdilution and time-kill assays, while the cytotoxic effect on normal bone marrow cell line, HS-5 was evaluated using the MTT assay. All bacterial isolates tested were found to be susceptible to polymyxin B, but resistant to chloramphenicol, thiamphenicol, and florfenicol when used alone. The use of polymyxin B alone showed bacterial regrowth for all isolates at 24 h. The combination of polymyxin B and florfenicol demonstrated additive and synergistic effects against all isolates (≥ 2 log10 cfu ml-1 reduction) at 4 and 24 h, respectively, while the combination of polymyxin B and thiamphenicol resulted in synergistic killing at 24 h against ATCC BAA-2146. Furthermore, the combination of polymyxin B with florfenicol had the lowest cytotoxic effect on the HS-5 cells compared to polymyxin B combination with chloramphenicol and thiamphenicol. Overall, the combination of polymyxin B with florfenicol enhanced bacterial killing against MDR K. pneumoniae and exerted minimal cytotoxic effect on HS-5 cell line.
  3. Awang K, Loong XM, Leong KH, Supratman U, Litaudon M, Mukhtar MR, et al.
    Fitoterapia, 2012 Dec;83(8):1391-5.
    PMID: 23098876 DOI: 10.1016/j.fitote.2012.10.004
    A study on the leaves of Aglaia exima led to the isolation of one new and seven known compounds: six triterpenoids and two steroids. Their structures were elucidated and analyzed mainly by using spectroscopic methods; 1D and 2D NMR, mass spectrometry, UV spectrometry and X-ray. All the triterpenoids and steroids were measured in vitro for their cytotoxic activities against eight cancer cell lines; lung (A549), prostate (DU-145), skin (SK-MEL-5), pancreatic (BxPC-3), liver (Hep G2), colon (HT-29), breast (MCF-7) and (MDA-MB-231). The new cycloartane triterpenoid, 24(E)-cycloart-24-ene-26-ol-3-one 1, showed potent cytotoxic activity against colon (HT-29) cancer cell line (IC(50) 11.5μM).
  4. Thumboo J, Fong KY, Chng HH, Koh ET, Chia HP, Leong KH, et al.
    J Rheumatol, 1998 Jul;25(7):1299-304.
    PMID: 9676760
    OBJECTIVE: To determine the effects of ethnicity on disease manifestations in Oriental patients with systemic lupus erythematosus (SLE) and to describe the risk of developing renal or central nervous system (CNS) involvement with time.
    METHODS: A retrospective study of 472 patients with SLE seen at the only Rheumatology Unit in Singapore. The effect of ethnicity on selected disease manifestations at diagnosis was assessed after adjusting for demographic variables using multiple logistic regression. The probability of developing selected disease manifestations with time was determined using the Kaplan-Meier product limit method.
    RESULTS: At diagnosis, Malays had a higher risk of renal or CNS involvement than Chinese (OR 2.26, 95% CI 1.21 to 4.21, and OR 3.07, 95% CI 1.01 to 9.34, respectively), and Indians a lower risk of malar rash and a higher risk of oral ulcers than Chinese (OR 0.30, 95% CI 0.13 to 0.68, and OR 2.90, 95% CI 1.45 to 7.34, respectively). The prevalence of renal or CNS involvement in the entire cohort increased with time, reaching 75.6% (95% CI 66.1% to 85.0%) and 16.7% (95% CI 11.7% to 21.6%), respectively, after 18 years of disease.
    CONCLUSION: Ethnicity influenced disease manifestations at diagnosis in this cohort of Oriental patients with SLE. Renal or CNS involvement developed in previously unaffected patients up to 18 years after diagnosis, highlighting the need for continued vigilance in patients with lupus.
  5. Sim LC, Wong JL, Hak CH, Tai JY, Leong KH, Saravanan P
    Beilstein J Nanotechnol, 2018;9:353-363.
    PMID: 29515949 DOI: 10.3762/bjnano.9.35
    Carbon dots (CDs) and graphitic carbon nitride (g-C3N4) composites (CD/g-C3N4) were successfully synthesized by a hydrothermal method using urea and sugarcane juice as starting materials. The chemical composition, morphological structure and optical properties of the composites and CDs were characterized using various spectroscopic techniques as well as transmission electron microscopy. X-ray photoelectron spectroscopy (XPS) results revealed new signals for carbonyl and carboxyl groups originating from the CDs in CD/g-C3N4 composites while X-ray diffraction (XRD) results showed distortion of the host matrix after incorporating CDs into g-C3N4. Both analyses signified the interaction between g-C3N4 and CDs. The photoluminescence (PL) analysis indicated that the presence of too many CDs will create trap states at the CD/g-C3N4 interface, decelerating the electron (e-) transport. However, the CD/g-C3N4(0.5) composite with the highest coverage of CDs still achieved the best bisphenol A (BPA) degradation rate at 3.87 times higher than that of g-C3N4. Hence, the charge separation efficiency should not be one of the main factors responsible for the enhancement of the photocatalytic activity of CD/g-C3N4. Instead, the light absorption capability was the dominant factor since the photoreactivity correlated well with the ultraviolet-visible diffuse reflectance spectra (UV-vis DRS) results. Although the CDs did not display upconversion photoluminescence (UCPL) properties, the π-conjugated CDs served as a photosensitizer (like organic dyes) to sensitize g-C3N4 and injected electrons to the conduction band (CB) of g-C3N4, resulting in the extended absorption spectrum from the visible to the near-infrared (NIR) region. This extended spectral absorption allows for the generation of more electrons for the enhancement of BPA degradation. It was determined that the reactive radical species responsible for the photocatalytic activity were the superoxide anion radical (O2•-) and holes (h+) after performing multiple scavenging tests.
  6. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong WF, et al.
    PLoS One, 2014;9(2):e87286.
    PMID: 24551054 DOI: 10.1371/journal.pone.0087286
    In this study, a new apoptotic monoterpenoid indole alkaloid, subditine (1), and four known compounds were isolated from the bark of Nauclea subdita. Complete (1)H- and (13)C- NMR data of the new compound were reported. The structures of isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS. All five compounds were screened for cytotoxic activities on LNCaP and PC-3 human prostate cancer cell-lines. Among the five compounds, the new alkaloid, subditine (1), demonstrated the most potent cell growth inhibition activity and selective against LNCaP with an IC50 of 12.24±0.19 µM and PC-3 with an IC50 of 13.97±0.32 µM, compared to RWPE human normal epithelial cell line (IC50 = 30.48±0.08 µM). Subditine (1) treatment induced apoptosis in LNCaP and PC-3 as evidenced by increased cell permeability, disruption of cytoskeletal structures and increased nuclear fragmentation. In addition, subditine (1) enhanced intracellular reactive oxygen species (ROS) production, as reflected by increased expression of glutathione reductase (GR) to scavenge damaging free radicals in both prostate cancer cell-lines. Excessive ROS could lead to disruption of mitochondrial membrane potential (MMP), release of cytochrome c and subsequent caspase 9, 3/7 activation. Further Western blot analyses showed subditine (1) induced down-regulation of Bcl-2 and Bcl-xl expression, whereas p53 was up-regulated in LNCaP (p53-wild-type), but not in PC-3 (p53-null). Overall, our data demonstrated that the new compound subditine (1) exerts anti-proliferative effect on LNCaP and PC-3 human prostate cancer cells through induction of apoptosis.
  7. Sivasothy Y, Hadi AH, Mohamad K, Leong KH, Ibrahim H, Sulaiman SF, et al.
    Bioorg Med Chem Lett, 2012 Jun 1;22(11):3831-6.
    PMID: 22546674 DOI: 10.1016/j.bmcl.2012.02.064
    The rhizomes of Zingiber spectabile yielded a new dimeric flavonol glycoside for which the name kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside-(I-6,II-8)-kaempferol-3-O-(4″-O-acetyl)-α-L-rhamnopyranoside; spectaflavoside A (1) was proposed, along with kaempferol and its four acetylrhamnosides (2-6), demethoxycurcumin (7) and curcumin (8). The structure of spectaflavoside A was elucidated by spectroscopic methods including, 1D and 2D NMR techniques. This is the first report on the occurrence of a dimeric flavonol glycoside in the Zingiberaceae and the second in nature. Spectaflavoside A was found to be a potent iron chelating agent.
  8. Sunasee S, Leong KH, Wong KT, Lee G, Pichiah S, Nah I, et al.
    Environ Sci Pollut Res Int, 2019 Jan;26(2):1082-1093.
    PMID: 28290089 DOI: 10.1007/s11356-017-8729-7
    Since bisphenol A (BPA) exhibits endocrine disrupting action and high toxicity in aqueous system, there are high demands to remove it completely. In this study, the BPA removal by sonophotocatalysis coupled with nano-structured graphitic carbon nitride (g-C3N4, GCN) was conducted with various batch tests using energy-based advanced oxidation process (AOP) based on ultrasound (US) and visible light (Vis-L). Results of batch tests indicated that GCN-based sonophotocatalysis (Vis-L/US) had higher rate constants than other AOPs and especially two times higher degradation rate than TiO2-based Vis-L/US. This result infers that GCN is effective in the catalytic activity in Vis-L/US since its surface can be activated by Vis-L to transport electrons from valence band (VB) for utilizing holes (h+VB) in the removal of BPA. In addition, US irradiation exfoliated the GCN effectively. The formation of BPA intermediates was investigated in detail by using high-performance liquid chromatography-mass spectrometry (HPLC/MS). The possible degradation pathway of BPA was proposed.
  9. Hwong CS, Leong KH, Aziz AA, Kong KW
    Chem Biodivers, 2023 Jul;20(7):e202300215.
    PMID: 37278124 DOI: 10.1002/cbdv.202300215
    This study aimed to fractionate Alternanthera sessilis Red (ASR) crude extracts and determine their antioxidant activities as well as the related active components in the whole plant. ASR was extracted with water and ethanol, and further separated using a Sephadex LH-20 column. Following the assessments of the polyphenolic contents and antioxidant activities of crude extracts (H2 OASR and EtOHASR ) and fractions, a HPLC-QToF analysis was performed on the crude extracts and selected fractions (H2 OASR FII and EtOHASR FII). Three water fractions (H2 OASR FI, FII and FIII) and four ethanolic fractions (EtOHASR FI, FII, FIII and FIV) were derived from their crude extracts, respectively. EtOHASR FII exhibited the greatest total phenolic content (120.41 mg GAE/g fraction), total flavonoid content (223.07 mg RE/g fraction), and antioxidant activities (DPPH IC50 =159.43 μg/mL; FRAP=1.93 mmol Fe2+ /g fraction; TEAC=0.90 mmol TE/g fraction). Correlation analysis showed significant (p<0.01) positive correlations between both TPC (r=0.748-0.970) and TFC (r=0.686-0.949) with antioxidant activities in the crude extracts and fractions. Flavonoids were the major compounds in the four selected samples tentatively identified using HPLC-QToF-MS/MS, with the highest number of 30 polyphenol compounds detected in the most active fraction, EtOHASR FII.
  10. Koh ET, Seow A, Leong KH, Chng HH
    Lupus, 1997;6(1):27-31.
    PMID: 9116715 DOI: 10.1177/096120339700600104
    We analysed the causes of 67 deaths, over a 4 y period, in our oriental population with systemic lupus erythematosus (SLE). The median disease duration was 48 +/- 60.5 months (range 1-250 months). The mean age at diagnosis and death were 30 and 35.1 y respectively. SLE alone accounted for death in 30 patients (44.8%), infection in 27 (40.3%), pulmonary embolism in 5 (7.5%), malignancy in 4 (5.9%) and rheumatic heart disease in 1 (1.5%). The major organ involvement in those with active disease at death were SLE related thrombocytopenia (n = 23/44, 52.3%), nephritis (n = 21/44), 47.7%), cerebral lupus (n = 16/44, 36.4%), and pulmonary haemorrhage (n = 12/44, 27.3%). As in other series, SLE and infection were the principal causes of death in our population. During this 4 y period, there was no late death due to atherosclerosis.
    Study site: Tan Tock Seng Hospital (TTSH), Singapore
  11. Dai C, Han Y, Duan Y, Lai X, Fu R, Liu S, et al.
    Environ Res, 2022 Apr 01;205:112423.
    PMID: 34838568 DOI: 10.1016/j.envres.2021.112423
    The rapid economic and population growth in coastal areas is causing increasingly serious polycyclic aromatic hydrocarbons (PAHs) pollution in these regions. This review compared the PAHs pollution characteristics of different coastal areas, including industrial zones, commercial ports, touristic cities, aquacultural & agricultural areas, oil & gas exploitation areas and megacities. Currently there are various treatment methods to remediate soils and sediments contaminated with PAHs. However, it is necessary to provide a comprehensive overview of all the available remediation technologies up to date, so appropriate technologies can be selected to remediate PAHs pollution. In view of that, we analyzed the characteristics of the remediation mechanism, summarized the remediation methods for soil or sediments in coastal areas, which were physical repair, chemical oxidation, bioremediation and integrated approaches. Besides, this review also reported the development of new multi-functional green and sustainable systems, namely, micro-nano bubble (MNB), biochar, reversible surfactants and peracetic acid. While physical repair, expensive but efficient, was regarded as a suitable method for the PAHs remediation in coastal areas because of land shortage, integrated approaches would produce better results. The ultimate aim of the review was to ensure the successful restructuring of PAHs contaminated soil and sediments in coastal areas. Due to the environment heterogeneity, PAHs pollution in coastal areas remains as a daunting challenge. Therefore, new and suitable technologies are still needed to address the environmental issue.
  12. Cheah FK, Leong KH, Thomas NF, Chin HK, Ariffin A, Awang K
    Apoptosis, 2018 Jun;23(5-6):329-342.
    PMID: 29754265 DOI: 10.1007/s10495-018-1457-8
    Resveratrol, a naturally occurring polyphenolic antioxidant, is a potential chemoprophylactic agent for various cancers, including colorectal cancer. Although emerging evidence continually suggests that a number of resveratrol derivatives may be better cancer chemopreventive candidates than resveratrol, studies on the mechanism of action of these derivatives are limited. This is the first study which investigates the mechanism underlying the cytotoxic effect of a synthesized resveratrol analogue, (E)-N-(2-(4-methoxystyryl) phenyl) furan-2-carboxamide (CS) on colorectal cancer. Previously, our group reported a series of synthesized resveratrol analogues, which showed cytotoxicity against a panel of cancer cell lines, in particular on colon cancer cells. In this study, we further discovered that CS also exerts a potent suppressive effect on HCT116 colorectal cancer cells. In contrast, normal colon cells (CCD-112 Con) were not sensitive to CS up to 72 h post treatment. CS caused cytotoxicity in HCT116 cells through several apoptotic events including activation of the Fas death receptor, FADD, caspase 8, caspase 3, caspase 9, and cleaved PARP, which occurred alongside cell cycle arrest from the up-regulation of p53 and p21. The results show that CS causes apoptosis via the activation of an extrinsic pathway leading to caspase activation and cell cycle arrest from activated p53. These findings suggest that CS may be a potential candidate for development as an anti-tumor agent in the future.
  13. Tan B, Li Y, Liu T, Tan X, He Y, You X, et al.
    Front Plant Sci, 2021;12:691651.
    PMID: 34456936 DOI: 10.3389/fpls.2021.691651
    As natural agroecology deteriorates, controlled environment agriculture (CEA) systems become the backup support for coping with future resource consumption and potential food crises. Compared with natural agroecology, most of the environmental parameters of the CEA system rely on manual management. Such a system is dependent and fragile and prone to degradation, which includes harmful bacteria proliferation and productivity decline. Proper water management is significant for constructing a stabilized rhizosphere microenvironment. It has been proved that water is an efficient tool for changing the availability of nutrients, plant physiological processes, and microbial communities within. However, for CEA issues, relevant research is lacking at present. The article reviews the interactive mechanism between water management and rhizosphere microenvironments from the perspectives of physicochemical properties, physiological processes, and microbiology in CEA systems. We presented a synthesis of relevant research on water-root-microbes interplay, which aimed to provide detailed references to the conceptualization, research, diagnosis, and troubleshooting for CEA systems, and attempted to give suggestions for the construction of a high-tech artificial agricultural ecology.
  14. Zhang JB, Dai C, Wang Z, You X, Duan Y, Lai X, et al.
    Water Res, 2023 Oct 01;244:120555.
    PMID: 37666149 DOI: 10.1016/j.watres.2023.120555
    Herein, biochar was prepared using rice straw, and it served as the peroxymonosulfate (PMS) activator to degrade naphthalene (NAP). The results showed that pyrolysis temperature has played an important role in regulating biochar structure and properties. The biochar prepared at 900°C (BC900) had the best activation capacity and could remove NAP in a wide range of initial pH (5-11). In the system of BC900/PMS, multi-reactive species were produced, in which 1O2 and electron transfer mainly contributed to NAP degradation. In addition, the interference of complex groundwater components on the NAP removal rate must get attention. Cl- had a significant promotional effect but risked the formation of chlorinated disinfection by-products. HCO3-, CO32-, and humic acid (HA) had an inhibitory effect; surfactants had compatibility problems with the BC900/PMS system, which could lead to unproductive consumption of PMS. Significantly, the BC900/PMS system showed satisfactory remediation performance in spiked natural groundwater and soil, and it could solve the problem of persistent groundwater contamination caused by NAP desorption from the soil. Besides, the degradation pathway of NAP was proposed, and the BC900/PMS system could degrade NAP into low or nontoxic products. These suggest that the BC900/PMS system has promising applications in in-situ groundwater remediation.
  15. Leong KH, Chu HY, Ibrahim S, Saravanan P
    Beilstein J Nanotechnol, 2015;6:428-37.
    PMID: 25821683 DOI: 10.3762/bjnano.6.43
    Freely assembled palladium nanoparticles (Pd NPs) on titania (TiO2) nano photocatalysts were successfully synthesized through a photodeposition method using natural sunlight. This synthesized heterogeneous photocatalyst (Pd/TiO2) was characterized through field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), BET surface area, UV-vis diffuse reflectance spectra (UV-DRS), Raman and photoluminescence (PL) analyses. The simple and smart synthesis anchored well the deposition with controlled Pd NPs size ranging between 17 and 29 nm onto the surface of TiO2. Thus, it gives the characteristic for Pd NPs to absorb light in the visible region obtained through localized surface plasmon resonance (LSPRs). Apparently, the photocatalytic activity of the prepared photocatalysts was evaluated by degrading the endocrine disrupting compound (EDC) amoxicillin (AMX) excited under an artificial visible light source. In the preliminary run, almost complete degradation (97.5%) was achieved in 5 h with 0.5 wt % Pd loading and the degradation followed pseudo-first-order kinetics. The reusability trend proved the photostability of the prepared photocatalysts. Hence, the study provides a new insight about the modification of TiO2 with noble metals in order to enhance the absorption in the visible-light region for superior photocatalytic performance.
  16. Dzul Keflee R, Leong KH, Ogawa S, Bignon J, Chan MC, Kong KW
    Biochem Pharmacol, 2022 Nov;205:115262.
    PMID: 36191627 DOI: 10.1016/j.bcp.2022.115262
    The role of epidermal growth factor receptor (EGFR) in non-small cell lung cancer (NSCLC) has been vastly studied over the last decade. This has led to the rapid development of many generations of EGFR tyrosine kinase inhibitors (EGFR-TKIs). However, patients treated with third-generation TKIs (osimertinib, avitinib and rociletinib) targeting the EGFR T790M mutation have shown emerging resistances and relapses. Therefore, further molecular understanding of NSCLC mutations, bypass signalling, tumour microenvironment and the existence of cancer stem cells to overcome such resistances is warranted. This will pave the way for designing novel and effective chemotherapies to improve patients' overall survival. In this review, we provide an overview of the multifaceted mechanisms of resistance towards EGFR-TKIs, as well as the challenges and perspectives that should be addressed in strategising chemotherapeutic treatments to overcome the ever-evolving and adaptive nature of NSCLC.
  17. Loo KY, Leong KH, Sivasothy Y, Ibrahim H, Awang K
    Chem Biodivers, 2019 Jun;16(6):e1900032.
    PMID: 30957403 DOI: 10.1002/cbdv.201900032
    The inhibition of carbohydrate-hydrolyzing enzymes in human digestive organs is crucial in controlling blood sugar levels, which is important in treating type 2 diabetes. In the current study, pahangensin A (1), a bis-labdanic diterpene characterized previously in the rhizomes of Alpinia pahangensis Ridl., was identified as an active dual inhibitor for α-amylase (IC50 =114.80 μm) and α-glucosidase (IC50 =153.87 μm). This is the first report on the dual α-amylase and α-glucosidase inhibitory activities of a bis-labdanic diterpene. The Lineweaver-Burk plots of compound 1 indicate that it is a mixed-type inhibitor with regard to both enzymes. Based on molecular docking studies, compound 1 docked in a non-active site of both enzymes. The dual inhibitory activity of compound 1 makes it a suitable natural alternative in the treatment of type 2 diabetes.
  18. Leong KH, Aziz AA, Sim LC, Saravanan P, Jang M, Bahnemann D
    Beilstein J Nanotechnol, 2018;9:628-648.
    PMID: 29527438 DOI: 10.3762/bjnano.9.59
    The utilisation of sunlight as an abundant and renewable resource has motivated the development of sustainable photocatalysts that can collectively harvest visible light. However, the bottleneck in utilising the low energy photons has led to the discovery of plasmonic photocatalysts. The presence of noble metal on the plasmonic photocatalyst enables the harvesting of visible light through the unique characteristic features of the noble metal nanomaterials. Moreover, the formation of interfaces between noble metal particles and semiconductor materials further results in the formation of a Schottky junction. Thereby, the plasmonic characteristics have opened up a new direction in promoting an alternative path that can be of value to the society through sustainable development derived through energy available for all for diverse applications. We have comprehensively prepared this review to specifically focus on fundamental insights into plasmonic photocatalysts, various synthesis routes, together with their strengths and weaknesses, and the interaction of the plasmonic photocatalyst with pollutants as well as the role of active radical generation and identification. The review ends with a pinnacle insight into future perspectives regarding realistic applications of plasmonic photocatalysts.
  19. Thumboo J, Chan SP, Machin D, Soh CH, Feng PH, Boey ML, et al.
    Ann Acad Med Singap, 2002 May;31(3):366-74.
    PMID: 12061299
    OBJECTIVE: To determine norms for assessing Health-related Quality of Life (HRQOL) in Singapore using the Short Form 36 Health Survey (SF-36).

    MATERIALS AND METHODS: Mean SF-36 scores were calculated for 24 population subgroups (categorised by age, gender, ethnicity and questionnaire language) and for subjects with self-reported co-morbid conditions using data from a community-based survey in Singapore.

    RESULTS: The English and Chinese SF-36 was completed by 4122 and 1381 subjects, respectively, 58% (n = 3188) of whom had self-reported co-morbid conditions. SF-36 scores varied in subgroups differing in age, gender and ethnicity. In general, subjects with self-reported co-morbid conditions had lower SF-36 scores than those without these conditions, the magnitude of which exceeded 20 points in several instances. A method for calculation of SF-36 scores adjusted for age, gender, ethnicity and questionnaire language is described.

    CONCLUSION: We present norms for English and Chinese SF-36 versions in Singapore and describe potential uses for these data in assessing HRQOL in Singapore.

  20. Hak CH, Sim LC, Leong KH, Lim PF, Chin YH, Saravanan P
    Environ Sci Pollut Res Int, 2018 Sep;25(25):25401-25412.
    PMID: 29951757 DOI: 10.1007/s11356-018-2632-8
    In this work, natural sunlight successfully induced the deposition of gold (Au), silver (Ag), and palladium (Pd) nanoparticles (NPs) with 17.10, 9.07, and 12.70 wt% onto the surface of graphitic carbon nitride (g-C3N4). The photocatalytic evaluation was carried out by adopting Bisphenol A (BPA) as a pollutant under natural sunlight irradiation. The presence of noble metals was confirmed by EDX, HRTEM, and XPS analysis. The deposition of Ag NPs (7.9 nm) resulted in the degradation rate which was 2.15-fold higher than pure g-C3N4 due to its relatively small particle size, contributing to superior charge separation efficiency. Au/g-C3N4 unveiled inferior photoactivity because the LSPR phenomenon provided two pathways for electron transfer between Au NPs and g-C3N4 further diminished the performance. The improved degradation lies crucially on the particle size and Schottky barrier formation at the interface of M/g-C3N4 (M=Au, Ag, and Pd) but not the visible light harvesting properties. The mechanism insight revealed the holes (h+) and superoxide radical (•O2-) radical actively involved in photocatalytic reaction for all composites.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links