Displaying publications 1 - 20 of 244 in total

Abstract:
Sort:
  1. Wei R, Wang Z, Zhang X, Wang X, Xu Y, Li Q
    Public Health, 2023 Sep;222:75-84.
    PMID: 37531713 DOI: 10.1016/j.puhe.2023.06.034
    OBJECTIVES: Understanding iodine deficiency (ID) burdens and trends in Asia can help guide effective intervention strategies. This study aims to report the incidence, prevalence, and disability-adjusted life years (DALYs) of ID in 48 Asian countries during the period 1990-2019.

    STUDY DESIGN: Data on ID were retrieved from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 and estimated by age, sex, geographical region, and sociodemographic index (SDI).

    METHODS: The estimated annual percentage change (EAPC) was calculated to evaluate the changing trend of age-standardized incidence rate (ASIR), age-standardized prevalence rate (ASPR), and age-standardized DALYs rate (ASDR) related to ID during the period 1990-2019.

    RESULTS: In Asia, there were 126,983,965.8 cases with 5,466,213.1 new incidence and 1,765,995.5 DALYs of ID in 2019. Between 1999 and 2019, the EAPC in ASIR, ASPR and ASDR were -0.6 (95% confidence interval [CI], -0.8 to -0.4), -0.9 (95% CI, -1.2 to -0.7), and -1.6 (95% CI, -1.8 to -1.5), respectively. Malaysia charted the largest decrease in ASIR, ASPR, and ASDR (82.4%, 85.3%, and 80.9% separately), whereas the Philippines and Pakistan were the only two countries that witnessed an increase in ASIR and ASPR. ID burdens were more pronounced in women, countries located to the south of the Himalayas, and low-middle SDI regions.

    CONCLUSIONS: The incidence, prevalence, and DALYs of ID in Asia substantially decreased from 1990 to 2019. Women and low-middle SDI countries have relatively high ID burdens. Governments need to pay constant attention to the implementation and monitoring of universal salt iodization.

  2. Luo H, Li Q, Pramanik J, Luo J, Guo Z
    Histol Histopathol, 2014 Oct;29(10):1287-93.
    PMID: 24515304
    Nanog is a potential stem cell marker and is considered a regeneration factor during tissue repair. In the present study, we investigated expression patterns of nanog in the rat heart after acute myocardial infarction by semi-quantitative RT-PCR, immunohistochemistry and Western blot analyses. Our results show that nanog at both mRNA and protein levels is positively expressed in myocardial cells, fibroblasts and small round cells in different myocardial zones at different stages after myocardial infarction, showing a spatio-temporal and dynamic change. After myocardial infarction, the nanog expression in fibroblasts and small round cells in the infarcted zone (IZ) is much stronger than that in the margin zone (MZ) and remote infarcted zone (RIZ). From day 7 after myocardial infarction, the fibroblasts and small cells strongly expressed nanog protein in the IZ, and a few myocardial cells in the MZ and the RIZ and the numbers of nanog-positive fibroblasts and small cells reached the highest peak at 21 days after myocardial infarction, but in this period the number of nanog-positive myocardial cells decreased gradually. At 28 days after myocardial infarction, the numbers of all nanog-positive cells decreased into a low level. Therefore, our data suggest that all myocardial cells, fibroblasts and small round cells are involved in myocardial reconstruction after cardiac infarction. The nanog-positive myocardial cells may respond to early myocardial repair, and the nanog-positive fibroblasts and small round cells are the main source for myocardial reconstruction after cardiac infarction.
  3. Ahmad R, Abu-Hassan MI, Li Q, Swain MV
    Clin Oral Implants Res, 2013 Nov;24(11):1273-9.
    PMID: 22862429 DOI: 10.1111/j.1600-0501.2012.02566.x
    The aim of this study was to evaluate a new method to quantify longitudinal mandibular bone remodeling three-dimensionally by superimposition of cone beam computed tomography images.
  4. Chen J, Ahmad R, Li W, Swain M, Li Q
    J R Soc Interface, 2015 Aug 06;12(109):20150325.
    PMID: 26224566 DOI: 10.1098/rsif.2015.0325
    The prevalence of prosthodontic treatment has been well recognized, and the need is continuously increasing with the ageing population. While the oral mucosa plays a critical role in the treatment outcome, the associated biomechanics is not yet fully understood. Using the literature available, this paper provides a critical review on four aspects of mucosal biomechanics, including static, dynamic, volumetric and interactive responses, which are interpreted by its elasticity, viscosity/permeability, apparent Poisson's ratio and friction coefficient, respectively. Both empirical studies and numerical models are analysed and compared to gain anatomical and physiological insights. Furthermore, the clinical applications of such biomechanical knowledge on the mucosa are explored to address some critical concerns, including stimuli for tissue remodelling (interstitial hydrostatic pressure), pressure-pain thresholds, tissue displaceability and residual bone resorption. Through this review, the state of the art in mucosal biomechanics and their clinical implications are discussed for future research interests, including clinical applications, computational modelling, design optimization and prosthetic fabrication.
  5. Navaratnam V, Mansor SM, Sit NW, Grace J, Li Q, Olliaro P
    Clin Pharmacokinet, 2000 Oct;39(4):255-70.
    PMID: 11069212
    Various compounds of the artemisinin family are currently used for the treatment of patients with malaria worldwide. They are characterised by a short half-life and feature the most rapidly acting antimalarial drugs to date. They are increasingly being used, often in combination with other drugs, although our knowledge of their main pharmacological features (including their absorption, distribution, metabolism and excretion) is still incomplete. Such data are particularly important in the case of combinations. Artemisinin derivatives are converted primarily, but to different extents, to the bioactive metabolite artenimol after either parenteral or gastrointestinal administration. The rate of conversion is lowest for artelinic acid (designed to protect the molecule against metabolism) and highest for the water-soluble artesunate. The absolute and relative bioavailability of these compounds has been established in animals, but not in humans, with the exception of artesunate. Oral bioavailability in animals ranges, approximately, between 19 and 35%. A first-pass effect is highly probably for all compounds when administered orally. Artemisinin compounds bind selectively to malaria-infected erythrocytes to yet unidentified targets. They also bind modestly to human plasma proteins, ranging from 43% for artenimol to 81.5% for artelinic acid. Their mode of action is still not completely understood, although different theories have been proposed. The lipid-soluble artemether and artemotil are released slowly when administered intramuscularly because of the 'depot' effect related to the oil formulation. Understanding the pharmacokinetic profile of these 2 drugs helps us to explain the characteristics of the toxicity and neurotoxicity. The water-soluble artesunate is rapidly converted to artenimol at rates that vary with the route of administration, but the processes need to be characterised further, including the relative contribution of pH and enzymes in tissues, blood and liver. This paper intends to summarise contemporary knowledge of the pharmacokinetics of this class of compounds and highlight areas that need further research.
  6. Zhou H, Saad JM, Li Q, Xu Y
    Waste Manag, 2020 Mar 01;104:42-50.
    PMID: 31962216 DOI: 10.1016/j.wasman.2020.01.017
    Recovery of chemicals and fuels from unrecyclable waste plastics at high temperatures (>800 °C) has received much research attention. Thermodynamic equilibrium calculation suggests that it is possible to perform the low-temperature steam reforming of polystyrene. In this study, we synthesized a Ni-Fe bimetallic catalyst for the low-temperature (500 °C) steam reforming of polystyrene. XRD characterization showed that Ni-Fe alloy was formed in the catalyst. Compared to conventional Ni catalysts, the Ni-Fe bimetallic catalysts can significantly increase the H2/CO ratio in the produced gas with high gas production yield. The online gas analysis revealed that H2, CO, and CO2 were formed in the same temperature range. H2 and CO were formed simultaneously through steam reforming reactions, and CO2 was formed through water-gas shift reaction. New morphologies of carbon deposition on the catalyst surface were found, suggesting that wax could be condensed on the catalyst surface at a low temperature.
  7. Wang S, Lin X, Li Q, Liu C, Li Y, Wang X
    Sci Total Environ, 2022 Feb 09;823:153794.
    PMID: 35150692 DOI: 10.1016/j.scitotenv.2022.153794
    In the atmosphere, the photodegradation of neutral per-and polyfluoroalkyl substances (n-PFASs) is a source of ionizable PFASs (i-PFASs). However, they are not frequently simultaneously analyzed to study their transport and sources. In this study, n-PFASs and i-PFASs were simultaneously analyzed in the atmosphere of China, Japan and Malaysia to investigate the occurrence, seasonal variations, sources and transport. Results showed that n-PFASs ranged from 4.8 to 1400 pg m-3, with an average value of 170 pg m-3, and 8:2 fluorotelomer alcohol (8:2 FTOH) was the most abundant compound. i-PFASs ranged from 3.7 to 330 pg m-3, with an average value of 49 pg m-3, and perfluorobutanoic acid (PFBA) had the highest concentration. Generally, airborne PFASs had a decreasing gradient from cities with high population density toward less industrialized sites. i-PFASs exhibited significantly (P < 0.05) seasonal variations, which were higher in the summer. 8:2 FTOH and 10:2 FTOH had significant (P < 0.05) positive correlations with perfluorooctanoic acid and perfluorodecanoic acid, suggesting that they had same sources, such as co-emission and photodegradation of FTOHs. Urumqi and Selangor were far away from industry, and high percentages (>95%) but low concentrations of PFBA were found in these cities, indicating the long-range atmospheric transport of PFBA due to its high volatility. The Summer Monsoon may promote the transport of high concentrations of PFAS from coastal cities to inland cities.
  8. Yang C, Li X, Li Q, Zhang B, Li H, Lin J
    Neuroreport, 2017 Dec 06;28(17):1180-1185.
    PMID: 28953094 DOI: 10.1097/WNR.0000000000000903
    Chicken embryos are used widely in the fields of developmental biology and neurobiology. The chicken embryo also serves as a model to analyze gene expression and function using in ovo electroporation. Plasmids may be injected into the spinal cord or tectum of the chicken central nervous system by microinjection for electroporation. Here, we developed a novel method that combines in ovo electroporation and neuronal culturing to study gene function in the chicken tectum during embryo development. Our method can be used to study in-vivo and in-vitro exogenous genes' function. In addition, live cell imaging microscopy, immunostaining, and transfection can be used with our method to study neuronal growth, development, neurite growth and retraction, and axonal pathfinding. Our result showed that axons were present in isolated neurons after culturing for 24 h, and cell debris was low after replacing the media at 48 h. Many GFP-expressing neurons were observed in the cultured cells after 48 h. We successfully cultured the neurons for 3 weeks. Together, this method combines in ovo electroporation and neuronal culturing advantages and is more convenient for the gene function analysis.
  9. Li Q, Kamaruddin N, Yuhaniz SS, Al-Jaifi HAA
    Sci Rep, 2024 Jan 03;14(1):422.
    PMID: 38172568 DOI: 10.1038/s41598-023-50783-0
    This study introduces an augmented Long-Short Term Memory (LSTM) neural network architecture, integrating Symbolic Genetic Programming (SGP), with the objective of forecasting cross-sectional price returns across a comprehensive dataset comprising 4500 listed stocks in the Chinese market over the period from 2014 to 2022. Using the S&P Alpha Pool Dataset for China as basic input, this architecture incorporates data augmentation and feature extraction techniques. The result of this study demonstrates significant improvements in Rank Information coefficient (Rank IC) and IC information ratio (ICIR) by 1128% and 5360% respectively when it is applied to fundamental indicators. For technical indicators, the hybrid model achieves a 206% increase in Rank IC and an impressive surge of 2752% in ICIR. Furthermore, the proposed hybrid SGP-LSTM model outperforms major Chinese stock indexes, generating average annualized excess returns of 31.00%, 24.48%, and 16.38% compared to the CSI 300 index, CSI 500 index, and the average portfolio, respectively. These findings highlight the effectiveness of SGP-LSTM model in improving the accuracy of cross-sectional stock return predictions and provide valuable insights for fund managers, traders, and financial analysts.
  10. Liu H, Huang J, Li Q, Guan X, Tseng M
    Artif Intell Med, 2024 Feb;148:102776.
    PMID: 38325925 DOI: 10.1016/j.artmed.2024.102776
    This study proposes a deep convolutional neural network for the automatic segmentation of glioblastoma brain tumors, aiming sat replacing the manual segmentation method that is both time-consuming and labor-intensive. There are many challenges for automatic segmentation to finely segment sub-regions from multi-sequence magnetic resonance images because of the complexity and variability of glioblastomas, such as the loss of boundary information, misclassified regions, and subregion size. To overcome these challenges, this study introduces a spatial pyramid module and attention mechanism to the automatic segmentation algorithm, which focuses on multi-scale spatial details and context information. The proposed method has been tested in the public benchmarks BraTS 2018, BraTS 2019, BraTS 2020 and BraTS 2021 datasets. The Dice score on the enhanced tumor, whole tumor, and tumor core were respectively 79.90 %, 89.63 %, and 85.89 % on the BraTS 2018 dataset, respectively 77.14 %, 89.58 %, and 83.33 % on the BraTS 2019 dataset, and respectively 77.80 %, 90.04 %, and 83.18 % on the BraTS 2020 dataset, and respectively 83.48 %, 90.70 %, and 88.94 % on the BraTS 2021 dataset offering performance on par with that of state-of-the-art methods with only 1.90 M parameters. In addition, our approach significantly reduced the requirements for experimental equipment, and the average time taken to segment one case was only 1.48 s; these two benefits rendered the proposed network intensely competitive for clinical practice.
  11. Chen J, Ahmad R, Suenaga H, Li W, Swain M, Li Q
    J Biomech, 2015 Feb 5;48(3):512-9.
    PMID: 25560272 DOI: 10.1016/j.jbiomech.2014.11.043
    Although implant-retained overdenture allows edentulous patients to take higher occlusal forces than the conventional complete dentures, the biomechanical influences have not been explored yet. Clinically, there is limited knowledge and means for predicting localized bone remodelling after denture treatment with and without implant support. By using finite element (FE) analysis, this article provides an in-silico approach to exploring the treatment effects on the oral mucosa and potential resorption of residual ridge under three different denture configurations in a patient-specific manner. Based on cone beam computerized tomography (CBCT) scans, a 3D heterogeneous FE model was created; and the supportive tissue, mucosa, was characterized as a hyperelastic material. A measured occlusal load (63N) was applied onto three virtual models, namely complete denture, two and four implant-retained overdentures. Clinically, the bone resorption was measured after one year in the two implant-retained overdenture treatment. Despite the improved stability and enhanced masticatory function, the implant-retained overdentures demonstrated higher hydrostatic stress in mucosa (43.6kPa and 39.9kPa for two and four implants) at the posterior ends of the mandible due to the cantilever effect, than the complete denture (33.4kPa). Hydrostatic pressure in the mucosa signifies a critical indicator and can be correlated with clinically measured bone resorption, pointing to severer mandibular ridge resorption posteriorly with implant-retained overdentures. This study provides a biomechanical basis for denture treatment planning to improve long-term outcomes with minimal residual ridge resorption.
  12. Wang X, Utsumi M, Gao Y, Li Q, Tian X, Shimizu K, et al.
    Chemosphere, 2016 Mar;147:230-8.
    PMID: 26766360 DOI: 10.1016/j.chemosphere.2015.12.067
    Microcystins-LR (MC-LR) which is a kind of potent hepatotoxin for humans and wildlife can be biodegraded by microbial community. In this study, the capacity of biofilm in degrading MC-LR was investigated with and without additional metal ions (Mn(2+), Zn(2+) and Cu(2+)) at the concentration of 1 mg L(-1). The results indicated that the degradation rate of MC-LR by biofilm was inhibited by introduced Mn(2+) and Cu(2+) during the whole culture period. MC-LR cannot be degraded until a period of culture time passed both in the cases with Zn(2+) and Cu(2+) (2 and 8 days for Zn(2+) and Cu(2+), respectively). The results of mlrA gene analysis showed that the abundance of MC-LR degradation bacteria (MCLDB) in the microbial community under Mn(2+) condition was generally lower than that under no additional metal ion condition. Meanwhile, a two days lag phase for the proliferation of MCLDB occurred after introducing Zn(2+). And a dynamic change of MCLDB from Cu(2+) inhibited species to Cu(2+) promoted species was observed under Cu(2+) condition. The maximum ratio of MCLDB to overall bacteria under various conditions during culture process was found to follow the tendency as: Cu(2+) > Zn(2+) ≈ no additional metal ion (Control) > Mn(2+), suggesting the adverse effect of Mn(2+), no obvious effect of Zn(2+) and positive effect of Cu(2+) on the distribution ratio of MCLDB over the biofilm.
  13. Chen J, Ahmad R, Suenaga H, Li W, Sasaki K, Swain M, et al.
    PLoS One, 2015;10(7):e0132552.
    PMID: 26161878 DOI: 10.1371/journal.pone.0132552
    With ever-growing aging population and demand for denture treatments, pressure-induced mucosa lesion and residual ridge resorption remain main sources of clinical complications. Conventional denture design and fabrication are challenged for its labor and experience intensity, urgently necessitating an automatic procedure. This study aims to develop a fully automatic procedure enabling shape optimization and additive manufacturing of removable partial dentures (RPD), to maximize the uniformity of contact pressure distribution on the mucosa, thereby reducing associated clinical complications. A 3D heterogeneous finite element (FE) model was constructed from CT scan, and the critical tissue of mucosa was modeled as a hyperelastic material from in vivo clinical data. A contact shape optimization algorithm was developed based on the bi-directional evolutionary structural optimization (BESO) technique. Both initial and optimized dentures were prototyped by 3D printing technology and evaluated with in vitro tests. Through the optimization, the peak contact pressure was reduced by 70%, and the uniformity was improved by 63%. In vitro tests verified the effectiveness of this procedure, and the hydrostatic pressure induced in the mucosa is well below clinical pressure-pain thresholds (PPT), potentially lessening risk of residual ridge resorption. This proposed computational optimization and additive fabrication procedure provides a novel method for fast denture design and adjustment at low cost, with quantitative guidelines and computer aided design and manufacturing (CAD/CAM) for a specific patient. The integration of digitalized modeling, computational optimization, and free-form fabrication enables more efficient clinical adaptation. The customized optimal denture design is expected to minimize pain/discomfort and potentially reduce long-term residual ridge resorption.
  14. Li Q, Wang Y, Zou YD, Liao XD, Liang JB, Xin W, et al.
    Sci Total Environ, 2015 Sep 15;527-528:126-34.
    PMID: 25958362 DOI: 10.1016/j.scitotenv.2015.04.117
    The behavior of veterinary antibiotics in the soil is commonly studied using the following methods to add antibiotics to the soil: (A) adding manure collected from animals fed a diet that includes antibiotics; (B) adding antibiotic-free animal manure spiked with antibiotics; and (C) the direct addition of antibiotics. However, most studies have only used methods (B) and (C) in their research, and few studies have simultaneously compared the different antibiotic addition methods. This study used tylosin A (TYLA) as a model antibiotic to compare the effects of these three commonly used antibiotic addition methods on the dissipation rates of TYLA and the numbers of resistance genes in laboratory incubation experiments. The results showed that the three treatment methods produced similar TYLA degradation trends; however, there were significant differences (P<0.05) in the TYLA degradation half-life (t1/2) among the three methods. The half-life of TYLA degradation in treatments A, B and C was 2.44 ± 0.04, 1.21 ± 0.03 and 5.13 ± 0.11 days, respectively. The presence of manure resulted in a higher electrical conductivity (EC), higher relative abundance of Citrobacter amalonaticus, higher macrolide resistant gene (ermB, ermF and ermT) count and lower ecological toxicity in the soil, which could partially explain the higher TYLA degradation rate in the treatments containing manure. The higher degradation rate of TYLA in treatment B when compared to treatment A could be due to the lower concentrations of tylosin B (TYLB) and tylosin D (TYLD). The main route for veterinary antibiotics to enter the soil is via the manure of animals that have been administered antibiotics. Therefore, the more appropriate method to study the degradation and ecotoxicity of antibiotic residues in the soil is by using manure from animals fed/administered the particular antibiotic rather than by adding the antibiotic directly to the soil.
  15. Li P, Lei Y, Li Q, Lakshmipriya T, Gopinath SCB, Gong X
    J Anal Methods Chem, 2019;2019:6097375.
    PMID: 31534814 DOI: 10.1155/2019/6097375
    Every year, over 200 million adults are undergoing noncardiac surgery. These noncardiac surgery patients may face the risk of cardiac mortality and morbidity during the perioperative and recovery periods. Around ten million patients who underwent noncardiac surgery experience cardiac complications within the first 30 days of the postoperative period; the complications are myocardial infarction, cardiac death, and cardiac arrest. This cardiovascular risk is mostly faced by the patients having cerebrovascular or cardiac disease and the patients with the age greater than 50 years. Monitoring and treating cardiac diseases with a suitable biomarker during the perioperative period is necessary for the early recovery of noncardiac surgery patients. This review discussed the risk factors and the key guidelines to avoid the cardiovascular risks during the perioperative period of noncardiac surgery patients. In addition, the biomarkers and identification strategies for cardiac diseases are discussed.
  16. Zhong J, Guazzato M, Chen J, Zhang Z, Sun G, Huo X, et al.
    J Mech Behav Biomed Mater, 2020 02;102:103490.
    PMID: 31877512 DOI: 10.1016/j.jmbbm.2019.103490
    Mechanical failure of zirconia-based full-arch implant-supported fixed dental prostheses (FAFDPs) remains a critical issue in prosthetic dentistry. The option of full-arch implant treatment and the biomechanical behaviour within a sophisticated screw-retained prosthetic structure have stimulated considerable interest in fundamental and clinical research. This study aimed to analyse the biomechanical responses of zirconia-based FAFDPs with different implant configurations (numbers and distributions), thereby predicting the possible failure sites and the optimum configuration from biomechanical aspect by using finite element method (FEM). Five 3D finite element (FE) models were constructed with patient-specific heterogeneous material properties of mandibular bone. The results were reported using volume-averaged von-Mises stresses (σVMVA) to eliminate numerical singularities. It was found that wider placement of multi-unit copings was preferred as it reduces the cantilever effect on denture. Within the limited areas of implant insertion, the adoption of angled multi-unit abutments allowed the insertion of oblique implants in the bone and wider distribution of the multi-unit copings in the prosthesis, leading to lower stress concentration on both mandibular bone and prosthetic components. Increasing the number of supporting implants in a FAFDPs reduced loading on each implant, although it may not necessarily reduce the stress concentration in the most posterior locations significantly. Overall, the 6-implant configuration was a preferable configuration as it provided the most balanced mechanical performance in this patient-specific case.
  17. Liu L, Sim SF, Lin S, Wan J, Zhang W, Li Q, et al.
    J Hazard Mater, 2021 Sep 05;417:126009.
    PMID: 34229376 DOI: 10.1016/j.jhazmat.2021.126009
    In this study, various HCl-supported hydrochar made from root powder of long-root Eichhornia crassipes were applied to adsorb aqueous sulfachloropyridazine (SCP). Adsorption capacity (qe μg g-1) was positively correlated with combined severity-CS. With CS increasing, carbonization degree, hydrophobicity, porosity and isoelectric point of hydrochar increased, but content of polar functional groups decreased. Hydrophobic interaction was important for SCP adsorption. A 24 × 36 peak area table was generated from 24 FT-IR absorbance spectra computed by peak detection algorithm. Afterwards, correlation analysis between qe μg g-1 and FT-IR peak area were conducted, indicating that wavenumbers at 555.4, 1227.47, 1374.51, 1604.5, 2901.4/2919.2 and 3514.63 cm-1 were helpful for SCP adsorption. Further, multivariate linear regression analyses showed that aromatic skeleton and phenolic hydroxyl were the two biggest contributors. Electrostatic attraction did not exist during the SCP adsorption process. Under strong acid condition, protonated amino groups in cationic SCP acting as a hydrogen donator interacted with electron-rich functional groups onto hydrochar by Hydrogen interaction. Under weak acid condition, neutral SCP served as an π electron donor to bond with hydrochar by π-π electron donator-acceptor interaction. This work could guide the functional groups modification strategy of hydrochar to make better use of it in water purification field.
  18. Tan T, Li Z, Liu H, Zanjani FG, Ouyang Q, Tang Y, et al.
    PMID: 30324036 DOI: 10.1109/JTEHM.2018.2865787
    Bronchoscopy inspection, as a follow-up procedure next to the radiological imaging, plays a key role in the diagnosis and treatment design for lung disease patients. When performing bronchoscopy, doctors have to make a decision immediately whether to perform a biopsy. Because biopsies may cause uncontrollable and life-threatening bleeding of the lung tissue, thus doctors need to be selective with biopsies. In this paper, to help doctors to be more selective on biopsies and provide a second opinion on diagnosis, we propose a computer-aided diagnosis (CAD) system for lung diseases, including cancers and tuberculosis (TB). Based on transfer learning (TL), we propose a novel TL method on the top of DenseNet: sequential fine-tuning (SFT). Compared with traditional fine-tuning (FT) methods, our method achieves the best performance. In a data set of recruited 81 normal cases, 76 TB cases and 277 lung cancer cases, SFT provided an overall accuracy of 82% while other traditional TL methods achieved an accuracy from 70% to 74%. The detection accuracy of SFT for cancers, TB, and normal cases are 87%, 54%, and 91%, respectively. This indicates that the CAD system has the potential to improve lung disease diagnosis accuracy in bronchoscopy and it may be used to be more selective with biopsies.
  19. Chen N, Yang H, Li Q, Song L, Gopinath SCB, Wu D
    Biotechnol Appl Biochem, 2021 Dec;68(6):1479-1485.
    PMID: 33244818 DOI: 10.1002/bab.2068
    Rheumatoid arthritis (RA) is an autoimmune disorder causing chronic inflammation in the small joints of the articular bone and destruction of articular cartilage. RA causes stiffness, pain, joint destruction, substantial comorbidity, and functional disability. Early-stage diagnosis of RA can help in the treatment of the disease and expand the patient life span. Interleukins are a group of inflammatory cytokines; in particular, an abundance of interleukin-6 (IL-6) was found in the synovial fluid and serum. In RA patients, the levels of IL-6 have been found to be correlated with the disease, and this work focused on detecting IL-6 by its aptamer with the help of a biotin-streptavidin strategy on an interdigitated electrode. A sensitivity of 1 fM (0.021 pg/mL) and a limit of detection of 10 fM (0.21 pg/mL) were found by a linear regression [y = 0.6413x - 0.6249; R² = 0.952] of the linear range from 1 fM to 100 pM. This method enhanced the immobilization of higher aptamer molecules for recognizing RA in serum-containing samples and is applicable to other diseases.
  20. Yan G, Li Q, Hong X, Gopinath SCB, Anbu P, Li C, et al.
    Mikrochim Acta, 2021 05 11;188(6):185.
    PMID: 33977395 DOI: 10.1007/s00604-021-04836-8
    An abdominal aortic aneurysm (AAA) is abnormal swelling in the abdominal aorta and a prevalent life-threatening disease. This research introduces a new interdigitated microelectrode (IDME)-sensing surface modified by iron oxide nanoworms (IONWs) for detecting the AAA biomarker insulin-like growth factor-1 (IGF1). A sandwich pattern was formulated with the IGF1 aptamer and IGFBP1 (IGF binding protein-1) on the IONW-constructed IDME hybrid to identify IGF1. The surface morphology of the IONWs revealed a uniform distribution of worm-like structures (80-100 nm) as confirmed by FESEM and FETEM analyses. Further, the presence of the major elements, Fe and O, was confirmed by EDX and XPS studies. The crystal planes that appeared in the IONW reflect cubic magnetite. IONW-modified IDME attained a limit of detection for IGF1 of 1 fM (3σ) with an aptamer-IGF1-IGFBP1 sandwich. This sandwich with IGFBP1 enhanced the current level at all concentrations of IGF1 and displayed linearity in the range 1 fM to 100 pM with a determination coefficient of R2 = 0.9373 [y = 3.38221x - 4.79]. Control experiments with complementary aptamer sequences, IGF2 and IGFBP3 did not show notable signal changes, indicating the specific detection of IGF1. This IONW constructed electrode helps to achieve the detection of low amounts of IGF1 and diagnose AAA at the stage prior to rupture.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links