Displaying publications 1 - 20 of 146 in total

Abstract:
Sort:
  1. Mei T, Li Y, Li X, Yang X, Li L, Yan X, et al.
    Int J Sports Med, 2023 Dec 20.
    PMID: 38122824 DOI: 10.1055/a-2234-0159
    This study develops a comprehensive genotype-phenotype model for predicting the effects of resistance training on leg press performance. A cohort of physically inactive adults (N=193) underwent 12 weeks of resistance training, and measurements of maximum isokinetic leg press peak force, muscle mass, and thickness were taken before and after the intervention. Whole-genome genotyping was performed, and genome-wide association analysis identified 85 novel SNPs significantly associated with changes in leg press strength after training. A prediction model was constructed using stepwise linear regression, incorporating 7 lead SNPs that explained 40.4% of the training effect variance. The polygenic score showed a significant positive correlation with changes in leg press strength. By integrating genomic markers and phenotypic indicators, the comprehensive prediction model explained 75.4% of the variance in the training effect. Additionally, five SNPs were found to potentially impact muscle contraction, metabolism, growth, and development through their association with REACTOME pathways. Individual responses to resistance training varied, with changes in leg press strength ranging from -55.83% to 151.20%. The study highlights the importance of genetic factors in predicting training outcomes and provides insights into the potential biological functions underlying resistance training effects. The comprehensive model offers valuable guidance for personalized fitness programs based on individual genetic profiles and phenotypic characteristics.
  2. Li X, Wang X, Song T, Lu W, Chen Z, Shi X
    J Anal Methods Chem, 2015;2015:675827.
    PMID: 26491602 DOI: 10.1155/2015/675827
    DNA strand displacement technique is widely used in DNA programming, DNA biosensors, and gene analysis. In DNA strand displacement, leaky reactions can cause DNA signals decay and detecting DNA signals fails. The mostly used method to avoid leakage is cleaning up after upstream leaky reactions, and it remains a challenge to develop reliable DNA strand displacement technique with low leakage. In this work, we address the challenge by experimentally evaluating the basic factors, including reaction time, ratio of reactants, and ion concentration to the leakage in DNA strand displacement. Specifically, fluorescent probes and a hairpin structure reporting DNA strand are designed to detect the output of DNA strand displacement, and thus can evaluate the leakage of DNA strand displacement reactions with different reaction time, ratios of reactants, and ion concentrations. From the obtained data, mathematical models for evaluating leakage are achieved by curve derivation. As a result, it is obtained that long time incubation, high concentration of fuel strand, and inappropriate amount of ion concentration can weaken leaky reactions. This contributes to a method to set proper reaction conditions to reduce leakage in DNA strand displacement.
  3. Li X, Gopinath SCB, Peng X, Lv J
    J Biomed Nanotechnol, 2021 Dec 01;17(12):2495-2504.
    PMID: 34974872 DOI: 10.1166/jbn.2021.3213
    An aptasensor was developed on an interdigitated microelectrode (IDME) by current-volt sensing for the diagnosis of ulcerative colitis by detecting the biomarker lipocalin-2. Higher immobilization of the anti-lipocalin-2 aptamer as a probe was achieved by using sodium dodecyl benzenesulfonate-aided zeolite particles. FESEM and FETEM observations revealed that the size of the zeolite particles was <200 nm, and they displayed a uniform distribution and spherical shape. XPS analysis attested the occurrence of Si, Al, and O groups on the zeolite particles. Zeolite particles were immobilized on IDME by a (3-aminopropyl)-trimethoxysilane amine linker, and then, the aptamer as the probe was tethered on the zeolite particles through a biotin-streptavidin strategy assisted by a bifunctional aldehyde linker. Due to the high occupancy of the aptamer and the efficient electric transfer from zeolite particles, higher changes in current can be observed upon interaction of the aptamer with lipocalin-2. The lower detection of lipocalin-2 was noted as 10 pg/mL, with a linear range from 10 pg/mL to 1 μg/mL and a linear regression equation of y=8E-07x+8E-08; R² = 0.991. Control experiments with complementary aptamer and matrix metalloproteinase-9 indicate the specific detection of lipocalin-2. Furthermore, spiking lipocalin-2 in human serum does not interfere with the identification.
  4. Liu J, Yinchai W, Siong TC, Li X, Zhao L, Wei F
    Sci Rep, 2022 Dec 01;12(1):20770.
    PMID: 36456582 DOI: 10.1038/s41598-022-23765-x
    For generating an interpretable deep architecture for identifying deep intrusion patterns, this study proposes an approach that combines ANFIS (Adaptive Network-based Fuzzy Inference System) and DT (Decision Tree) for interpreting the deep pattern of intrusion detection. Meanwhile, for improving the efficiency of training and predicting, Pearson Correlation analysis, standard deviation, and a new adaptive K-means are used to select attributes and make fuzzy interval decisions. The proposed algorithm was trained, validated, and tested on the NSL-KDD (National security lab-knowledge discovery and data mining) dataset. Using 22 attributes that highly related to the target, the performance of the proposed method achieves a 99.86% detection rate and 0.14% false alarm rate on the KDDTrain+ dataset, a 77.46% detection rate on the KDDTest+ dataset, which is better than many classifiers. Besides, the interpretable model can help us demonstrate the complex and overlapped pattern of intrusions and analyze the pattern of various intrusions.
  5. Wang D, Tang G, Huang Y, Yu C, Li S, Zhuang L, et al.
    J Med Case Rep, 2015;9:109.
    PMID: 25962780 DOI: 10.1186/s13256-015-0580-1
    Human infection with avian influenza A (H7N9) virus was first reported on March, 2013 in the Yangtze River Delta region of China. The majority of human cases were detected in mainland China; other regions out of mainland China reported imported human cases, including Hong Kong SAR, Taiwan (the Republic of China) and Malaysia, due to human transportation. Here, we report the first human case of H7N9 infection imported into Guizhou Province during the Spring Festival travel season in January 2014.
  6. Lee MK, Li X, Yap ACS, Cheung PCK, Tan CS, Ng ST, et al.
    Front Pharmacol, 2018;9:461.
    PMID: 29867469 DOI: 10.3389/fphar.2018.00461
    Lignosus rhinocerotis has a long history of use by the indigenous community within East Asia to treat a range of health conditions including asthma and chronic cough. To date, there is limited scientific evidence to support its therapeutic effects in relieving these airways conditions. In this study, we examined the effects of the different molecular weight fractions [high-molecular-weight (HMW), medium-molecular-weight (MMW), and low-molecular-weight (LMW)] obtained from the cold water sclerotial extract (CWE) of L. rhinocerotis on airways patency using airway segments isolated from Sprague Dawley rat in an organ bath set-up. It is demonstrated that the HMW and MMW fractions exhibited higher efficacy in relaxing the pre-contracted airways when compared to the CWE and LMW fraction. In addition, the HMW fraction markedly supressed carbachol-, 5-hydroxytrptamine-, and calcium-induced airway contractions. CWE demonstrated a lower efficacy than the HMW fraction but it also significantly attenuated carbachol- and calcium-induced airway contractions. Results showed that the bronchorelaxation effect of CWE and fractions is mediated via blockade of extracellular Ca2+ influx. The composition analysis revealed the following parts of carbohydrate and proteins, respectively: HMW fraction: 71 and 4%; MMW fraction: 35 and 1%; and LMW fraction: 22 and 0.3%. Our results strongly suggest that the polysaccharide-protein complex or proteins found in the HMW and MMW fractions is likely to contribute to the bronchorelaxation effect of CWE.
  7. Qiu Z, Shen Q, Jiang C, Yao L, Sun X, Li J, et al.
    Int J Nanomedicine, 2021;16:2311-2322.
    PMID: 33776435 DOI: 10.2147/IJN.S302396
    Background: Alzheimer's disease (AD) is a neurodegenerative chronic disorder that causes dementia and problems in thinking, cognitive impairment and behavioral changes. Amyloid-beta (Aβ) is a peptide involved in AD progression, and a high level of Aβ is highly correlated with severe AD. Identifying and quantifying Aβ levels helps in the early treatment of AD and reduces the factors associated with AD.

    Materials and Methods: This research introduced a dual probe detection system involving aptamers and antibodies to identify Aβ. Aptamers and antibodies were attached to the gold (Au) urchin and hybrid on the carbon nanohorn-modified surface. The nanohorn was immobilized on the sensor surface by using an amine linker, and then a Au urchin dual probe was immobilized.

    Results: This dual probe-modified surface enhanced the current flow during Aβ detection compared with the surface with antibody as the probe. This dual probe interacted with higher numbers of Aβ peptides and reached the detection limit at 10 fM with R2=0.992. Furthermore, control experiments with nonimmune antibodies, complementary aptamer sequences and control proteins did not display the current responses, indicating the specific detection of Aβ.

    Conclusion: Aβ-spiked artificial cerebrospinal fluid showed a similar response to current changes, confirming the selective identification of Aβ.

  8. Wang R, Ren Q, Gao D, Paudel YN, Li X, Wang L, et al.
    J Ethnopharmacol, 2022 Jan 29;289:115018.
    PMID: 35092824 DOI: 10.1016/j.jep.2022.115018
    ETHNOPHARMACOLOGICAL RELEVANCE: Gastrodia elata Blume (G. elata), a traditional Chinese herb, known as "Tian Ma", is widely used as a common medicine and diet ingredient for treating or preventing neurological disorders for thousands of years in China. However, the anti-depressant effect of G. elata and the underlying mechanism have not been fully evaluated.

    AIM OF THE STUDY: The study is aimed to investigate the anti-depressant effect and the molecular mechanism of G. elata in vitro and in vivo using PC12 cells and zebrafish model, respectively.

    MATERIAL AND METHODS: Network pharmacology was performed to explore the potential active ingredients and action targets of G. elata Blume extracts (GBE) against depression. The cell viability and proliferation were determined by MTT and EdU assay, respectively. TUNEL assay was used to examine the anti-apoptotic effect of GBE. Immunofluorescence and Western blot were used to detect the protein expression level. In addition, novel tank diving test was used to investigate the anti-depressant effect in zebrafish depression model. RT-PCR was used to analyze the mRNA expression levels of genes.

    RESULTS: G. elata against depression on the reticulon 4 receptors (RTN4R) and apoptosis-related targets, which were predicted by network pharmacology. Furthermore, GBE enhanced cell viability and inhibited the apoptosis in PC12 cells against CORT treatment. GBE relieved depression-like symptoms in adult zebrafish, included increase of exploratory behavior and regulation of depression related genes. Mechanism studies showed that the GBE inhibited the expression of RTN4R-related and apoptosis-related genes.

    CONCLUSION: Our studies show the ameliorative effect of G. elata against depression. The mechanism may be associated with the inhibition of RTN4R-related and apoptosis pathways.

  9. Chen BJ, Liu Y, Yang K, Li X, Dong X, Guan Y, et al.
    Food Chem X, 2023 Dec 30;20:100913.
    PMID: 38144747 DOI: 10.1016/j.fochx.2023.100913
    This study aimed to evaluate the efficacy of amylase in hydrolyzing complex carbohydrates of different parts of Ganoderma spp. The aqueous extracts of the Ganoderma samples were analyzed for their selected nutritional composition and physicochemical properties. The purified extracts were also structurally characterized. The aqueous canopy extracts of red-purple Ganoderma had a notably higher total sugar and saponin content than their stalks, but not for the black-type Ganoderma. The enzymatic extraction effectively improved the extraction yields, whereas the amounts of sugars and saponins in some extracts were increased after the enzymatic treatment. The results also showed that only those enzyme-treated cultivated black Ganoderma canopy had increased total sugar and total saponin content. The antioxidant activities of all stalk extracts were higher than the canopy extracts. Their emulsifying properties were comparable with lecithin due to their high saponin content. Therefore, these extracts are new natural emulsifiers.
  10. Xu S, Lan H, Teng Q, Li X, Jin Z, Qu Y, et al.
    Int J Biol Macromol, 2023 Aug 12;251:126286.
    PMID: 37579904 DOI: 10.1016/j.ijbiomac.2023.126286
    H7 avian influenza virus has caused multiple human infections and poses a severe public health threat. In response to the highly variable nature of AIVs, a novel, easily regenerated DNA vaccine has great potential in treating or preventing avian influenza pandemics. Nevertheless, DNA vaccines have many disadvantages, such as weak immunogenicity and poor in vivo delivery. To further characterize and solve these issues and develop a novel H7 AIV DNA vaccine with enhanced stability and immunogenicity, we constructed nine AIV DNA plasmids, and the immunogenicity screened showed that mice immunized with pβH7N2SH9 elicited stronger hemagglutination-inhibiting (HI) antibodies than other eight plasmid DNAs. Then, to address the susceptibility to degradation and low transfection rate of DNA vaccine in vivo, we developed pβH7N2SH9/DGL NPs by encapsulating the pβH7N2SH9 within the dendrigraft poly-l-lysines nanoparticles. As expected, these NPs exhibited excellent physical and chemical properties, were capable of promote lymphocyte proliferation, and induce stronger humoral and cellular responses than the naked pβH7N2SH9, including higher levels of HI antibodies than naked pβH7N2SH9, as well as the production of cytokines, namely, IL-2, IFN-α. Taken together, our results suggest that the construction of an immune-enhanced H7-AIV DNA nanovaccine may be a promising strategy against most influenza viruses.
  11. Choi JR, Hu J, Tang R, Gong Y, Feng S, Ren H, et al.
    Lab Chip, 2016 Feb 7;16(3):611-21.
    PMID: 26759062 DOI: 10.1039/c5lc01388g
    With advances in point-of-care testing (POCT), lateral flow assays (LFAs) have been explored for nucleic acid detection. However, biological samples generally contain complex compositions and low amounts of target nucleic acids, and currently require laborious off-chip nucleic acid extraction and amplification processes (e.g., tube-based extraction and polymerase chain reaction (PCR)) prior to detection. To the best of our knowledge, even though the integration of DNA extraction and amplification into a paper-based biosensor has been reported, a combination of LFA with the aforementioned steps for simple colorimetric readout has not yet been demonstrated. Here, we demonstrate for the first time an integrated paper-based biosensor incorporating nucleic acid extraction, amplification and visual detection or quantification using a smartphone. A handheld battery-powered heating device was specially developed for nucleic acid amplification in POC settings, which is coupled with this simple assay for rapid target detection. The biosensor can successfully detect Escherichia coli (as a model analyte) in spiked drinking water, milk, blood, and spinach with a detection limit of as low as 10-1000 CFU mL(-1), and Streptococcus pneumonia in clinical blood samples, highlighting its potential use in medical diagnostics, food safety analysis and environmental monitoring. As compared to the lengthy conventional assay, which requires more than 5 hours for the entire sample-to-answer process, it takes about 1 hour for our integrated biosensor. The integrated biosensor holds great potential for detection of various target analytes for wide applications in the near future.
  12. Heng BC, Zhang X, Aubel D, Bai Y, Li X, Wei Y, et al.
    Cell Mol Life Sci, 2021 Jan;78(2):497-512.
    PMID: 32748155 DOI: 10.1007/s00018-020-03579-8
    YAP and TAZ are ubiquitously expressed homologous proteins originally identified as penultimate effectors of the Hippo signaling pathway, which plays a key role in maintaining mammalian tissue/organ size. Presently, it is known that YAP/TAZ also interact with various non-Hippo signaling pathways, and have diverse roles in multiple biological processes, including cell proliferation, tissue regeneration, cell lineage fate determination, tumorigenesis, and mechanosensing. In this review, we first examine the various microenvironmental cues and signaling pathways that regulate YAP/TAZ activation, through the Hippo and non-Hippo signaling pathways. This is followed by a brief summary of the interactions of YAP/TAZ with TEAD1-4 and a diverse array of other non-TEAD transcription factors. Finally, we offer a critical perspective on how increasing knowledge of the regulatory mechanisms of YAP/TAZ signaling might open the door to novel therapeutic applications in the interrelated fields of biomaterials, tissue engineering, regenerative medicine and synthetic biology.
  13. Li X, Zhang F, Shi J, Chan NW, Cai Y, Cheng C, et al.
    Environ Sci Pollut Res Int, 2024 Feb;31(6):9333-9346.
    PMID: 38191729 DOI: 10.1007/s11356-023-31702-2
    As an inland dryland lake basin, the rivers and lakes within the Lake Bosten basin provide scarce but valuable water resources for a fragile environment and play a vital role in the development and sustainability of the local societies. Based on the Google Earth Engine (GEE) platform, combined with the geographic information system (GIS) and remote sensing (RS) technology, we used the index WI2019 to extract and analyze the water body area changes of the Bosten Lake basin from 2000 to 2021 when the threshold value is -0.25 and the slope mask is 8°. The driving factors of water body area changes were also analyzed using the partial least squares-structural equation model (PLS-SEM). The result shows that in the last 20 years, the area of water bodies in the Bosten Lake basin generally fluctuated during the dry, wet, and permanent seasons, with a decreasing trend from 2000 to 2015 and an increasing trend between 2015 and 2019 followed by a steadily decreasing trend afterward. The main driver of the change in wet season water bodies in the Bosten Lake basin is the climatic factors, with anthropogenic factors having a greater influence on the water body area of dry season and permanent season than that of wet season. Our study achieved an accurate and convenient extraction of water body area and drivers, providing up-to-date information to fully understand the spatial and temporal variation of surface water body area and its drivers in the basin, which can be used to effectively manage water resources.
  14. Li X, Gao D, Paudel YN, Li X, Zheng M, Liu G, et al.
    ACS Chem Neurosci, 2022 Feb 02;13(3):330-339.
    PMID: 35044760 DOI: 10.1021/acschemneuro.1c00656
    Parkinson's disease (PD) is a devastating disease of the central nervous system that occurs mainly in the elderly age group, affecting their quality of life. The PD pathogenesis is not yet fully understood and lacks the disease-modifying treatment strategies. Sanghuangprous vaninii (S. vaninii) is a perennial fungus with a plethora of pharmacological activities including anti-cancer and antioxidant activity and so on. However, no study till date has reported its neuroprotective effect against symptoms that are similar to PD in pre-clinical investigation. In the current study, we investigated anti-PD-like effects of S. vaninii mycelium extracts (SvMEs) on MPTP-induced PD in zebrafish. We observed that the loss of dopaminergic neurons and neurovascular reduction were reversed by using SvMEs in the zebrafish brain in a concentration-independent manner. Moreover, it also relieved locomotor impairments in MPTP-induced PD zebrafish. In addition, SvMEs exerted significant antioxidant activity in vitro, which was also demonstrated in vivo on ktr4:NTR-hKikGR zebrafish. Upon investigating the underlying mechanism, we found that SvMEs may alleviate oxidant stress and accelerate α-synuclein degradation and then alleviate PD-like symptoms. Antioxidant-related genes (sod1, gss, gpx4a, gclm, and cat) implied that the SvMEs exhibited anti-PD activity due to the antioxidation mechanism. Finally, upon analysis of chemical composition of SvMEs by liquid chromatography-mass spectrometry, we identified 10 compounds that are plausibly responsible for the anti-PD-like effect of SvMEs. On the limiting part, the finding of the study would have been more robust had we investigated the protein expression of genes related to PD and oxidative stress and compared the effects of SvMEs with any standard anti-PD therapy. Despite this, our results indicated that SvMEs possess anti-PD effects, indicating SvMEs as a potential candidate that is worth exploring further in this avenue.
  15. Li H, Tang R, Mustapha WAW, Liu J, Hasan KMF, Li X, et al.
    Gels, 2021 Dec 27;8(1).
    PMID: 35049558 DOI: 10.3390/gels8010021
    Gelatin coating is an effective way to prolong the shelf life of meat products. Aiming at solving the problem of flavor deterioration during the storage of pork at room temperature, pork coating technology was developed to preserve the pork at 25 °C, and the comprehensive sensory analysis of vision, touch, smell, and taste was used to study the effect of coating on preservation of pork flavor. Herein, uncoated (control) and coated pork samples (including gelatin coating and gelatin coating incorporated with ginger essential oil) were analyzed to investigate the integrity of pork periodically during storage at 25 °C for weight loss, color, texture (springiness, chewiness, cohesiveness, gumminess, and hardness), microstructure, odor (electronic nose), taste (electronic tongue), volatile flavor substance, and taste ingredients. The results suggested that ginger essential oil (GEO) gelatin coating and gelatin coating can effectively inhibit the loss of water dispersion and slow down the oxidation reaction, coating treatments could significantly (p < 0.05) retarded the weight loss of pork slices, with values of 20.19%, 15.95%, 13.12% for uncoated, gelatin coated, and GEO-gelatin coated samples during 24 h of storage, respectively. Compared with control group, the color, texture, smell, and taste evaluations demonstrated that coating treatments had improved sensory and texture attributes during the storage period. Furthermore, the comprehensive results from the physical property assays (especially the texture), morphological assay and volatile odor assays showed that the GEO-fish gelatin composite coating had better preservation effect on pork flavor than the fish gelatin coating. The study suggests that the gelatin composite coating could be developed as a prospective active packaging to preserve pork meat at room temperature.
  16. Zhong Y, Chu C, Myers JA, Gilbert GS, Lutz JA, Stillhard J, et al.
    Nat Commun, 2021 May 25;12(1):3137.
    PMID: 34035260 DOI: 10.1038/s41467-021-23236-3
    Arbuscular mycorrhizal (AM) and ectomycorrhizal (EcM) associations are critical for host-tree performance. However, how mycorrhizal associations correlate with the latitudinal tree beta-diversity remains untested. Using a global dataset of 45 forest plots representing 2,804,270 trees across 3840 species, we test how AM and EcM trees contribute to total beta-diversity and its components (turnover and nestedness) of all trees. We find AM rather than EcM trees predominantly contribute to decreasing total beta-diversity and turnover and increasing nestedness with increasing latitude, probably because wide distributions of EcM trees do not generate strong compositional differences among localities. Environmental variables, especially temperature and precipitation, are strongly correlated with beta-diversity patterns for both AM trees and all trees rather than EcM trees. Results support our hypotheses that latitudinal beta-diversity patterns and environmental effects on these patterns are highly dependent on mycorrhizal types. Our findings highlight the importance of AM-dominated forests for conserving global forest biodiversity.
  17. Guo K, Zhang X, Bai S, Minhat HS, Nazan AINM, Feng J, et al.
    PLoS One, 2021;16(7):e0253891.
    PMID: 34297731 DOI: 10.1371/journal.pone.0253891
    Following the 2019 coronavirus disease (COVID-19) outbreak in China, undergraduate students may experience psychological changes. During emergency circumstances, social support is an important factor influencing the mental health condition among undergraduate students in Shaanxi province. This study aims to find the factors associated with mental health symptoms of depression, anxiety, and stress among undergraduate students in Shaanxi province during the COVID-19 pandemic in China. A cross-sectional study was conducted from Feb 23 to Mar 7, 2020. A total of 1278 undergraduate students from the universities located in Shaanxi province participated in this study. The mental health symptoms were measured by 12-item Perceived Social Support Scale (PSSS) and Depression Anxiety Stress Scale (DASS-21) instruments. This survey showed that females receive more social support compared to males (t = -5.046, P<0.001); males have higher-level depression symptoms (t = 5.624, P<0.001); males have higher-level anxiety symptoms (t = 6.332, P<0.001), males have higher-level stress symptoms (t = 5.58, P<0.001). This study also found participants who have low social support was negatively correlated with mental health symptoms. In Conclusion, Males and low social support were associated with having the higher level of depression, anxiety, and stress symptoms among undergraduate students in Shaanxi province during the COVID-19 pandemic in China. Therefore, it is suggested that people should supply more social support for undergraduate students in Shaanxi province during COVID-19 pandemic.
  18. Wang Y, Shi H, Zhang Y, Li X, Zhao M, Sun B
    Foods, 2023 Nov 22;12(23).
    PMID: 38231600 DOI: 10.3390/foods12234210
    Food self-sufficiency has long been regarded as essential for understanding and managing urban and regional food systems; however, few studies have examined the food self-sufficiency of megacity regions within a comprehensive framework that distinguishes different types of agricultural land (i.e., arable land, horticultural landscapes, and waters). To fill these gaps, we took the Pearl River Delta as a case study and quantified the foodsheds of different types of agricultural land by calculating the land footprint of food consumption. On this basis, food self-sufficiency is defined as the ratio of available and required agricultural area for regional food demand. The results indicated that the self-sufficiency level provided by the arable land in the Pearl River Delta is low and cannot realize self-sufficiency at the regional and urban levels. The horticultural landscapes can provide self-sufficiency at the regional level, whereas the regions with water cannot, as their foodsheds extend over the boundary of the Pearl River Delta. For arable land, establishing a localized regional food system requires expanding the foodshed size. These findings provide evidence that megacity regions may face increasing difficulties in achieving self-sufficiency in the near future. This research can improve policymakers' understanding of the sustainability and resilience of regional food systems in megacity regions.
  19. Wan J, Yuan J, Li X, Bao Y, Hou Y, Li Z, et al.
    Complement Ther Med, 2020 Nov;54:102579.
    PMID: 33183675 DOI: 10.1016/j.ctim.2020.102579
    OBJECTIVE: Although many studies have attempted to unravel the relationship between vitamin D deficiency and the incidence of VTE, the results remained inconsistent. To address this discrepancy, we performed a systematic review and meta-analysis to precisely disentangle the relationship between serum vitamin D levels and VTE risk.

    METHODS: The Web of Science, Scopus, PubMed/Medline, Embase, and Google Scholar databases were searched for all available observational studies that reported the risk of venous thromboembolism (VTE) based on serum vitamin D levels categories. The search was performed up to March 2020.

    RESULTS: Seven studies were included. The overall analysis showed a significantly increased risk of VTE in subjects with low levels of serum vitamin D compared with those with normal vitamin D levels (RR = 1.34; 95% CI: 1.07-1.69; P = 0.011). In a sensitivity analysis, we did not observe a significant effect of any individual study on the combined effect sizes. Nevertheless, significant heterogeneity was present among the studies (Cochrane Q test, p = 0.018, I2 = 61%). In the stratified analysis, low vitamin D levels were positively associated with an increased risk of VTE in prospective population-based studies (RR = 1.31; 95% CI: 1.06-1.61; P = 0.010) and in subjects below 60 years old (RR = 1.28; 95% CI: 1.07-1.54; P = 0.060).

    CONCLUSION: our systematic review and meta-analysis showed that a low serum vitamin D level was indeed associated with an increased risk of VTE.

  20. Yang Y, Li X, Li B, Mu L, Wang J, Cheng Y, et al.
    Immunol Invest, 2021 Feb;50(2-3):184-200.
    PMID: 32208776 DOI: 10.1080/08820139.2020.1718693
    BACKGROUND: Tumor necrosis factor superfamily member 4 (TNFSF4) has significant role in modulating autoimmune diseases (ADs) and single nucleotide polymorphism (SNP) is also related with the susceptibility to some diseases. So a meta-analysis aimed at systematically assessing the associations between TNFSF4 polymorphisms (rs2205960 G > A, rs704840 T > G and rs844648 G > A) and ADs risk was performed in Asians.

    METHODS: Total 14 eligible articles published before March 2019 involving 35 studies, of which 21 studies (16,109 cases and 26,378 controls) for rs2205960 G > A, 8 studies (2,424 cases and 3,692 controls) for rs704840 T > G, and 6 studies (3,839 cases and 5,867 controls) for rs844648 G > A were included. Effects of the three respective polymorphisms on the susceptibility to ADs were estimated by pooling the odds ratios (ORs) with their corresponding 95% confidence interval (95% CI) in allelic, dominant, recessive, heterozygous and homozygous models.

    RESULTS: The overall analysis revealed that all the rs2205960 G > A, rs704840 T > G and rs844648 G > A polymorphisms could increase the risk of ADs in allelic, dominant, recessive, heterozygous and homozygous models. Furthermore, subgroup analysis showed that both rs2205960 G > A and rs704840 T > G were significantly associated with the susceptibility to systemic lupus erythematosus (SLE). What's more, statistically significant association between rs2205960 G > A polymorphism and primary Sjögren's syndrome (pSS) susceptibility was also observed in allelic, dominant and heterozygous models.

    CONCLUSIONS: This current meta-analysis suggested that all of the three TNFSF4 polymorphisms may be associated with ADs susceptibility in Asians.

Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links