Displaying publications 1 - 20 of 41 in total

Abstract:
Sort:
  1. Abdalkareem EA, Ong CY, Lim BH, Khoo BY
    Cytotechnology, 2018 Oct;70(5):1363-1374.
    PMID: 29802489 DOI: 10.1007/s10616-018-0228-2
    The interleukin-21 (IL-21) protein was found to be expressed at an elevated level in clinical samples of colorectal cancer patients without or with a parasitic infection that were collected from Sudan in our previous study. The IL-21 gene in HT29 and HCT116 cells was then correlated to cell proliferation and cell migration, as well as the cellular mechanisms associated with gene expressions in our present study. Our results demonstrated that silencing the IL-21 gene in HCT116 cells increased the cytotoxic level and fibroblast growth factor-4 (FGF4) mRNA expression in the cancer cells. Moreover, specific gene silencing reduced the migration of cancer cells compared to non-silenced cancer cells. These events were not observed in IL-21-silenced HT29 cells. Neutralizing FGF4 in conditioned medium of IL-21-silenced HCT116 cells further increased the cytotoxic level and restored the migratory activity of HCT116 cells in the culture compared to silencing the IL-21 gene alone in the cancer cells. Our results indicate the importance of both silencing the IL-21 gene and co-expression of the FGF4 protein in HCT116 cells, which pave the way for the discovery of important factors to be used as biomarkers for the design of drugs or cost-effective supplements to effectively treat the patients having infectious disease and HCT116 cells of colorectal cancer simultaneously in the future.
  2. Abdullah NL, Gunasekaran R, Mohd-Zin SW, Lim BH, Maniam P, Mohd-Salleh AS, et al.
    BMC Res Notes, 2018 Jul 16;11(1):475.
    PMID: 30012199 DOI: 10.1186/s13104-018-3593-1
    OBJECTIVES: The Neural Tube Defects Research Group of University of Malaya was approached to analyze a tablet named TELSE, which may have resulted in a baby born with central nervous system malformation at the University of Malaya Medical Centre. In this animal experimental study, we investigated the content of TELSE and exposure of its contents that resulted in failure of primary neurulation.

    RESULTS: Liquid Chromatography Tandem Mass spectrophotometry analysis of the TELSE tablet confirmed the presence of trimethoprim as the active compound. The TELSE tablet-treated females produced significant numbers of embryos with exencephaly (n = 8, 36.4%, *P 

  3. Chang CH, Few LL, Lim BH, Yvonne-Tee GB, Chew AL, See Too WC
    Parasitol Res, 2023 Jul;122(7):1651-1661.
    PMID: 37202563 DOI: 10.1007/s00436-023-07869-5
    The de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica is largely dependent on the CDP-choline and CDP-ethanolamine pathways. Although the first enzymes of these pathways, EhCK1 and EhCK2, have been previously characterized, their enzymatic activity was found to be low and undetectable, respectively. This study aimed to identify the unusual characteristics of these enzymes in this deadly parasite. The discovery that EhCKs prefer Mn2+ over the typical Mg2+ as a metal ion cofactor is intriguing for CK/EK family of enzymes. In the presence of Mn2+, the activity of EhCK1 increased by approximately 108-fold compared to that in Mg2+. Specifically, in Mg2+, EhCK1 exhibited a Vmax and K0.5 of 3.5 ± 0.1 U/mg and 13.9 ± 0.2 mM, respectively. However, in Mn2+, it displayed a Vmax of 149.1 ± 2.5 U/mg and a K0.5 of 9.5 ± 0.1 mM. Moreover, when Mg2+ was present at a constant concentration of 12 mM, the K0.5 value for Mn2+ was ~ 2.4-fold lower than that in Mn2+ alone, without affecting its Vmax. Although the enzyme efficiency of EhCK1 was significantly improved by about 25-fold in Mn2+, it is worth noting that its Km for choline and ATP were higher than in equimolar of Mg2+ in a previous study. In contrast, EhCK2 showed specific activity towards ethanolamine in Mn2+, exhibiting Michaelis-Menten kinetic with ethanolamine (Km = 312 ± 27 µM) and cooperativity with ATP (K0.5 = 2.1 ± 0.2 mM). Additionally, we investigated the effect of metal ions on the substrate recognition of human choline and ethanolamine kinase isoforms. Human choline kinase α2 was found to absolutely require Mg2+, while choline kinase β differentially recognized choline and ethanolamine in Mg2+ and Mn2+, respectively. Finally, mutagenesis studies revealed that EhCK1 Tyr129 was critical for Mn2+ binding, while Lys233 was essential for substrate catalysis but not metal ion binding. Overall, these findings provide insight into the unique characteristics of the EhCKs and highlight the potential for new approaches to treating amoebiasis. Amoebiasis is a challenging disease for clinicians to diagnose and treat, as many patients are asymptomatic. However, by studying the enzymes involved in the CDP-choline and CDP-ethanolamine pathways, which are crucial for de novo biosynthesis of phosphatidylcholine and phosphatidylethanolamine in Entamoeba histolytica, there is great potential to discover new therapeutic approaches to combat this disease.
  4. Chang CH, See Too WC, Lim BH, Few LL
    Acta Parasitol, 2024 Jan 03.
    PMID: 38172465 DOI: 10.1007/s11686-023-00763-1
    PURPOSE: Entamoeba histolytica is one of the death-causing parasites in the world. Study on its lipid composition revealed that it is predominated by phosphatidylcholine and phosphatidylethanolamine. Further study revealed that its phosphorylated metabolites might be produced by the Kennedy pathway. Here, we would like to report on the characterizations of enzymes from this pathway that would provide information for the design of novel inhibitors against these enzymes in future.

    METHODOLOGY: E. histolytica HM-1:IMSS genomic DNA was isolated and two putative choline/ethanolamine kinase genes (EhCK1 and EhCK2) were cloned and expressed from Escherichia coli BL21 strain. Enzymatic characterizations were further carried out on the purified enzymes.

    RESULTS: EhCK1 and EhCK2 were identified from E. histolytica genome. The deduced amino acid sequences were more identical to its homologues in human (35-48%) than other organisms. The proteins were clustered as ethanolamine kinase in the constructed phylogeny tree. Sequence analysis showed that they possessed all the conserved motifs in choline kinase family: ATP-binding loop, Brenner's phosphotransferase motif, and choline kinase motif. Here, the open reading frames were cloned, expressed, and purified to apparent homogeneity. EhCK1 showed activity with choline but not ethanolamine. The biochemical characterization showed that it had a Vmax of 1.9 ± 0.1 µmol/min/mg. Its Km for choline and ATP was 203 ± 26 µM and 3.1 ± 0.4 mM, respectively. In contrast, EhCK2 enzymatic activity was only detected when Mn2+ was used as the co-factor instead of Mg2+ like other choline/ethanolamine kinases. Highly sensitive and specific antibody against EhCK1 was developed and used to confirm the endogenous EhCK1 expression using immunoblotting.

    CONCLUSIONS: With the understanding of EhC/EK importance in phospholipid metabolism and their unique characteristic, EhC/EK could be a potential target for future anti-amoebiasis study.

  5. Chang ET, Lim BH
    Med J Malaysia, 1989 Jun;44(2):160-6.
    PMID: 2626126
    The abuse of phenylbutazone among rheumatoid arthritis patients has recently become a subject of interest. Unscrupulous manufacturers take advantage of the miraculous analgesic property of phenylbutazone and deliberately add this toxic drug in their preparations without declaring its presence on the label. In a recent survey, many such illicit preparations were seized from Chinese medical halls in Johor and sent to the Department of Chemistry, Johor Bahru for analysis. Here a Gas Chromatograph Mass Selective Detector (GC-MSD) method was developed for the determination of phenylbutazone in illicit traditional preparations.
  6. Chua AL, Elina HT, Lim BH, Yean CY, Ravichandran M, Lalitha P
    J Med Microbiol, 2011 Apr;60(Pt 4):481-485.
    PMID: 21183596 DOI: 10.1099/jmm.0.027433-0
    Vibrio cholerae has caused severe outbreaks of cholera worldwide with thousands of recorded deaths annually. Molecular diagnosis for cholera has become increasingly important for rapid detection of cholera as the conventional methods are time-consuming and labour intensive. However, traditional PCR tests still require cold-chain transportation and storage as well as trained personnel to perform, which makes them user-unfriendly. The aim of this study was to develop a thermostabilized triplex PCR test for cholera which is in a ready-to-use form and requires no cold chain. The PCR test specifically detects both toxigenic and non-toxigenic strains of V. cholerae based on the cholera toxin A (ctxA) and outer-membrane lipoprotein (lolB) genes. The thermostabilized triplex PCR also incorporates an internal amplification control that helps to check for PCR inhibitors in samples. PCR reagents and the specific primers were lyophilized into a pellet form in the presence of trehalose, which acts as an enzyme stabilizer. The triplex PCR was validated with 174 bacteria-spiked stool specimens and was found to be 100 % sensitive and specific. The stability of the thermostabilized PCR was evaluated using the Q10 method and it was found to be stable for approximately 7 months at 24 °C. The limit of detection of the thermostabilized triplex PCR assay was 2×10(4) c.f.u. at the bacterial cell level and 100 pg DNA at the genomic DNA level, comparable to conventional PCR methods. In conclusion, a rapid thermostabilized triplex PCR assay was developed for detecting toxigenic and non-toxigenic V. cholerae which requires minimal pipetting steps and is cold chain-free.
  7. Foo PC, Nurul Najian AB, Muhamad NA, Ahamad M, Mohamed M, Yean Yean C, et al.
    BMC Biotechnol, 2020 Jun 22;20(1):34.
    PMID: 32571286 DOI: 10.1186/s12896-020-00629-8
    BACKGROUND: This study reports the analytical sensitivity and specificity of a Loop-mediated isothermal amplification (LAMP) and compares its amplification performance with conventional PCR, nested PCR (nPCR) and real-time PCR (qPCR). All the assays demonstrated in this study were developed based on Serine-rich Entamoeba histolytica protein (SREHP) gene as study model.

    RESULTS: A set of SREHP gene specific LAMP primers were designed for the specific detection of Entamoeba histolytica. This set of primers recorded 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. These primers were later modified for conventional PCR, nPCR and qPCR applications. Besides, 3 different post-LAMP analyses including agarose gel electrophoresis, nucleic acid lateral flow immunoassay and calcein-manganese dye techniques were used to compare their limit of detection (LoD). One E. histolytica trophozoite was recorded as the LoD for all the 3 post-LAMP analysis methods when tested with E. histolytica DNA extracted from spiked stool samples. In contrast, none of the PCR method outperformed LAMP as both qPCR and nPCR recorded LoD of 100 trophozoites while the LoD of conventional PCR was 1000 trophozoites.

    CONCLUSIONS: The analytical sensitivity comparison among the conventional PCR, nPCR, qPCR and LAMP reveals that the LAMP outperformed the others in terms of LoD and amplification time. Hence, LAMP is a relevant alternative DNA-based amplification platform for sensitive and specific detection of pathogens.

  8. Foo PC, Chan YY, See Too WC, Tan ZN, Wong WK, Lalitha P, et al.
    J Med Microbiol, 2012 Sep;61(Pt 9):1219-1225.
    PMID: 22556327 DOI: 10.1099/jmm.0.044552-0
    Entamoeba histolytica is the only Entamoeba species that causes amoebiasis in humans. Approximately 50 million people are infected, with 100, 000 deaths annually in endemic countries. Molecular diagnosis of Entamoeba histolytica is important to differentiate it from the morphologically identical Entamoeba dispar to avoid unnecessary medication. Conventional molecular diagnostic tests require trained personnel, cold-chain transportation and/or are storage-dependent, which make them user-unfriendly. The aim of this study was to develop a thermostabilized, one-step, nested, tetraplex PCR assay for the detection of Entamoeba histolytica, Entamoeba dispar and Entamoeba species in cold-chain-free and ready-to-use form. The PCR test was designed based on the Entamoeba small subunit rRNA (SSU-rRNA) gene, which detects the presence of any Entamoeba species, and simultaneously can be used to differentiate Entamoeba histolytica from Entamoeba dispar. In addition, a pair of primers was designed to serve as an internal amplification control to help identify inhibitors in the samples. All PCR reagents together with the designed primers were thermostabilized by lyophilization and were stable at 24 °C for at least 6 months. The limit of detection of the tetraplex PCR was found to be 39 pg DNA or 1000 cells for Entamoeba histolytica and 78 pg DNA or 1000 cells for Entamoeba dispar, and the specificity was 100 %. In conclusion, this cold-chain-free, thermostabilized, one-step, nested, multiplex PCR assay was found to be efficacious in differentiating Entamoeba histolytica from other non-pathogenic Entamoeba species.
  9. Foo PC, Chan YY, Mohamed M, Wong WK, Nurul Najian AB, Lim BH
    Anal Chim Acta, 2017 May 08;966:71-80.
    PMID: 28372729 DOI: 10.1016/j.aca.2017.02.019
    This study highlighted the development of a four target nitrocellulose-based nucleic acid lateral flow immunoassay biosensor in a dry-reagent strip format for interpretation of double-labelled double-stranded amplicons from thermostabilised triplex loop-mediated isothermal amplification assay. The DNA biosensor contained two test lines which captured biotin and texas red labelled amplicons; a LAMP internal amplification control line that captured digoxigenin labelled amplicon; and a chromatography control line that validated the functionality of the conjugated gold nanoparticles and membrane. The red lines on detection pad were generated when the gold nanoparticles conjugated antibody bound to the fluorescein labelled amplicons, and the capture agents bound to their specific hapten on the other 5' end of the double-stranded amplicon. The applicability of this DNA biosensor was demonstrated using amoebiasis-causing Entamoeba histolytica simultaneously with the non-pathogenic but morphologically identical Entamoeba dispar and Entamoeba moshkovskii. The biosensor detection limit was 10 E. histolytica trophozoites, and revealed 100% specificity when it was evaluated against 3 medically important Entamoeba species and 75 other pathogenic microorganisms. Heat stability test showed that the biosensor was stable for at least 181 days at ambient temperature. This ready-to-use and cold-chain-free biosensor facilitated the post-LAMP analysis based on visualisation of lines on strip instead of observation of amplicon patterns in agarose gel.
  10. Jain P, Sing Ngie DC, Lim SF, Lim BH
    Int J Artif Organs, 2020 Oct 13.
    PMID: 33045876 DOI: 10.1177/0391398820964483
    Pedicular arthrodesis is the traditional procedure in terms of increase in the biomechanical stability with higher fixation rate. The current work aims to identify the effect of three spinal pedicle screws considering cortical and cancellous degeneracy condition. Lumbar section L2-L3 is utilized and various load and moment conditions were applied to depict the various biomechanical parameters for selection of suitable screw. Three dimensional model is considered in finite element analysis to identify the various responses of pedicle screw at bone screw juncture. Computed tomography (CT) images of a healthy male were considered to generate the finite element vertebral model. Generated intact model was further utilized to develop the other implanted models of degenerated cortical and cancellous bone models. The three fused instrumented models with different cortical and cancellous degeneracy conditions were analyzed in finite element analysis. The results were obtained as stress pattern at bone screw boundary and intervertebral disc stress. FE simulated results represents significant changes in the von Mises stress due to various load and moment conditions on degenerated bones during different body movement conditions. Results have shown that among all pedicle screws, the 6.0 mm diameter screw reflects very less stress values at the juncture. Multiple results on biomechanical aspects obtained during the FE study can be considered to design a new stabilization device and may be helpful to plan surgery of critical sections.
  11. Kazi A, Hisyam Ismail CMK, Anthony AA, Chuah C, Leow CH, Lim BH, et al.
    Infect Genet Evol, 2020 06;80:104176.
    PMID: 31923724 DOI: 10.1016/j.meegid.2020.104176
    Shigellosis is one of the most common diseases found in the developing countries, especially those countries that are prone flood. The causative agent for this disease is the Shigella species. This organism is one of the third most common enteropathogens responsible for childhood diarrhea. Since Shigella can survive gastric acidity and is an intracellular pathogen, it becomes difficult to treat. Also, uncontrolled use of antibiotics has led to development of resistant strains which poses a threat to public health. Therefore, there is a need for long term control of Shigella infection which can be achieved by designing a proper and effective vaccine. In this study, emphasis was made on designing a candidate that could elicit both B-cell and T-cell immune response. Hence B- and T-cell epitopes of outer membrane channel protein (OM) and putative lipoprotein (PL) from S. flexneri 2a were computationally predicted using immunoinformatics approach and a chimeric construct (chimeric-OP) containing the immunogenic epitopes selected from OM and PL was designed, cloned and expressed in E. coli system. The immunogenicity of the recombinant chimeric-OP was assessed using Shigella antigen infected rabbit antibody. The result showed that the chimeric-OP was a synthetic peptide candidate suitable for the development of vaccine and immunodiagnostics against Shigella infection.
  12. Kazi A, Chuah C, Majeed ABA, Leow CH, Lim BH, Leow CY
    Pathog Glob Health, 2018 05;112(3):123-131.
    PMID: 29528265 DOI: 10.1080/20477724.2018.1446773
    Immunoinformatics plays a pivotal role in vaccine design, immunodiagnostic development, and antibody production. In the past, antibody design and vaccine development depended exclusively on immunological experiments which are relatively expensive and time-consuming. However, recent advances in the field of immunological bioinformatics have provided feasible tools which can be used to lessen the time and cost required for vaccine and antibody development. This approach allows the selection of immunogenic regions from the pathogen genomes. The ideal regions could be developed as potential vaccine candidates to trigger protective immune responses in the hosts. At present, epitope-based vaccines are attractive concepts which have been successfully trailed to develop vaccines which target rapidly mutating pathogens. In this article, we provide an overview of the current progress of immunoinformatics and their applications in the vaccine design, immune system modeling and therapeutics.
  13. Leow CY, Kazi A, Hisyam Ismail CMK, Chuah C, Lim BH, Leow CH, et al.
    Clin Exp Vaccine Res, 2020 Jan;9(1):15-25.
    PMID: 32095437 DOI: 10.7774/cevr.2020.9.1.15
    Purpose: In the developing world, bacillary dysentery is one of the most common communicable diarrheal infections. There are approximately 169 million cases of shigellosis reported worldwide. The disease is transmitted by a group of Gram-negative intracellular enterobacteria known as Shigella flexneri, S. sonnei, S. dysenteriae, and S. boydii. Conventional treatment regimens for Shigella have been less effective due to the development of resistant strains against antibiotics. Therefore, an effective vaccine for the long term control of Shigella transmission is urgently needed.

    Materials and Methods: In this study, a reverse vaccinology approach was employed to identify most conserved and immunogenic outer membrane proteins (OMPs) of S. flexneri 2a.

    Results: Five OMPs including fepA, ompC, nlpD_1, tolC, and nlpD_2 were identified as potential vaccine candidates. Protein-protein interactions analysis using STRING software (https://string-db.org/) revealed that five of these OMPs may potentially interact with other intracellular proteins which are involved in beta-lactam resistance pathway. B- and T-cell epitopes of the selected OMPs were predicted using BCPred as well as Propred I and Propred (http://crdd.osdd.net/raghava/propred/), respectively. Each of these OMPs contains regions which are capable to induce B- and T-cell immune responses.

    Conclusion: Analysis acquired from this study showed that five selected OMPs have great potential for vaccine development against S. flexneri infection. The predicted immunogenic epitopes can also be used for development of peptide vaccines or multi-epitope vaccines against human shigellosis. Reverse vaccinology is a promising strategy for the discovery of potential vaccine candidates which can be used for future vaccine development against global persistent infections.

  14. Lim BH, Noordin R, Nor ZM, Rahman RA, Abdullah KA, Sinnadurai S
    Exp Parasitol, 2004 Sep-Oct;108(1-2):1-6.
    PMID: 15491542
    BmR1 recombinant antigen has previously been shown to demonstrate high sensitivity and specificity in the serological diagnosis of brugian filariasis in humans. In this study, the pattern of recognition of antibody to BmR1 during Brugia malayi infection was investigated by employing Meriones unguiculatus as the experimental model. Thirty two gerbils were infected subcutaneously with 120 L(3); and two control groups each comprising 25 animals were employed. ELISA using BmR1 was used to detect filaria-specific IgG antibodies elicited by the gerbils; using sera collected from the day 1 until day 150 post-inoculation (p.i.). The results showed that BmR1 detected B. malayi infection in gerbils harboring adult worms irrespective of the presence of circulating microfilaria, and was exemplified by positive ELISA results in nine a microfilaraemic animals that harbored live adult worms. The initial time of the antibody recognition was at day 8 p.i. and the antibody titre showed some correlation with adult worm burden.
  15. Lim BH, Rahmah N, Afifi SAB, Ramli A, Mehdi R
    Med J Malaysia, 2001 Dec;56(4):491-6.
    PMID: 12014770
    A total of 1,134 finger-pricked blood samples were collected from residents of Setiu, Terengganu. A drop of blood was used to make thick blood smear and about four drops were used for obtaining serum. The smears were stained and examined by the State Vector Control Unit in Kuala Terengganu, while the serum samples were tested for specific IgG4 antibodies to a novel recombinant antigen using Brugia-Elisa. Prevalence of filariasis in these areas were found to be 0.26% (3/1,134) using thick blood smear examination and 2.47% (28/1,134) using Brugia-Elisa, thus demonstrating the greater sensitivity of the latter test. In addtion, Brugia-Elisa showed a high level of specificity (97.8%, 1,106/1,131) when compared to thick blood smear examination.
  16. Lim BH, Majlan EH, Daud WRW, Rosli MI, Husaini T
    Heliyon, 2018 Oct;4(10):e00845.
    PMID: 30338304 DOI: 10.1016/j.heliyon.2018.e00845
    The flow distribution of a proton exchange membrane fuel cell within a manifold plays an important role on its performance. This study presents a numerical analysis of the flow distribution behavior within different manifold configurations. A two-dimensional model with 75 cells was employed to study the flow behavior. The variation in the stoichiometry and number of cells was also studied. Three different flow configurations were considered with different numbers of flow inlets and outlets. The flow characteristics, such as the pressure and velocity variations in the manifold and cells, were measured to determine the effects of the different flow configurations. The results indicated that the double inlet/outlet configuration had the best flow distribution when using 75 cells. Moreover, increasing the stoichiometry resulted in a better flow distribution to the cells in a stack.
  17. Lim BH, Raman S, Sivanesaratnam V, Ngan A
    Singapore Med J, 1989 Dec;30(6):539-41.
    PMID: 2635396
    Twenty eight patients with hyperthyroidism complicating their pregnancies were seen at the Obstetrics and Gynaecology Department, University Hospital, Kuala Lumpur, Malaysia in a six-year period. All patients were treated with antithyroid drugs, carbimazole being the mainstay of treatment. The incidence of the disease was 0.9 per 1000 births and was similar with other series. No cases of fetal goitre were noted. The mean birth weight was 2952 g; there was no significant difference in the birth weight of term live births in patients treated with carbimazole alone or carbimazole combined with propranolol.
  18. Lim SF, Hamdan A, David Chua SN, Lim BH
    Food Sci Nutr, 2021 May;9(5):2722-2732.
    PMID: 34026085 DOI: 10.1002/fsn3.2234
    The lemongrass plant, which is widely cultivated in Asia, Australia, and Africa, has been reported to have many significant health benefits such as antimicrobial, insecticide, anticancer, fight fever, and disinfection. Therefore, it is an added benefit to have lemongrass compounds in cooking oil. This study was aimed to compare the conventional (CSE), and ultrasound-assisted solvent extraction (UASE) for citral compounds from lemongrass (Cymbopogon) leaves and to optimize the best extraction method using the response surface methodology (RSM) and ANOVA. RSM design of experiments using three types of cooking oils; palm oil, sunflower oil, and corn oil. The effect of three independent variables, which are temperature (48.2-81.8°C), extraction time (4.8-55.2 min), and solvent to leaves ratio (5.3-18.7), was investigated. The characterization of lemongrass-infused cooking oil was evaluated by Fourier transform infrared spectroscopy (FT-IR), Gas Chromatography-Mass Spectrometry (GC-MS) and Scanning Electron Microscopy (SEM) analysis for confirmation of the citral compound extraction. This extraction process is optimized using Response Surface Methodology (RSM) for producing the lemongrass-infused cooking oil. After optimization, the UASE process gives 1.009 × 106 maximum citral area for palm oil and 1.767 × 106 maximum citral area for sunflower oil. CSE process only can give 2.025 × 105 and 2.179 × 105 citral area in the GC-MS spectrum for palm oil and sunflower oil respectively. For both the UASE and the CSE, the optimum operating conditions are 81.8°C of extraction temperature and 55.2 min of extraction time except for lemongrass-infused palm oil in the CSE process with 45 min extraction time. The optimum solvent to leaves ratio varies from 5.3:1 to 12.9:1. This study found that corn oil cannot be used as a solvent to extract lemongrass-infused cooking oil due to the insignificant changes and no citral peak. The lemongrass (Cymbopogon)-infused palm oil and sunflower oil extracted using the UASE have a higher maximum citral area than the CSE process.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links