Displaying publications 1 - 20 of 42 in total

Abstract:
Sort:
  1. Awang K, Mukhtar MR, Hadi AH, Litaudon M, Latip J, Abdullah NR
    Nat Prod Res, 2006 May 20;20(6):567-72.
    PMID: 16835089
    The alkaloidal extract of the leaves of Phoebe grandis (nees) merr. have provided two new minor alkaloids; phoebegrandine D (1), a proaporphine-tryptamine dimer, and phoebegrandine E (2), an indoloquinolizidine. This is the first report on the occurrence of an indoloquinolizidine in the Phoebe species. The crude extract also exhibited antiplasmodial activity (IC50<8 microg mL-1). The structures of the novel compounds were elucidated by spectroscopic methods, notably 2D NMR and HRMS.
  2. Mollataghi A, Coudiere E, Hadi AH, Mukhtar MR, Awang K, Litaudon M, et al.
    Fitoterapia, 2012 Mar;83(2):298-302.
    PMID: 22119096 DOI: 10.1016/j.fitote.2011.11.009
    Phytochemical investigation of Beilschmiedia alloiophylla has resulted in the isolation of one new alkaloid, 2-hydroxy-9-methoxyaporphine (1), and ten known natural products, laurotetanine (2), liriodenine (3), boldine (4), secoboldine (5), isoboldine (6), asimilobine (7), oreobeiline (8), 6-epioreobeiline (9), β-amyrone (10), and (S)-3-methoxynordomesticine (11). Chemical studies on the bark of B. kunstleri afforded compounds 2 and 4 along with one bisbenzylisoquinoline alkaloid, N-dimethylphyllocryptine (12). Structures of compounds 1-12 were elucidated on the basis of spectroscopic methods. All of these isolates were evaluated for their anti-acetylcholinesterase (AChE), anti-α-glucosidase, anti-leishmanial and anti-fungal activities. Compounds 1-12 exhibited strong to moderate bioactivities in aforementioned bioassays.
  3. Sivasothy Y, Loo KY, Leong KH, Litaudon M, Awang K
    Phytochemistry, 2016 Feb;122:265-269.
    PMID: 26712615 DOI: 10.1016/j.phytochem.2015.12.007
    A dimeric acylphenol and a potent α-glucosidase inhibitor, giganteone D (IC50 5.05μM), was isolated and characterized from the bark of Myristica cinnamomea King. The bark also yielded an acylphenol with an unprecedented skeleton for which the name cinnamomeone A (IC50 358.80μM) was proposed. Their structures were established by means of NMR and MS spectrometric analyses. The Lineweaver-Burk plot of giganteone D indicated that it was a mixed-type inhibitor. This is the first report on the α-glucosidase inhibiting potential of acylphenols.
  4. Liew SY, Khaw KY, Murugaiyah V, Looi CY, Wong YL, Mustafa MR, et al.
    Phytomedicine, 2015 Jan 15;22(1):45-8.
    PMID: 25636869 DOI: 10.1016/j.phymed.2014.11.003
    Nine monoterpenoid indole alkaloids; naucletine (1), angustidine (2), nauclefine (3), angustine (4), naucline (5), angustoline (6), harmane (7), 3,14-dihydroangustoline (8), strictosamide (9) and one quinoline alkaloid glycoside; pumiloside (10) from Nauclea officinalis were tested for cholinesterase inhibitory activity. All the alkaloids except for pumiloside (10) showed strong to weak BChE inhibitory effect with IC50 values ranging between 1.02-168.55 μM. Angustidine (2), nauclefine (3), angustine (4), angustoline (6) and harmane (7) showed higher BChE inhibiting potency compared to galanthamine. Angustidine (2) was the most potent inhibitor towards both AChE and BChE. Molecular docking (MD) studies showed that angustidine (2) docked deep into the bottom gorge of hBChE and formed hydrogen bonding with Ser 198 and His 438. Kinetic study of angustidine (2) on BChE suggested a mixed inhibition mode with an inhibition constant (Ki) of 6.12 μM.
  5. Liew SY, Looi CY, Paydar M, Cheah FK, Leong KH, Wong WF, et al.
    PLoS One, 2014;9(2):e87286.
    PMID: 24551054 DOI: 10.1371/journal.pone.0087286
    In this study, a new apoptotic monoterpenoid indole alkaloid, subditine (1), and four known compounds were isolated from the bark of Nauclea subdita. Complete (1)H- and (13)C- NMR data of the new compound were reported. The structures of isolated compounds were elucidated with various spectroscopic methods such as 1D- and 2D- NMR, IR, UV and LCMS. All five compounds were screened for cytotoxic activities on LNCaP and PC-3 human prostate cancer cell-lines. Among the five compounds, the new alkaloid, subditine (1), demonstrated the most potent cell growth inhibition activity and selective against LNCaP with an IC50 of 12.24±0.19 µM and PC-3 with an IC50 of 13.97±0.32 µM, compared to RWPE human normal epithelial cell line (IC50 = 30.48±0.08 µM). Subditine (1) treatment induced apoptosis in LNCaP and PC-3 as evidenced by increased cell permeability, disruption of cytoskeletal structures and increased nuclear fragmentation. In addition, subditine (1) enhanced intracellular reactive oxygen species (ROS) production, as reflected by increased expression of glutathione reductase (GR) to scavenge damaging free radicals in both prostate cancer cell-lines. Excessive ROS could lead to disruption of mitochondrial membrane potential (MMP), release of cytochrome c and subsequent caspase 9, 3/7 activation. Further Western blot analyses showed subditine (1) induced down-regulation of Bcl-2 and Bcl-xl expression, whereas p53 was up-regulated in LNCaP (p53-wild-type), but not in PC-3 (p53-null). Overall, our data demonstrated that the new compound subditine (1) exerts anti-proliferative effect on LNCaP and PC-3 human prostate cancer cells through induction of apoptosis.
  6. Azmi MN, Gény C, Leverrier A, Litaudon M, Dumontet V, Birlirakis N, et al.
    Molecules, 2014;19(2):1732-47.
    PMID: 24492595 DOI: 10.3390/molecules19021732
    A phytochemical investigation of the methanolic extract of the bark of Endiandra kingiana led to the isolation of seven new tetracyclic endiandric acid analogues, kingianic acids A-G (1-7), together with endiandric acid M (8), tsangibeilin B (9) and endiandric acid (10). Their structures were determined by 1D- and 2D-NMR analysis in combination with HRMS experiments. The structure of compounds 9 and 10 were confirmed by single-crystal X-ray diffraction analysis. These compounds were screened for Bcl-xL and Mcl-1 binding affinities and cytotoxic activity on various cancer cell lines. Compound 5 showed moderate cytotoxic activity against human colorectal adeno-carcinoma (HT-29) and lung adenocarcinoma epithelial (A549) cell lines, with IC50 values in the range 15-17 µM, and compounds 3, 6 and 9 exhibited weak binding affinity for the anti-apoptotic protein Mcl-1.
  7. Mukhtar MR, Aziz AN, Thomas NF, Hadi AH, Litaudon M, Awang K
    Molecules, 2009;14(3):1227-33.
    PMID: 19325519 DOI: 10.3390/molecules14031227
    The stem bark of Phoebe grandis afforded one new oxoproaporphine; (-)-grandine A (1), along with six known isoquinoline alkaloids: (-)-8,9-dihydrolinearisine (2), boldine, norboldine, lauformine, scortechiniine A and scortechiniine B. In addition to that of the new compound, complete 1H- and 13C-NMR data of the tetrahydroproaporphine (-)-8,9-dihydrolinearisine (2) is also reported. The alkaloids' structures were elucidated primarily by means of high field 1D- and 2D-NMR and HRMS spectral data.
  8. Mukhtar MR, Hadi AH, Rondeau D, Richomme P, Litaudon M, Mustafa MR, et al.
    Nat Prod Res, 2008;22(11):921-6.
    PMID: 18629705 DOI: 10.1080/14786410701642821
    The phytochemical study of the bark of Malaysian Phoebe scortechinii (Lauraceae) has resulted in the isolation and identification of two new proaporphine alkaloids; (+)-scortechiniine A (1) and (+)-scortechiniine B (2) together with two known proaporphines; (-)-hexahydromecambrine A (3), (-)-norhexahydromecambrine A (4), and one aporphine; norboldine (5). Structural elucidations of these alkaloids were performed using spectroscopic methods especially 1D and 2D (1)H and (13)C NMR.
  9. Mukhtar MR, Hadi AH, Litaudon M, Awang K
    Fitoterapia, 2004 Dec;75(7-8):792-4.
    PMID: 15567268
    Five morphinoid alkaloids have been isolated from Dehaasia longipedicellata, namely (-) pallidine, a new alkaloid (+) pallidinine (1), (+)-milonine, (-) 8,14-dehydrosalutaridine and (-) sinoacutine.
  10. Leong KH, Looi CY, Loong XM, Cheah FK, Supratman U, Litaudon M, et al.
    PLoS One, 2016;11(4):e0152652.
    PMID: 27070314 DOI: 10.1371/journal.pone.0152652
    Plants in the Meliaceae family are known to possess interesting biological activities, such as antimalaral, antihypertensive and antitumour activities. Previously, our group reported the plant-derived compound cycloart-24-ene-26-ol-3-one isolated from the hexane extracts of Aglaia exima leaves, which shows cytotoxicity towards various cancer cell lines, in particular, colon cancer cell lines. In this report, we further demonstrate that cycloart-24-ene-26-ol-3-one, from here forth known as cycloartane, reduces the viability of the colon cancer cell lines HT-29 and CaCO-2 in a dose- and time-dependent manner. Further elucidation of the compound's mechanism showed that it binds to tumour necrosis factor-receptor 1 (TNF-R1) leading to the initiation of caspase-8 and, through the activation of Bid, in the activation of caspase-9. This activity causes a reduction in mitochondrial membrane potential (MMP) and the release of cytochrome-C. The activation of caspase-8 and -9 both act to commit the cancer cells to apoptosis through downstream caspase-3/7 activation, PARP cleavage and the lack of NFkB translocation into the nucleus. A molecular docking study showed that the cycloartane binds to the receptor through a hydrophobic interaction with cysteine-96 and hydrogen bonds with lysine-75 and -132. The results show that further development of the cycloartane as an anti-cancer drug is worthwhile.
  11. Othman MA, Sivasothy Y, Looi CY, Ablat A, Mohamad J, Litaudon M, et al.
    Fitoterapia, 2016 Jun;111:12-7.
    PMID: 27072985 DOI: 10.1016/j.fitote.2016.04.004
    Giganteone E (1), a new dimeric acylphenol was isolated as a minor constituent from the bark of Myristica maxima Warb. The structure of 1 was established on the basis of 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Malabaricones A-C (2-4), giganteones A and C (5 and 6), maingayones A and B (7 and 8), maingayic acid B (9) and β-sitosteryl oleate (10) were also characterized in this plant for the first time. Compound 10 was identified for the first time in the Myristicaceae. Compounds 2 and 5 were active against human prostate cancer cell-lines, thus making this the first report on the prostate cancer inhibiting potential of acylphenols and dimeric acylphenols. Compounds 1, 4, 5, 7 and 8 exhibited potent DPPH free radical scavenging activity. This is the first report on their free radical scavenging capacity.
  12. Sivasothy Y, Krishnan T, Chan KG, Abdul Wahab SM, Othman MA, Litaudon M, et al.
    Molecules, 2016 Mar 21;21(3):391.
    PMID: 27102164 DOI: 10.3390/molecules21030391
    Malabaricones A-C (1-3) and giganteone A (4) were isolated from the bark of Myristica cinnamomea King. Their structures were elucidated and characterized by means of NMR and MS spectral analyses. These isolates were evaluated for their anti-quorum sensing activity using quorum sensing biosensors, namely Escherichia coli [pSB401] and Escherichia coli [pSB1075], whereby the potential of giganteone A (4) as a suitable anti-quorum sensing agent was demonstrated.
  13. Azmi MN, Péresse T, Remeur C, Chan G, Roussi F, Litaudon M, et al.
    Fitoterapia, 2016 Mar;109:190-5.
    PMID: 26779944 DOI: 10.1016/j.fitote.2016.01.004
    A phytochemical study of the EtOAc-soluble part of the methanolic extract of the bark of Endiandra kingiana led to the isolation of three new pentacyclic kingianins as racemic mixtures, kingianins O-Q (1-3), together with the known kingianins A, F, K, L, M and N (4-9), respectively. The structures of the new kingianins 1-3 were determined by 1D and 2D NMR analysis in combination with HRESIMS experiments. Kingianins A-Q were assayed for Mcl-1 binding affinity. Kingianins G and H were found to be potent inhibitors of Mcl-1/Bid interaction. A structure-activity relationship study showed that potency is very sensitive to the substitution pattern on the pentacyclic core. In addition, in contrast with the binding affinity for Bcl-xL, the levorotatory enantiomers of kingianins G, H and J exhibited similar binding affinities for Mcl-1 than their dextrorotatory counterparts, indicating that the two anti-apoptotic proteins have slightly different binding profiles.
  14. Qureshi AK, Mukhtar MR, Hirasawa Y, Hosoya T, Nugroho AE, Morita H, et al.
    Chem Pharm Bull (Tokyo), 2011;59(2):291-3.
    PMID: 21297315
    Two new indole alkaloids, neolamarckines A and B (1, 2) were isolated from the leaves of Neolamarckia cadamba (Rubiaceae). Structural elucidation of 1 and 2 was performed by combination of 2D-NMR and circular dichroism (CD) spectra, and chemical correlations. Neolamarckine A (1) showed inhibition of inducible nitric oxide synthase (iNOS) dose dependently.
  15. Ahmad K, Thomas NF, Hadi AH, Mukhtar MR, Mohamad K, Nafiah MA, et al.
    Chem Pharm Bull (Tokyo), 2010 Aug;58(8):1085-7.
    PMID: 20686264
    A phytochemical study on the bark of Neisosperma oppositifolia (Apocynaceae) yielded two new beta-carboline indole alkaloids, oppositinines A (1) and B (2), together with five known alkaloids, isoreserpiline, isocarapanaubine, vobasine, 10-methoxydihydrocorynantheol-N-oxide, and ochropposinine oxindole. Structural elucidation of 1 and 2 was performed using 2D NMR methods. Oppositinines A (1) and B (2) showed potent vasorelaxant effects on the rat aorta.
  16. Abdul Wahab SM, Sivasothy Y, Liew SY, Litaudon M, Mohamad J, Awang K
    Bioorg Med Chem Lett, 2016 08 01;26(15):3785-92.
    PMID: 27236720 DOI: 10.1016/j.bmcl.2016.05.046
    A new acylphenol, malabaricone E (1) together with the known malabaricones A-C (2-4), maingayones A and B (5 and 6) and maingayic acid B (7) were isolated from the ethyl acetate extract of the fruits of Myristica cinnamomea King. Their structures were determined by 1D and 2D NMR techniques and LCMS-IT-TOF analysis. Compounds 3 (1.84±0.19 and 1.76±0.21μM, respectively) and 4 (1.94±0.27 and 2.80±0.49μM, respectively) were identified as dual inhibitors, with almost equal acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) enzymes inhibiting potentials. The Lineweaver-Burk plots of compounds 3 and 4 indicated that they were mixed-mode inhibitors. Based on the molecular docking studies, compounds 3 and 4 interacted with the peripheral anionic site (PAS), the catalytic triad and the oxyanion hole of the AChE. As for the BChE, while compound 3 interacted with the PAS, the catalytic triad and the oxyanion hole, compound 4 only interacted with the catalytic triad and the oxyanion hole.
  17. Zahari A, Cheah FK, Mohamad J, Sulaiman SN, Litaudon M, Leong KH, et al.
    Planta Med, 2014 May;80(7):599-603.
    PMID: 24723007 DOI: 10.1055/s-0034-1368349
    The crude extract of the bark of Dehaasia longipedicellata exhibited antiplasmodial activity against the growth of Plasmodium falciparum K1 isolate (resistant strain). Phytochemical studies of the extract led to the isolation of six alkaloids: two morphinandienones, (+)-sebiferine (1) and (-)-milonine (2); two aporphines, (-)-boldine (3) and (-)-norboldine (4); one benzlyisoquinoline, (-)-reticuline (5); and one bisbenzylisoquinoline, (-)-O-O-dimethylgrisabine (6). Their structures were determined on the basis of 1D and 2D NMR, IR, UV, and LCMS spectroscopic techniques and upon comparison with literature values. Antiplasmodial activity was determined for all of the isolated compounds. They showed potent to moderate activity with IC50 values ranging from 0.031 to 30.40 µM. (-)-O-O-dimethylgrisabine (6) and (-)-milonine (2) were the two most potent compounds, with IC50 values of 0.031 and 0.097 µM, respectively, that were comparable to the standard, chloroquine (0.090 µM). The compounds were also assessed for their antioxidant activities with di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium (IC50 = 18.40-107.31 µg/mL), reducing power (27.40-87.40 %), and metal chelating (IC50 = 64.30 to 257.22 µg/mL) having good to low activity. (-)-O-O-dimethylgrisabine (6) exhibited a potent antioxidant activity of 44.3 % reducing power, while di(phenyl)-(2,4,6-trinitrophenyl)iminoazanium and metal chelating activities had IC50 values of 18.38 and 64.30 µg/mL, respectively. Thus it may be considered as a good reductant with the ability to chelate metal and prevent pro-oxidant activity. In addition to the antiplasmodial and antioxidant activities, the isolated compounds were also tested for their cytotoxicity against a few cancer and normal cell lines. (-)-Norboldine (4) exhibited potent cytotoxicity towards pancreatic cancer cell line BxPC-3 with an IC50 value of 27.060 ± 1.037 µM, and all alkaloids showed no toxicity towards the normal pancreatic cell line (hTERT-HPNE).
  18. Wan Othman WNN, Liew SY, Khaw KY, Murugaiyah V, Litaudon M, Awang K
    Bioorg Med Chem, 2016 09 15;24(18):4464-4469.
    PMID: 27492195 DOI: 10.1016/j.bmc.2016.07.043
    Alzheimer's disease is the most common form of dementia among older adults. Acetylcholinesterase and butyrylcholinesterase are two enzymes involved in the breaking down of the neurotransmitter acetylcholine. Inhibitors for these enzymes have potential to prolong the availability of acetylcholine. Hence, the search for such inhibitors especially from natural products is needed in developing potential drugs for Alzheimer's disease. The present study investigates the cholinesterase inhibitory activity of compounds isolated from three Cryptocarya species towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). Nine alkaloids were isolated; (+)-nornantenine 1, (-)-desmethylsecoantofine 2, (+)-oridine 3, (+)-laurotetanine 4 from the leaves of Cryptocarya densiflora BI., atherosperminine 5, (+)-N-methylisococlaurine 6, (+)-N-methyllaurotetanine 7 from the bark of Cryptocarya infectoria Miq., 2-methoxyatherosperminine 8 and (+)-reticuline 9 from the bark of Cryptocarya griffithiana Wight. In general, most of the alkaloids showed higher inhibition towards BChE as compared to AChE. The phenanthrene type alkaloid; 2-methoxyatherosperminine 8, exhibited the most potent inhibition against BChE with IC50 value of 3.95μM. Analysis of the Lineweaver-Burk (LB) plot of BChE activity over a range of substrate concentration suggested that 2-methoxyatherosperminine 8 exhibited mixed-mode inhibition with an inhibition constant (Ki) of 6.72μM. Molecular docking studies revealed that 2-methoxyatherosperminine 8 docked well at the choline binding site and catalytic triad of hBChE (butyrylcholinesterase from Homo sapiens); hydrogen bonding with Tyr 128 and His 438 residues respectively.
  19. Husna Hasnan MH, Sivasothy Y, Khaw KY, Nafiah MA, Hazni H, Litaudon M, et al.
    Int J Mol Sci, 2023 Jun 27;24(13).
    PMID: 37445877 DOI: 10.3390/ijms241310699
    Studies have been conducted over the last decade to identify secondary metabolites from plants, in particular those from the class of alkaloids, for the development of new anti-Alzheimer's disease (AD) drugs. The genus Alseodaphne, comprising a wide range of alkaloids, is a promising source for the discovery of new cholinesterase inhibitors, the first-line treatment for AD. With regard to this, a phytochemical investigation of the dichloromethane extract of the bark of A. pendulifolia Gamb. was conducted. Repeated column chromatography and preparative thin-layer chromatography led to the isolation of a new bisbenzylisoquinoline alkaloid, N-methyl costaricine (1), together with costaricine (2), hernagine (3), N-methyl hernagine (4), corydine (5), and oxohernagine (6). Their structures were elucidated by the 1D- and 2D-NMR techniques and LCMS-IT-TOF analysis. Compounds 1 and 2 were more-potent BChE inhibitors than galantamine with IC50 values of 3.51 ± 0.80 µM and 2.90 ± 0.56 µM, respectively. The Lineweaver-Burk plots of compounds 1 and 2 indicated they were mixed-mode inhibitors. Compounds 1 and 2 have the potential to be employed as lead compounds for the development of new drugs or medicinal supplements to treat AD.
  20. Ngadni MA, Chong SL, Kamarudin MNA, Hazni H, Litaudon M, Supratman U, et al.
    Fitoterapia, 2024 Mar;173:105765.
    PMID: 38042506 DOI: 10.1016/j.fitote.2023.105765
    A phytochemical study on the bark of Chisocheton erythrocarpus Hiern (Meliaceae) has led to the isolation of six new phragmalin-type limonoids named erythrocarpines I - N (1-6) along with one known limonoid, erythrocarpine F (7). Their structures were fully characterized by spectroscopic methods. The pre-treatment of NG108-15 cells with 1-5, 7 (2 h) demonstrated low to good protective effects against H2O2 exposure; 1 (83.77% ± 1.84 at 12.5 μM), 2 (69.07 ± 2.01 at 12.5 μM), 3 (80.38 ± 2.1 at 12.5 μM), 4 (62.33 ± 1.95 at 25 μM),5 (58.67 ± 1.85 at 50 μM) and 7 (66.07 ± 2.03 at 12.5 μM). Interestingly, 1 and 3 demonstrated comparable protective effects to positive control epigallocatechin gallate (EGCG) with similar cell viability capacity (≈ 80%), having achieved that at lower concentration (12.5 μM) than EGCG (50 μM). Collectively, the results suggested the promising use of 1 and 3 as potential neuroprotective agents against hydrogen peroxide-induced cytotoxicity in neuronal model.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links