Displaying publications 1 - 20 of 25 in total

Abstract:
Sort:
  1. Cha TS, Chen CF, Yee W, Aziz A, Loh SH
    J Microbiol Methods, 2011 Mar;84(3):430-4.
    PMID: 21256888 DOI: 10.1016/j.mimet.2011.01.005
    The use of acetosyringone in Agrobacterium-mediated gene transfer into plant hosts has been favored for the past few decades. The influence of other phenolic compounds and their effectiveness in Agrobacterium-mediated plant transformation systems has been neglected. In this study, the efficacy of four phenolic compounds on Agrobacterium-mediated transformation of the unicellular green alga Nannochloropsis sp. (Strain UMT-M3) was assessed by using β-glucuronidase (GUS) assay. We found that cinnamic acid, vanillin and coumarin produced higher percentages of GUS positive cells as compared to acetosyringone. These results also show that the presence of methoxy group in the phenolic compounds may not be necessary for Agrobacterium vir gene induction and receptor binding as suggested by previous studies. These findings provide possible alternative Agrobacterium vir gene inducers that are more potent as compared to the commonly used acetosyringone in achieving high efficiency of Agrobacterium-mediated transformation in microalgae and possibly for other plants.
  2. Cha TS, Chen JW, Goh EG, Aziz A, Loh SH
    Bioresour Technol, 2011 Nov;102(22):10633-40.
    PMID: 21967717 DOI: 10.1016/j.biortech.2011.09.042
    This study was undertaken to investigate the effects of different nitrate concentrations in culture medium on oil content and fatty acid composition of Chlorella vulgaris (UMT-M1) and Chlorella sorokiniana (KS-MB2). Results showed that both species produced significant higher (p<0.05) oil content at nitrate ranging from 0.18 to 0.66 mM with C. vulgaris produced 10.20-11.34% dw, while C. sorokiniana produced 15.44-17.32% dw. The major fatty acids detected include C16:0, C18:0, C18:1, C18:2 and C18:3. It is interesting to note that both species displayed differentially regulated fatty acid accumulation patterns in response to nitrate treatments at early stationary growth phase. Their potential use for biodiesel application could be enhanced by exploring the concept of binary blending of the two microalgae oils using developed mathematical equations to calculate the oil mass blending ratio and simultaneously estimated the weight percentage (wt.%) of desirable fatty acid compositions.
  3. Mohd Nasir MT, Norimah AK, Hazizi AS, Nurliyana AR, Loh SH, Suraya I
    Appetite, 2012 Apr;58(2):525-30.
    PMID: 22265752 DOI: 10.1016/j.appet.2012.01.007
    This study aimed to determine the relationship between child feeding practices, food habits, and anthropometric indicators with cognitive performance of preschoolers aged 4-6 years in Peninsular Malaysia (n=1933). Parents were interviewed on socio-demographic background, nutrition knowledge, child feeding practices and food habits. Height and weight of the preschoolers were measured; BMI-for-age, weight-for-age and height-for-age were determined. Cognitive performance was assessed using Raven's Colored Progressive Matrices. The mean monthly household income was RM3610 and 59.6% of parents attained secondary education. Thirty-three percent of parents had good knowledge on nutrition, 39% satisfactory and 28% poor. For child feeding practices, perceived responsibility had the highest mean score (M=3.99, SD=0.72), while perceived child weight had the lowest (M=2.94, SD=0.38). The prevalence of possible risk of overweight, being overweight, and obesity were 3.9%, 7.9% and 8.1%, respectively, whereas the prevalence of underweight and stunting were 8.0% and 8.4%, respectively. Breakfast was the second most frequently skipped meal (16.8%) after dinner (18.1%). The mean cognitive score was 103.5 (SD=14.4). Height-for-age and consumption of dinner were found to contribute significantly towards cognitive performance after controlling for socio-demographic background and parent's nutrition knowledge.
  4. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2012 Nov 2;1262:43-8.
    PMID: 23021646 DOI: 10.1016/j.chroma.2012.09.007
    Agarose film liquid phase microextraction (AF-LPME) procedure for the extraction and preconcentration of polycyclic aromatic hydrocarbons (PAHs) in water has been investigated. Agarose film was used for the first time as an interface between donor and acceptor phases in liquid phase microextraction which allowed for selective extraction of the analytes prior to gas chromatography-mass spectrometry. Using 1-octanol as acceptor phase, high enrichment factors in the range of 57-106 for the targeted analytes (fluorene, phenanthrene, fluoranthene and pyrene) were achieved. Under the optimum extraction conditions, the method showed good linearity in the range of 0.1-200 μgL(-1), good correlation coefficients in the range of 0.9963-0.9999, acceptable reproducibility (RSD 6.1-9.2%, n=3), low limits of detection (0.01-0.04 μgL(-1)) and satisfactory relative recoveries (92.9-104.7%). As the AF-LPME device was non-expensive, reuse or recycle of the film was not required, thus eliminating the possibility of analytes carry-over between runs. The AF-LPME technique is environment-friendly and compatible with the green chemistry concept as agarose is biodegradable polysaccharide extracted from seaweed and the procedure requires small volume of organic solvent and generates little waste. The validated method was successfully applied to the analysis of the four analytes in river water samples.
  5. Sanagi MM, Loh SH, Wan Ibrahim WA, Hasan MN, Aboul Enein HY
    J Chromatogr Sci, 2013 Feb;51(2):112-6.
    PMID: 22776739 DOI: 10.1093/chromsci/bms113
    In this work, a two-phase hollow fiber liquid-phase microextraction (HF-LPME) method combined with gas chromatography-mass spectrometry (GC-MS) is developed to provide a rapid, selective and sensitive analytical method to determine polycyclic aromatic hydrocarbons (PAHs) in fresh milk. The standard addition method is used to construct calibration curves and to determine the residue levels for the target analytes, fluorene, phenanthrene, fluoranthene, pyrene and benzo[a]pyrene, thus eliminating sample pre-treatment steps such as pH adjustment. The HF-LPME method shows dynamic linearity from 5 to 500 µg/L for all target analytes with R(2) ranging from 0.9978 to 0.9999. Under optimized conditions, the established detection limits range from 0.07 to 1.4 µg/L based on a signal-to-noise ratio of 3:1. Average relative recoveries for the determination of PAHs studied at 100 µg/L spiking levels are in the range of 85 to 110%. The relative recoveries are slightly higher than those obtained by conventional solvent extraction, which requires saponification steps for fluorene and phenanthrene, which are more volatile and heat sensitive. The HF-LPME method proves to be simple and rapid, and requires minimal amounts of organic solvent that supports green analysis.
  6. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN
    Talanta, 2013 Mar 15;106:200-5.
    PMID: 23598117 DOI: 10.1016/j.talanta.2012.12.032
    A new microextraction procedure termed multi-walled carbon nanotube-impregnated agarose film microextraction (MWCNT-AFME) has been developed. The method utilized multi-walled carbon nanotubes (MWCNTs) immobilized in agarose film to serve as adsorbent in solid phase microextraction (SPME). The film was prepared by mixing the MWCNTs in agarose solution and drying the mixture in oven. Extraction of selected polycyclic aromatic hydrocarbons was performed by inserting a needle through circular MWCNT-impregnated agarose films (5 mm diameter) and the assembly was dipped into an agitated sample solution prior to micro high performance liquid chromatography-ultraviolet analysis. Back extraction was then performed using ultrasonication of the films in 100 μL of solvent. The film was discarded after single use, thus avoiding any analyte carry-over effect. Due to the mesoporous nature of the agarose film, the MWCNTs were immobilized easily within the film and thus allowing for close contact between adsorbent and analytes. Under the optimized extraction conditions, the technique achieved trace LODs in the range of 0.1 to 50 ng L(-1) for the targeted analytes, namely fluoranthene, phenanthrene and benzo[a]pyrene. The method was successfully applied to the analysis of spiked green tea beverage samples with good relative recoveries in the range of 91.1 to 107.2%. The results supported the feasibility of agarose to serve as adsorbent holder in SPME which then minimizes the consumption of chemicals and disposal cost of organic wastes.
  7. Loh SH, Sanagi MM, Wan Ibrahim WA, Hasan MN
    J Chromatogr A, 2013 Aug 9;1302:14-9.
    PMID: 23809804 DOI: 10.1016/j.chroma.2013.06.010
    A new microextraction procedure termed agarose gel liquid phase microextraction (AG-LPME) combined with gas chromatography-mass spectrometry (GC-MS) was developed for the determination of selected polycyclic aromatic hydrocarbons (PAHs) in water. The technique utilized an agarose gel disc impregnated with the acceptor phase (1-octanol). The extraction procedure was performed by allowing the solvent-impregnated agarose gel disc to tumble freely in the stirred sample solution. After extraction, the agarose gel disc was removed and subjected to centrifugation to disrupt its framework and to release the impregnated solvent, which was subsequently withdrawn and injected into the GC-MS for analysis. Under optimized extraction conditions, the new method offered high enrichment factors (89-177), trace level LODs (9-14ngL(-1)) and efficient extraction with good relative recoveries in the range of 93.3-108.2% for spiked drinking water samples. AG-LPME did not exhibit any problems related to solvent dissolution, and it provided high extraction efficiencies that were comparable to those of hollow fiber liquid phase microextraction (HF-LPME) and significantly higher than those of agarose film liquid phase microextraction (AF-LPME). This technique employed a microextraction format and utilized an environmentally compatible solvent holder that supported the green chemistry concept.
  8. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
  9. Jusoh M, Loh SH, Chuah TS, Aziz A, Cha TS
    Phytochemistry, 2015 Mar;111:65-71.
    PMID: 25583439 DOI: 10.1016/j.phytochem.2014.12.022
    Microalgae lipids and oils are potential candidates for renewable biodiesel. Many microalgae species accumulate a substantial amount of lipids and oils under environmental stresses. However, low growth rate under these adverse conditions account for the decrease in overall biomass productivity which directly influence the oil yield. This study was undertaken to investigate the effect of exogenously added auxin (indole-3-acetic acid; IAA) on the oil content, fatty acid compositions, and the expression of fatty acid biosynthetic genes in Chlorella vulgaris (UMT-M1). Auxin has been shown to regulate growth and metabolite production of several microalgae. Results showed that oil accumulation was highest on days after treatment (DAT)-2 with enriched levels of palmitic (C16:0) and stearic (C18:0) acids, while the linoleic (C18:2) and α-linolenic (C18:3n3) acids levels were markedly reduced by IAA. The elevated levels of saturated fatty acids (C16:0 and C18:0) were consistent with high expression of the β-ketoacyl ACP synthase I (KAS I) gene, while low expression of omega-6 fatty acid desaturase (ω-6 FAD) gene was consistent with low production of C18:2. However, the increment of stearoyl-ACP desaturase (SAD) gene expression upon IAA induction did not coincide with oleic acid (C18:1) production. The expression of omega-3 fatty acid desaturase (ω-3 FAD) gene showed a positive correlation with the synthesis of PUFA and C18:3n3.
  10. Sanagi MM, Loh SH, Wan Ibrahim WN, Pourmand N, Salisu A, Wan Ibrahim WA, et al.
    J Sep Sci, 2016 Mar;39(6):1152-9.
    PMID: 27027592 DOI: 10.1002/jssc.201501207
    Recently, there has been considerable interest in the use of miniaturized sample preparation techniques before the chromatographic monitoring of the analytes in unknown complex compositions. The use of biopolymer-based sorbents in solid-phase microextraction techniques has achieved a good reputation. A great variety of polysaccharides can be extracted from marine plants or microorganisms. Seaweeds are the major sources of polysaccharides such as alginate, agar, agarose, as well as carrageenans. Agarose and alginate (green biopolymers) have been manipulated for different microextraction approaches. The present review is focused on the classification of biopolymer and their applications in multidisciplinary research. Besides, efforts have been made to discuss the state-of-the-art of the new microextraction techniques that utilize commercial biopolymer interfaces such as agarose in liquid-phase microextraction and solid-phase microextraction.
  11. Yahaya N, Sanagi MM, Abd Aziz N, Wan Ibrahim WA, Nur H, Loh SH, et al.
    Biomed Chromatogr, 2017 Feb;31(2).
    PMID: 27474795 DOI: 10.1002/bmc.3803
    A rapid dispersive micro-solid phase extraction (D-μ-SPE) combined with LC/MS/MS method was developed and validated for the determination of ketoconazole and voriconazole in human urine and plasma samples. Synthesized mesoporous silica MCM-41 was used as sorbent in d-μ-SPE of the azole compounds from biological fluids. Important D-μ-SPE parameters, namely type desorption solvent, extraction time, sample pH, salt addition, desorption time, amount of sorbent and sample volume were optimized. Liquid chromatographic separations were carried out on a Zorbax SB-C18 column (2.1 × 100 mm, 3.5 μm), using a mobile phase of acetonitrile-0.05% formic acid in 5 mm ammonium acetate buffer (70:30, v/v). A triple quadrupole mass spectrometer with positive ionization mode was used for the determination of target analytes. Under the optimized conditions, the calibration curves showed good linearity in the range of 0.1-10,000 μg/L with satisfactory limit of detection (≤0.06 μg/L) and limit of quantitation (≤0.3 μg/L). The proposed method also showed acceptable intra- and inter-day precisions for ketoconazole and voriconazole from urine and human plasma with RSD ≤16.5% and good relative recoveries in the range 84.3-114.8%. The MCM-41-D-μ-SPE method proved to be rapid and simple and requires a small volume of organic solvent (200 μL); thus it is advantageous for routine drug analysis.
  12. Chong YT, Mohd Ariffin M, Mohd Tahir N, Loh SH
    Talanta, 2018 Jan 01;176:558-564.
    PMID: 28917790 DOI: 10.1016/j.talanta.2017.08.068
    Electro-mediated microextraction (EMM) combined with micro-high performance liquid chromatography-ultraviolet detection was successfully developed for the determination of selected phenols, namely 4-chlorophenol (4CP), 2-nitrophenol (2NP) and 2,4-dichlorophenols (2,4 DCP) in water. A solvent-impregnated agarose gel disc was utilized as a solvent holder in this study. Under optimum extraction conditions, the method showed good linearity in the range of 0.1-250µgL-1, 0.3-250µgL-1and 0.2-500µgL-1for 4CP, 2NP and 2,4 DCP, respectively with correlation coefficients of ≥ 0.9975, ultra-trace LODs (0.03-0.1µgL-1) and satisfactory relative recovery average (85.0-114.1%) for the analysis of selected phenols. The proposed method was rapid and eco-friendly as the solvent holder was constructed using minute amounts of extraction solvent immobilized within the biodegradable agarose gel disc. A comparative microextraction technique termed solvent-impregnated agarose gel liquid phase microextraction (AG-LPME) was re-optimized and validated for the extraction of phenols in water. The method offered good linearity, ultra-trace LODs ranging 0.1-0.5µgL-1and satisfactory average of relative recovery (86.1-114.1%). The EMM was superior in terms of sensitivity and time-effectiveness compared to AG-LPME. Both techniques combine extraction and pre-concentration in mini-scaled approaches using an eco-friendly solvent holder that fulfil the green chemistry concept.
  13. Hazrina HZ, Noorashikin MS, Beh SY, Loh SH, Zain NNM
    R Soc Open Sci, 2018 Jul;5(7):180070.
    PMID: 30109066 DOI: 10.1098/rsos.180070
    Cloud point extraction (CPE) is a separation and preconcentration of non-ionic surfactant from one liquid phase to another. In this study, Sylgard 309 and three different types of additives for CPE, namely CPE-Sylgard, CPE-Sylgard-BMIMBr and CPE-Sylgard-GLDA, are investigated to extract methylphenol from water samples. The methylphenols are well separated by reversed-phase high-performance liquid chromatography (HPLC) with isocratic elution of acetonitrile : water; 60 : 40 (v/v) and detection at 260 nm. The optimized parameters for the effect of salt, surfactant, temperature, time of extraction, pH, interference study and the performance of different additives on methylphenol extraction are investigated. CPE-Sylgard-GLDA is chosen because it gives us a high peak and good peak area compared with CPE-Sylgard and CPE-Sylgard-BMIMBr. The recovery extractions of CPE-Sylgard-GLDA are obtained in the range of 80-99% as the percentage of relative standard deviation (RSD) is less than 10. The LOD and LOQ are 0.05 ppm and 0.18 ppm, respectively. The method developed for CPE-Sylgard-GLDA coupled with HPLC is feasible for the determination of methylphenol because it is simple, effective, cheap, and produces a high percentage of recovery.
  14. Jusoh M, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2019 Jun;188(2):450-459.
    PMID: 30536033 DOI: 10.1007/s12010-018-02937-4
    Microalgae lipids and oils are potential candidates for renewable biofuels and nutritional inventions. Recent studies from our lab have shown that two plant hormones, auxin and jasmonic acid, influence microalgae growth and fatty acid accumulation. Therefore, in this study, a high oil-producing strain Chlorella vulgaris UMT-M1 was selected for hormonal study using gibberellin (GA). Exogenous GA3 was applied to early stationary culture of C. vulgaris UMT-M1. Results showed that GA3 gradually increases the cell density of C. vulgaris to up to 42% on days after treatment (DAT)-8 and also capable of delaying the algal senescence. However, the increment in cell density did not enhance the total oil production albeit transient modification of fatty acid compositions was observed for saturated (SFA) and polyunsaturated (PUFA) fatty acids. This illustrates that GA3 only promotes cell division and growth but not the oil accumulation. In addition, application of GA3 in culture medium was shown to promote transient increment of palmitic (C16:0) and stearic (C18:0) acids from DAT-4 to DAT-6 and these changes are correlated with the expression of β-ketoacyl ACP synthase I (KAS I) gene.
  15. Rozaini MNH, Semail NF, Saad B, Kamaruzaman S, Abdullah WN, Rahim NA, et al.
    Talanta, 2019 Jul 01;199:522-531.
    PMID: 30952293 DOI: 10.1016/j.talanta.2019.02.096
    Molecularly imprinted silica gel (MISG) was incorporated through dispersion in agarose polymer matrix to form a mixed matrix membrane (MMM) and was applied for the determination of three sulfonamide antibiotic compounds (i.e. sulfamethoxazole (SMX), sulfamonomethoxine (SMM), and sulfadiazine (SDZ)) from environmental water samples. Several important microextraction conditions, such as type of desorption solvent, extraction time, amount of sorbent, sample volume, pH, and effect of desorption time, were comprehensively optimized. A preconcentration factors of ≥ 20 was achieved by the extraction of 12.5 mL of water samples using the developed method. This microextraction-HPLC method demonstrated good linearity (1-500 μg L-1) with a coefficient of determination (R2) of 0.9959-0.9999, low limits of detection (0.06-0.17 μg L-1) and limits of quantification (0.20-0.56 μg L-1), good analyte recoveries (80-96%), and acceptable relative standard deviations (< 10%) under the optimized conditions. The method is systematically compared to those reported in the literature.
  16. Teh KY, Afifudeen CLW, Aziz A, Wong LL, Loh SH, Cha TS
    Data Brief, 2019 Dec;27:104680.
    PMID: 31720332 DOI: 10.1016/j.dib.2019.104680
    Interest in harvesting potential benefits from microalgae renders it necessary to have the many ecological niches of a single species to be investigated. This dataset comprises de novo whole genome assembly of two mangrove-isolated microalgae (from division Chlorophyta); Chlorella vulgaris UMT-M1 and Messastrum gracile SE-MC4 from Universiti Malaysia Terengganu, Malaysia. Library runs were carried out with 2 × 150 base paired-ends reads, whereas sequencing was conducted using Illumina Novaseq 2500 platform. Sequencing yielded raw reads amounting to ∼11 Gb in total bases for both species and was further assembled de novo. Genome assembly resulted in a 50.15 Mbp and 60.83 Mbp genome size for UMT-M1 and SE-MC4, respectively. All filtered and assembled genomic data sequences have been submitted to National Centre for Biotechnology Information (NCBI) and can be located at DDBJ/ENA/GenBank under the accession of VJNP00000000 (UMT-M1) and VIYE00000000 (SE-MC4).
  17. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    World J Microbiol Biotechnol, 2020 Jan 07;36(1):17.
    PMID: 31912247 DOI: 10.1007/s11274-019-2790-y
    In this study, the effects of limited and excess nitrate on biomass, lipid production, and fatty acid profile in Messastrum gracile SE-MC4 were determined. The expression of fatty acid desaturase genes, namely stearoyl-ACP desaturase (SAD), omega-6 fatty acid desaturase (ω-6 FAD), omega-3 fatty acid desaturase isoform 1 (ω-3 FADi1), and omega-3 fatty acid desaturase isoform 2 (ω-3 FADi2) was also assessed. It was found that nitrate limitation generally increased the total oil, α-linolenic acid (C18:3n3) and total polyunsaturated fatty acid (PUFA) contents in M. gracile. The reduction of nitrate concentration from 1.76 to 0.11 mM increased the total oil content significantly from 32.5 to 41.85% (dry weight). Palmitic (C16:0) and oleic (C18:1) acids as the predominant fatty acids in this microalgae constituted between 82 and 87% of the total oil content and were relatively consistent throughout all nitrate concentrations tested. The expression of SAD, ω-6 FAD, and ω-3 FADi2 genes increased under nitrate limitation, especially at 0.11 mM nitrate. The ω-3 FADi1 demonstrated a binary up-regulation pattern of expression under both nitrate-deficient (0.11 mM) and -excess (3.55 mM) conditions. Thus, findings from this study suggested that limited or excess nitrate could be used as part of a cultivation strategy to increase oil and PUFA content following media optimisation and more efficient culture methodology. Data obtained from the expression of desaturase genes would provide valuable insights into their roles under excess and limited nitrate conditions in M. gracile, potentially paving the way for future genetic modifications.
  18. Anne-Marie K, Yee W, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Apr;190(4):1438-1456.
    PMID: 31782088 DOI: 10.1007/s12010-019-03182-z
    In this study, the effects of limited and excess phosphate on biomass content, oil content, fatty acid profile and the expression of three fatty acid desaturases in Messastrum gracile SE-MC4 were determined. It was found that total biomass (0.67-0.83 g L-1), oil content (30.99-38.08%) and the duration for cells to reach stationary phase (25-27 days) were not considerably affected by phosphate limitation. However, excess phosphate slightly reduced total biomass and oil content to 0.50 g L-1 and 25.36% respectively. The dominant fatty acids in M. gracile, pamitic acid (C16:0) and oleic acid (C18:1) which constitute more than 81% of the total fatty acids remained relatively high and constant across all phosphate concentrations. Reduction of phosphate concentration to 25% and below significantly increased total MUFA, whereas increasing phosphate concentration to ≥ 50% and ≥ 100% significantly increased total SFA and PUFA content respectively. The expression of omega-3 fatty acid desaturase (ω-3 FADi1, ω-3 FADi2) and omega-6 fatty acid desaturase (ω-6 FAD) was increased under phosphate limitation, especially at ≤ 12.5% phosphate, whereas levels of streoyl-ACP desaturase (SAD) transcripts were relatively unchanged across all phosphate concentrations. The first isoform of ω-3 FAD (ω-3 FADi) displayed a binary upregulation under limited (≤ 12.5%) and excess (200%) phosphate. The expression of ω-6 FAD, ω-3 FAD and SAD were inconsistent with the accumulation of oleic acid (C18:1), linoleic acid (C18:2) and alpha-linolenic acid (C18:3), suggesting that these genes may be regulated indirectly by phosphate availability via post-transcriptional or post-translational mechanisms.
  19. Norlina R, Norashikin MN, Loh SH, Aziz A, Cha TS
    Appl Biochem Biotechnol, 2020 Aug;191(4):1653-1669.
    PMID: 32198601 DOI: 10.1007/s12010-020-03312-y
    Abscisic acid (ABA) has been known to exist in a microalgal system and serves as one of the chemical stimuli in various biological pathways. Nonetheless, the involvement of ABA in fatty acid biosynthesis, particularly at the transcription level in microalgae is poorly understood. The objective of this study was to determine the effects of exogenous ABA on growth, total oil content, fatty acid composition, and the expression level of beta ketoacyl-ACP synthase I (KAS I) and omega-3 fatty acid desaturase (ω-3 FAD) genes in Chlorella vulgaris UMT-M1. ABA was applied to early stationary C. vulgaris cultures at concentrations of 0, 10, 20, and 80 μM for 48 h. The results showed that ABA significantly increased biomass production and total oil content. The increment of palmitic (C16:0) and stearic (C18:0) acids was coupled by decrement in linoleic (C18:2) and α-linolenic (C18:3n3) acids. Both KAS I and ω-3 FAD gene expression were downregulated, which was negatively correlated to saturated fatty acid (SFAs), but positively correlated to polyunsaturated fatty acid (PUFA) accumulations. Further analysis of both KAS I and ω-3 FAD promoters revealed the presence of multiple ABA-responsive elements (ABREs) in addition to other phytohormone-responsive elements. However, the role of these phytohormone-responsive elements in regulating KAS I and ω-3 FAD gene expression still remains elusive. This revelation might suggest that phytohormone-responsive gene regulation in C. vulgaris and microalgae as a whole might diverge from higher plants which deserve further scientific research to elucidate its functional roles.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links