Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Apr 04;25(7).
    PMID: 38612834 DOI: 10.3390/ijms25074024
    The animal gut microbiota, comprising a diverse array of microorganisms, plays a pivotal role in shaping host health and physiology. This review explores the intricate dynamics of the gut microbiome in animals, focusing on its composition, function, and impact on host-microbe interactions. The composition of the intestinal microbiota in animals is influenced by the host ecology, including factors such as temperature, pH, oxygen levels, and nutrient availability, as well as genetic makeup, diet, habitat, stressors, and husbandry practices. Dysbiosis can lead to various gastrointestinal and immune-related issues in animals, impacting overall health and productivity. Extracellular vesicles (EVs), particularly exosomes derived from gut microbiota, play a crucial role in intercellular communication, influencing host health by transporting bioactive molecules across barriers like the intestinal and brain barriers. Dysregulation of the gut-brain axis has implications for various disorders in animals, highlighting the potential role of microbiota-derived EVs in disease progression. Therapeutic approaches to modulate gut microbiota, such as probiotics, prebiotics, microbial transplants, and phage therapy, offer promising strategies for enhancing animal health and performance. Studies investigating the effects of phage therapy on gut microbiota composition have shown promising results, with potential implications for improving animal health and food safety in poultry production systems. Understanding the complex interactions between host ecology, gut microbiota, and EVs provides valuable insights into the mechanisms underlying host-microbe interactions and their impact on animal health and productivity. Further research in this field is essential for developing effective therapeutic interventions and management strategies to promote gut health and overall well-being in animals.
  2. Barathan M, Ng SL, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2024 Mar 07;25(6).
    PMID: 38542054 DOI: 10.3390/ijms25063080
    This paper sheds light on the alarming issue of antibiotic resistance (ABR) in aquatic environments, exploring its detrimental effects on ecosystems and public health. It examines the multifaceted role of antibiotic use in aquaculture, agricultural runoff, and industrial waste in fostering the development and dissemination of resistant bacteria. The intricate interplay between various environmental factors, horizontal gene transfer, and bacterial extracellular vesicles (BEVs) in accelerating the spread of ABR is comprehensively discussed. Various BEVs carrying resistance genes like blaCTX-M, tetA, floR, and sul/I, as well as their contribution to the dominance of multidrug-resistant bacteria, are highlighted. The potential of BEVs as both a threat and a tool in combating ABR is explored, with promising strategies like targeted antimicrobial delivery systems and probiotic-derived EVs holding significant promise. This paper underscores the urgency of understanding the intricate interplay between BEVs and ABR in aquatic environments. By unraveling these unseen weapons, we pave the way for developing effective strategies to mitigate the spread of ABR, advocating for a multidisciplinary approach that includes stringent regulations, enhanced wastewater treatment, and the adoption of sustainable practices in aquaculture.
  3. Man RC, Idrus RBH, Ibrahim WIW, Saim AB, Lokanathan Y
    Adv Exp Med Biol, 2024;1450:59-76.
    PMID: 37247133 DOI: 10.1007/5584_2023_777
    Conditioned medium from cultured fibroblast cells is recognized to promote wound healing and growth through the secretion of enzymes, extracellular matrix proteins, and various growth factors and cytokines. The objective of this study was to profile the secreted proteins present in nasal fibroblast conditioned medium (NFCM). Nasal fibroblasts isolated from human nasal turbinates were cultured for 72 h in Defined Keratinocytes Serum Free Medium (DKSFM) or serum-free F12: Dulbecco's Modified Eagle's Medium (DMEM) to collect conditioned medium, denoted as NFCM_DKSFM and NFCM_FD, respectively. SDS-PAGE was performed to detect the presence of protein bands, followed by MALDI-TOF and mass spectrometry analysis. SignalP, SecretomeP, and TMHMM were used to identify the secreted proteins in conditioned media. PANTHER Classification System was performed to categorize the protein according to protein class, whereas STRING 10 was carried out to evaluate the predicted proteins interactions. SDS-PAGE results showed the presence of various protein with molecular weight ranging from ~10 kDa to ~260 kDa. Four protein bands were identified using MALDI-TOF. The analyses identified 104, 83, and 7 secreted proteins in NFCM_FD, NFCM_DKSFM, and DKSFM, respectively. Four protein classes involved in wound healing were identified, namely calcium-binding proteins, cell adhesion molecules, extracellular matrix proteins, and signaling molecules. STRING10 protein prediction successfully identified various pathways regulated by secretory proteins in NFCM. In conclusion, this study successfully profiled the secreted proteins of nasal fibroblasts and these proteins are predicted to play important roles in RECs wound healing through various pathways.
  4. Ling MTM, Govindaraju K, Lokanathan Y, Abidin AZ, Ibrahim B
    Cell Biochem Funct, 2023 Dec;41(8):1044-1059.
    PMID: 37933415 DOI: 10.1002/cbf.3881
    Metabolic syndrome (MetS) represents a cluster of metabolic abnormalities. The prevalence of MetS has surged, transforming it into a pressing public health concern that could potentially affect around 20%-25% of the global population. As MetS continues its ascent, diverse interventions, pharmacological, nonpharmacological and combined have been deployed. Yet, a comprehensive remedy that fully eradicates MetS symptoms remains elusive, compounded by the risks of polypharmacy's emergence. Acknowledging the imperative to grasp MetS's intricate pathologies, deeper insights for future research and therapy optimisation become paramount. Conventional treatments often target specific syndrome elements. However, a novel approach emerges in mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) therapy, promising a holistic shift. MSC-EVs, tiny membranous vesicles secreted by mesenchymal stem cells, have garnered immense attention for their multifaceted bioactivity and regenerative potential. Their ability to modulate inflammation, enhance tissue repair and regulate metabolic pathways has prompted researchers to explore their therapeutic application in MetS. This review primarily aims to provide an overview of how MSC-EVs therapy can improve metabolic parameters in subjects with MetS disease and also introduce the usefulness of NMR spectroscopy in assessing the efficacy of MSC-EVs therapy for treating MetS.
  5. Nashihah AK, Muhammad Firdaus FI, Fauzi MB, Mobarak NN, Lokanathan Y
    Int J Mol Sci, 2023 Oct 05;24(19).
    PMID: 37834382 DOI: 10.3390/ijms241914935
    Respiratory diseases have a major impact on global health. The airway epithelium, which acts as a frontline defence, is one of the most common targets for inhaled allergens, irritants, or micro-organisms to enter the respiratory system. In the tissue engineering field, biomaterials play a crucial role. Due to the continuing high impact of respiratory diseases on society and the emergence of new respiratory viruses, in vitro airway epithelial models with high microphysiological similarities that are also easily adjustable to replicate disease models are urgently needed to better understand those diseases. Thus, the development of biomaterial scaffolds for the airway epithelium is important due to their function as a cell-support device in which cells are seeded in vitro and then are encouraged to lay down a matrix to form the foundations of a tissue for transplantation. Studies conducted in in vitro models are necessary because they accelerate the development of new treatments. Moreover, in comparatively controlled conditions, in vitro models allow for the stimulation of complex interactions between cells, scaffolds, and growth factors. Based on recent studies, the biomaterial scaffolds that have been tested in in vitro models appear to be viable options for repairing the airway epithelium and avoiding any complications. This review discusses the role of biomaterial scaffolds in in vitro airway epithelium models. The effects of scaffold, physicochemical, and mechanical properties in recent studies were also discussed.
  6. Razali RA, Vijakumaran U, Fauzi MB, Lokanathan Y
    Pharmaceutics, 2023 May 18;15(5).
    PMID: 37242776 DOI: 10.3390/pharmaceutics15051534
    Numerous biomaterials have been developed over the years to enhance the outcomes of endoscopic sinus surgery (ESS) for patients with chronic rhinosinusitis. These products are specifically designed to prevent postoperative bleeding, optimize wound healing, and reduce inflammation. However, there is no singular material on the market that can be deemed the optimal material for the nasal pack. We systematically reviewed the available evidence to assess the functional biomaterial efficacy after ESS in prospective studies. The search was performed using predetermined inclusion and exclusion criteria, and 31 articles were identified in PubMed, Scopus, and Web of Science. The Cochrane risk-of-bias tool for randomized trials (RoB 2) was used to assess each study's risk of bias. The studies were critically analyzed and categorized into types of biomaterial and functional properties, according to synthesis without meta-analysis (SWiM) guidelines. Despite the heterogeneity between studies, it was observed that chitosan, gelatin, hyaluronic acid, and starch-derived materials exhibit better endoscopic scores and significant potential for use in nasal packing. The published data support the idea that applying a nasal pack after ESS improves wound healing and patient-reported outcomes.
  7. Ng WC, Lokanathan Y, Fauzi MB, Baki MM, Zainuddin AA, Phang SJ, et al.
    Sci Rep, 2023 Mar 29;13(1):5128.
    PMID: 36991038 DOI: 10.1038/s41598-023-32080-y
    Glottic insufficiency is one of the voice disorders affecting all demographics. Due to the incomplete closure of the vocal fold, there is a risk of aspiration and ineffective phonation. Current treatments for glottic insufficiency include nerve repair, reinnervation, implantation and injection laryngoplasty. Injection laryngoplasty is favored among these techniques due to its cost-effectiveness and efficiency. However, research into developing an effective injectable for the treatment of glottic insufficiency is currently lacking. Therefore, this study aims to develop an injectable gelatin (G) hydrogel crosslinked with either 1-ethyl-3-(3-dimethylaminpropyl)carbodiimide hydrochloride) (EDC) or genipin (gn). The gelation time, biodegradability and swelling ratio of hydrogels with varying concentrations of gelatin (6-10% G) and genipin (0.1-0.5% gn) were investigated. Some selected formulations were proceeded with rheology, pore size, chemical analysis and in vitro cellular activity of Wharton's Jelly Mesenchymal Stem Cells (WJMSCs), to determine the safety application of the selected hydrogels, for future cell delivery prospect. 6G 0.4gn and 8G 0.4gn were the only hydrogel groups capable of achieving complete gelation within 20 min, exhibiting an elastic modulus between 2 and 10 kPa and a pore size between 100 and 400 μm. Moreover, these hydrogels were biodegradable and biocompatible with WJMSCs, as > 70% viability were observed after 7 days of in vitro culture. Our results suggested 6G 0.4gn and 8G 0.4gn hydrogels as potential cell encapsulation injectates. In light of these findings, future research should focus on characterizing their encapsulation efficiency and exploring the possibility of using these hydrogels as a drug delivery system for vocal fold treatment.
  8. Chan AML, Cheah JM, Lokanathan Y, Ng MH, Law JX
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835438 DOI: 10.3390/ijms24044026
    Cancer is the second leading contributor to global deaths caused by non-communicable diseases. The cancer cells are known to interact with the surrounding non-cancerous cells, including the immune cells and stromal cells, within the tumor microenvironment (TME) to modulate the tumor progression, metastasis and resistance. Currently, chemotherapy and radiotherapy are the standard treatments for cancers. However, these treatments cause a significant number of side effects, as they damage both the cancer cells and the actively dividing normal cells indiscriminately. Hence, a new generation of immunotherapy using natural killer (NK) cells, cytotoxic CD8+ T-lymphocytes or macrophages was developed to achieve tumor-specific targeting and circumvent the adverse effects. However, the progression of cell-based immunotherapy is hindered by the combined action of TME and TD-EVs, which render the cancer cells less immunogenic. Recently, there has been an increase in interest in using immune cell derivatives to treat cancers. One of the highly potential immune cell derivatives is the NK cell-derived EVs (NK-EVs). As an acellular product, NK-EVs are resistant to the influence of TME and TD-EVs, and can be designed for "off-the-shelf" use. In this systematic review, we examine the safety and efficacy of NK-EVs to treat various cancers in vitro and in vivo.
  9. Razali RA, Yazid MD, Saim A, Idrus RBH, Lokanathan Y
    Int J Mol Sci, 2023 Feb 16;24(4).
    PMID: 36835384 DOI: 10.3390/ijms24043974
    Hydroxytyrosol (HT) is an olive polyphenol with anti-inflammatory and antioxidant properties. This study aimed to investigate the effect of HT treatment on epithelial-mesenchymal transition (EMT) in primary human respiratory epithelial cells (RECs) isolated from human nasal turbinate. HT dose-response study and growth kinetic study on RECs was performed. Several approaches on HT treatment and TGFβ1 induction with varying durations and methods was studied. RECs morphology and migration ability were evaluated. Vimentin and E-cadherin immunofluorescence staining and Western blotting [E-cadherin, vimentin, SNAIL/SLUG, AKT, phosphorylated (p)AKT, SMAD2/3 and pSMAD2/3] were performed after 72-h treatment. In silico analysis (molecular docking) of HT was performed to evaluate the potential of HT to bind with the TGFβ receptor. The viability of the HT-treated RECs was concentration-dependent, where the median effective concentration (EC50) was 19.04 μg/mL. Testing of the effects of 1 and 10 µg/mL HT revealed that HT suppressed expression of the protein markers vimentin and SNAIL/SLUG while preserving E-cadherin protein expression. Supplementation with HT protected against SMAD and AKT pathway activation in the TGFβ1-induced RECs. Furthermore, HT demonstrated the potential to bind with ALK5 (a TGFβ receptor component) in comparison to oleuropein. TGFβ1-induced EMT in RECs and HT exerted a positive effect in modulating the effects of EMT.
  10. Anjum A, Cheah YJ, Yazid MD, Daud MF, Idris J, Ng MH, et al.
    Biol Res, 2022 Dec 09;55(1):38.
    PMID: 36494836 DOI: 10.1186/s40659-022-00407-0
    BACKGROUND: Excitotoxicity-induced in vivo injury models are vital to reflect the pathophysiological features of acute spinal cord injury (SCI) in humans. The duration and concentration of chemical treatment controls the extent of neuronal cell damage. The extent of injury is explained in relation to locomotor and behavioural activity. Several SCI in vivo methods have been reported and studied extensively, particularly contusion, compression, and transection models. These models depict similar pathophysiology to that in humans but are extremely expensive (contusion) and require expertise (compression). Chemical excitotoxicity-induced SCI models are simple and easy while producing similar clinical manifestations. The kainic acid (KA) excitotoxicity model is a convenient, low-cost, and highly reproducible animal model of SCI in the laboratory. The basic impactor approximately cost between 10,000 and 20,000 USD, while the kainic acid only cost between 300 and 500 USD, which is quite cheap as compared to traditional SCI method.

    METHODS: In this study, 0.05 mM KA was administered at dose of 10 µL/100 g body weight, at a rate of 10 µL/min, to induce spinal injury by intra-spinal injection between the T12 and T13 thoracic vertebrae. In this protocol, detailed description of a dorsal laminectomy was explained to expose the spinal cord, following intra-spinal kainic acid administration at desired location. The dose, rate and technique to administer kainic acid were explained extensively to reflect a successful paraplegia and spinal cord injury in rats. The postoperative care and complication post injury of paraplegic laboratory animals were also explained, and necessary requirements to overcome these complications were also described to help researcher.

    RESULTS: This injury model produced impaired hind limb locomotor function with mild seizure. Hence this protocol will help researchers to induce spinal cord injury in laboratories at extremely low cost and also will help to determine the necessary supplies, methods for producing SCI in rats and treatments designed to mitigate post-injury impairment.

    CONCLUSIONS: Kainic acid intra-spinal injection at the concentration of 0.05 mM, and rate 10 µL/min, is an effective method create spinal injury in rats, however more potent concentrations of kainic acid need to be studied in order to create severe spinal injuries.

  11. Ng WC, Lokanathan Y, Baki MM, Fauzi MB, Zainuddin AA, Azman M
    Biomedicines, 2022 Nov 30;10(12).
    PMID: 36551838 DOI: 10.3390/biomedicines10123082
    Glottic insufficiency is widespread in the elderly population and occurs as a result of secondary damage or systemic disease. Tissue engineering is a viable treatment for glottic insufficiency since it aims to restore damaged nerve tissue and revitalize aging muscle. After injection into the biological system, injectable biomaterial delivers cost- and time-effectiveness while acting as a protective shield for cells and biomolecules. This article focuses on injectable biomaterials that transport cells and biomolecules in regenerated tissue, particularly adipose, muscle, and nerve tissue. We propose Wharton's Jelly mesenchymal stem cells (WJMSCs), induced pluripotent stem cells (IP-SCs), basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), insulin growth factor-1 (IGF-1) and extracellular vesicle (EV) as potential cells and macromolecules to be included into biomaterials, with some particular testing to support them as a promising translational medicine for vocal fold regeneration.
  12. Hasmad HN, Bt Hj Idrus R, Sulaiman N, Lokanathan Y
    Int J Mol Sci, 2022 Feb 03;23(3).
    PMID: 35163664 DOI: 10.3390/ijms23031743
    Cardiac patch implantation helps maximize the paracrine function of grafted cells and serves as a reservoir of soluble proangiogenic factors required for the neovascularization of infarcted hearts. We have previously fabricated a cardiac patch, EF-HAM, composed of a human amniotic membrane (HAM) coated with aligned PLGA electrospun fibers (EF). In this study, we aimed to evaluate the biocompatibility and angiogenic effects of EF-HAM scaffolds with varying fiber thicknesses on the paracrine behavior of skeletal muscle cells (SkM). Conditioned media (CM) obtained from SkM-seeded HAM and EF-HAM scaffolds were subjected to multiplex analysis of angiogenic factors and tested on HUVECs for endothelial cell viability, migration, and tube formation analyses. All three different groups of EF-HAM scaffolds demonstrated excellent biocompatibility with SkM. CM derived from SkM-seeded EF-HAM 7 min scaffolds contained significantly elevated levels of proangiogenic factors, including angiopoietin-1, IL-8, and VEGF-C compared to plain CM, which was obtained from SkM cultured on the plain surface. CM obtained from all SkM-seeded EF-HAM scaffolds significantly increased the viability of HUVECs compared to plain CM after five days of culture. However, only EF-HAM 7 min CM induced a higher migration capacity in HUVECs and formed a longer and more elaborate capillary-like network on Matrigel compared with plain CM. Surface roughness and wettability of EF-HAM 7 min scaffolds might have influenced the proportion of skeletal myoblasts and fibroblasts growing on the scaffolds and subsequently potentiated the angiogenic paracrine function of SkM. This study demonstrated the angioinductive properties of EF-HAM composite scaffold and its potential applications in the repair and regeneration of ischemic tissues.
  13. Thambirajoo M, Maarof M, Lokanathan Y, Katas H, Ghazalli NF, Tabata Y, et al.
    Antibiotics (Basel), 2021 Nov 02;10(11).
    PMID: 34827276 DOI: 10.3390/antibiotics10111338
    Nanotechnology has become an emerging technology in the medical field and is widely applicable for various clinical applications. The potential use of nanoparticles as antimicrobial agents is greatly explored and taken into consideration as alternative methods to overcome the challenges faced by healthcare workers and patients in preventing infections caused by pathogenic microorganisms. Among microorganisms, bacterial infections remain a major hurdle and are responsible for high morbidity and mortality globally, especially involving those with medical conditions and elderly populations. Over time, these groups are more vulnerable to developing resistance to antibiotics, as bacterial biofilms are difficult to destroy or eliminate via antibiotics; thus, treatment becomes unsuccessful or ineffective. Mostly, bacterial biofilms and other microbes can be found on medical devices and wounds where they disperse their contents which cause infections. To inhibit biofilm formations and overcome antibiotic resistance, antimicrobial-loaded nanoparticles alone or combined with other substances could enhance the bactericidal activity of nanomaterials. This includes killing the pathogens effectively without harming other cells or causing any adverse effects to living cells. This review summarises the mechanisms of actions employed by the different types of nanoparticles which counteract infectious agents in reducing biofilm formation and improve antibiotic therapy for clinical usage.
  14. Imran SAM, Yazid MD, Cui W, Lokanathan Y
    Int J Mol Sci, 2021 Sep 14;22(18).
    PMID: 34576063 DOI: 10.3390/ijms22189900
    Telomere repeat binding factor 2 (TRF2) has a well-known function at the telomeres, which acts to protect the telomere end from being recognized as a DNA break or from unwanted recombination. This protection mechanism prevents DNA instability from mutation and subsequent severe diseases caused by the changes in DNA, such as cancer. Since TRF2 actively inhibits the DNA damage response factors from recognizing the telomere end as a DNA break, many more studies have also shown its interactions outside of the telomeres. However, very little has been discovered on the mechanisms involved in these interactions. This review aims to discuss the known function of TRF2 and its interaction with the DNA damage response (DDR) factors at both telomeric and non-telomeric regions. In this review, we will summarize recent progress and findings on the interactions between TRF2 and DDR factors at telomeres and outside of telomeres.
  15. Wan-Chiew N, Baki MM, Fauzi MB, Lokanathan Y, Azman M
    Polymers (Basel), 2021 Aug 06;13(16).
    PMID: 34451158 DOI: 10.3390/polym13162619
    Vocal fold injection is a preferred treatment in glottic insufficiency because it is relatively quick and cost-saving. However, researchers have yet to discover the ideal biomaterial with properties suitable for human vocal fold application. The current systematic review employing PRISMA guidelines summarizes and discusses the available evidence related to outcome measures used to characterize novel biomaterials in the development phase. The literature search of related articles published within January 2010 to March 2021 was conducted using Scopus, Web of Science (WoS), Google Scholar and PubMed databases. The search identified 6240 potentially relevant records, which were screened and appraised to include 15 relevant articles based on the inclusion and exclusion criteria. The current study highlights that the characterization methods were inconsistent throughout the different studies. While rheologic outcome measures (viscosity, elasticity and shear) were most widely utilized, there appear to be no target or reference values. Outcome measures such as cellular response and biodegradation should be prioritized as they could mitigate the clinical drawbacks of currently available biomaterials. The review suggests future studies to prioritize characterization of the viscoelasticity (to improve voice outcomes), inflammatory response (to reduce side effects) and biodegradation (to improve longevity) profiles of newly developed biomaterials.
  16. Chan AML, Ng AMH, Mohd Yunus MH, Idrus RBH, Law JX, Yazid MD, et al.
    Nutrients, 2021 Jul 22;13(8).
    PMID: 34444658 DOI: 10.3390/nu13082497
    Metabolic syndrome (MetS) is the physiological clustering of hypertension, hyperglycemia, hyperinsulinemia, dyslipidemia, and insulin resistance. The MetS-related chronic illnesses encompass obesity, the cardiovascular system, renal operation, hepatic function, oncology, and mortality. To perform pre-clinical research, it is imperative that these symptoms be successfully induced and optimized in lower taxonomy. Therefore, novel and future applications for a disease model, if proven valid, can be extrapolated to humans. MetS model establishment is evaluated based on the significance of selected test parameters, paradigm shifts from new discoveries, and the accessibility of the latest technology or advanced methodologies. Ultimately, the outcome of animal studies should be advantageous for human clinical trials and solidify their position in advanced medicine for clinicians to treat and adapt to serious or specific medical situations. Rodents (Rattus norvegicus and Mus musculus) have been ideal models for mammalian studies since the 18th century and have been mapped extensively. This review compiles and compares studies published in the past five years between the multitude of rodent comparative models. The response factors, niche parameters, and replicability of diet protocols are also compiled and analyzed to offer insight into MetS-related disease-specific modelling.
  17. Subramaniam T, Fauzi MB, Lokanathan Y, Law JX
    Int J Mol Sci, 2021 Jun 17;22(12).
    PMID: 34204292 DOI: 10.3390/ijms22126486
    Skin injury is quite common, and the wound healing is a complex process involving many types of cells, the extracellular matrix, and soluble mediators. Cell differentiation, migration, and proliferation are essential in restoring the integrity of the injured tissue. Despite the advances in science and technology, we have yet to find the ideal dressing that can support the healing of cutaneous wounds effectively, particularly for difficult-to-heal chronic wounds such as diabetic foot ulcers, bed sores, and venous ulcers. Hence, there is a need to identify and incorporate new ideas and methods to design a more effective dressing that not only can expedite wound healing but also can reduce scarring. Calcium has been identified to influence the wound healing process. This review explores the functions and roles of calcium in skin regeneration and reconstruction during would healing. Furthermore, this review also investigates the possibility of incorporating calcium into scaffolds and examines how it modulates cutaneous wound healing. In summary, the preliminary findings are promising. However, some challenges remain to be addressed before calcium can be used for cutaneous wound healing in clinical settings.
  18. Imran SAM, Yazid MD, Idrus RBH, Maarof M, Nordin A, Razali RA, et al.
    Int J Mol Sci, 2021 Apr 09;22(8).
    PMID: 33918710 DOI: 10.3390/ijms22083888
    Epithelial-Mesenchymal Transition (EMT) was first discovered during the transition of cells from the primitive streak during embryogenesis in chicks. It was later discovered that EMT holds greater potential in areas other than the early development of cells and tissues since it also plays a vital role in wound healing and cancer development. EMT can be classified into three types based on physiological functions. EMT type 3, which involves neoplastic development and metastasis, has been the most thoroughly explored. As EMT is often found in cancer stem cells, most research has focused on its association with other factors involving cancer progression, including telomeres. However, as telomeres are also mainly involved in aging, any possible interaction between the two would be worth noting, especially as telomere dysfunction also contributes to cancer and other age-related diseases. Ascertaining the balance between degeneration and cancer development is crucial in cell biology, in which telomeres function as a key regulator between the two extremes. The essential roles that EMT and telomere protection have in aging reveal a potential mutual interaction that has not yet been explored, and which could be used in disease therapy. In this review, the known functions of EMT and telomeres in aging are discussed and their potential interaction in age-related diseases is highlighted.
  19. Maarof M, Mohd Nadzir M, Sin Mun L, Fauzi MB, Chowdhury SR, Idrus RBH, et al.
    Polymers (Basel), 2021 Feb 08;13(4).
    PMID: 33567703 DOI: 10.3390/polym13040508
    The current strategy for rapid wound healing treatment involves combining a biomaterial and cell-secreted proteins or biomolecules. This study was aimed at characterizing 3-dimensional (3D) collagen hydrogels fortified with dermal fibroblast-conditioned medium (DFCM) as a readily available acellular skin substitute. Confluent fibroblasts were cultured with serum-free keratinocyte-specific medium (KM1 and KM2) and fibroblast-specific medium (FM) to obtain DFCM. Subsequently, the DFCM was mixed with collagen (Col) hydrogel and chondroitin-4-sulphate (C4S) to fabricate 3D constructs termed Col/C4S/DFCM-KM1, Col/C4S/DFCM-KM2, and Col/C4S/DFCM-FM. The constructs successfully formed soft, semi-solid and translucent hydrogels within 1 h of incubation at 37 °C with strength of <2.5 Newton (N). The Col/C4S/DFCM demonstrated significantly lower turbidity compared to the control groups. The Col/C4S/DFCM also showed a lower percentage of porosity (KM1: 35.15 ± 9.76%; KM2: 6.85 ± 1.60%; FM: 14.14 ± 7.65%) compared to the Col (105.14 ± 11.87%) and Col/C4S (143.44 ± 27.72%) constructs. There were no changes in both swelling and degradation among all constructs. Fourier transform infrared spectrometry showed that all groups consisted of oxygen-hydrogen bonds (O-H) and amide I, II, and III. In conclusion, the Col/C4S/DFCM constructs maintain the characteristics of native collagen and can synergistically deliver essential biomolecules for future use in skin therapeutic applications.
  20. Shamsuddin SA, Chan AML, Ng MH, Yazid MD, Law JX, Hj Idrus RB, et al.
    Am J Transl Res, 2021;13(11):12217-12227.
    PMID: 34956448
    Recent explorations on mesenchymal stem/stromal cells (MSC) have reported a promising future for cell-based therapies. MSCs are widely sourced from various tissues and express unique properties of regenerative potential and immunomodulation. Currently, there is a growing interest in utilizing MSC for treatment of chronic diseases to overcome the drawbacks of chemical drugs. Metabolic Syndrome (MetS) is described as a cluster of metabolic abnormalities categorized as abdominal obesity, dyslipidaemia, hypertension, hypertriglyceridemia, and hyperglycaemia. Patients diagnosed with MetS have a high predisposition for developing cardiovascular complications, diabetes, non-alcoholic fatty liver diseases, bone loss, cancer, and mortality. Hence, research on MSC as therapy for MetS and related diseases, is greatly valued and are advantaged by the low immunogenicity with high regenerative capacity. However, there are many obstacles to be addressed such as the safety, efficacy, and consistency of different MSC sources. Additionally, factors such as effective dose level and delivery method are equally important to achieve uniform therapeutic outcomes. This systematic review discusses the potential roles of MSC in managing the multiple clusters of MetS. Research articles during the past 20 years were systematically searched and filtered to update the progress in the field of MSC therapy in managing various components of MetS. The different sources of MSC, dosage, method of delivery and outcome measures for the stem cell therapies were compiled from the systematically selected research articles. It can be concluded from the review of the selected articles that MSCs can improve the various disorders of MetS such as abdominal obesity, hyperglycaemia, hypertriglyceridemia and hypertension, and represent a promising alternative to conventional therapy of the MetS cluster.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links