Displaying publications 1 - 20 of 58 in total

Abstract:
Sort:
  1. Tan AH, Lim SY, Mahadeva S, Loke MF, Tan JY, Ang BH, et al.
    Mov Disord, 2020 12;35(12):2250-2260.
    PMID: 32894625 DOI: 10.1002/mds.28248
    BACKGROUND: Helicobacter pylori (HP) infection has been associated with worse motor function in Parkinson's disease (PD).

    OBJECTIVE: We aimed to evaluate the effects of HP eradication on PD symptoms.

    METHODS: In this parallel-group, double-blind, randomized placebo-controlled, single-center trial, patients with PD with positive HP urea breath test and serology were block randomized (1:1) to receive standard eradication triple therapy or identically appearing placebo capsules for 1 week. Prespecified motor (International Parkinson and Movement Disorder Society Unified PD Rating Scale [MDS-UPDRS], timed tests, and home-based wearable sensor measurements), nonmotor (Leeds Dyspepsia Questionnaire and Montreal Cognitive Assessment), and quality-of-life (Parkinson's Disease Questionnaire-39) outcome measures were assessed at weeks 6, 12, 24, and 52. The primary outcome was the baseline-to-week 12 change in ON medication MDS-UPDRS motor scores. Lactulose-hydrogen breath testing for concomitant small intestinal bacterial overgrowth was performed at baseline and repeated at week 24, together with the urea breath test.

    RESULTS: A total of 310 patients were screened for eligibility and 80 were randomly assigned, of whom 67 were included in the full-analysis set (32 treatment group patients, 35 placebo patients). HP eradication did not improve MDS-UPDRS motor scores at week 12 (mean difference 2.6 points in favor of placebo, 95% confidence interval: -0.4 to 5.6, P = 0.089). There was no significant improvement in any motor, nonmotor, or quality-of-life outcome at weeks 12 and 52. Both the full-analysis and per-protocol analyses (based on eradication status) supported these conclusions. Small intestinal bacterial overgrowth status did not influence treatment results.

    CONCLUSIONS: HP eradication does not improve clinical outcomes in PD, suggesting that there is no justification for routine HP screening or eradication with the goal of improving PD symptoms. © 2020 International Parkinson and Movement Disorder Society.

  2. Tan AH, Mahadeva S, Marras C, Thalha AM, Kiew CK, Yeat CM, et al.
    Parkinsonism Relat Disord, 2015 Mar;21(3):221-5.
    PMID: 25560322 DOI: 10.1016/j.parkreldis.2014.12.009
    BACKGROUND: Some studies have suggested that chronic Helicobacter pylori (HP) infection can aggravate the neurodegenerative process in Parkinson's disease (PD), and targeted intervention could potentially modify the course of this disabling disease. We aimed to study the impact of HP infection on motor function, gastrointestinal symptoms, and quality of life in a large cohort of PD patients.
    METHODS: 102 consecutive PD patients underwent (13)C urea breath testing and blinded evaluations consisting of the Unified Parkinson's Disease Rating Scale (UPDRS) including "On"-medication motor examination (Part III), objective and quantitative measures of bradykinesia (Purdue Pegboard and timed gait), Leeds Dyspepsia Questionnaire, and PDQ-39 (a health-related quality of life questionnaire).
    RESULTS: 32.4% of PD patients were HP-positive. HP-positive patients were older (68.4 ± 7.3 vs. 63.8 ± 8.6 years, P = 0.009) and had worse motor function (UPDRS Part III 34.0 ± 13.0 vs. 27.3 ± 10.0, P = 0.04; Pegboard 6.4 ± 3.3 vs. 8.0 ± 2.7 pins, P = 0.04; and timed gait 25.1 ± 25.4 vs. 15.5 ± 7.6 s, P = 0.08). In the multivariate analysis, HP status demonstrated significant main effects on UPDRS Part III and timed gait. The association between HP status and these motor outcomes varied according to age. Gastrointestinal symptoms and PDQ-39 Summary Index scores did not differ between the two groups.
    CONCLUSIONS: This is the largest cross-sectional study to demonstrate an association between HP positivity and worse PD motor severity.
    KEYWORDS: Gastrointestinal dysfunction; Helicobacter pylori; Parkinson's disease
  3. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al.
    NPJ Biofilms Microbiomes, 2019 01 09;5(1):2.
    PMID: 30652010 DOI: 10.1038/s41522-018-0078-x
    [This corrects the article DOI: 10.1038/s41522-017-0040-3.].
  4. Khosravi Y, Rehvathy V, Wee WY, Wang S, Baybayan P, Singh S, et al.
    Gut Pathog, 2013;5:25.
    PMID: 23957912 DOI: 10.1186/1757-4749-5-25
    Helicobacter pylori is a Gram-negative bacterium that persistently infects the human stomach inducing chronic inflammation. The exact mechanisms of pathogenesis are still not completely understood. Although not a natural host for H. pylori, mouse infection models play an important role in establishing the immunology and pathogenicity of H. pylori. In this study, for the first time, the genome sequences of clinical H. pylori strain UM032 and mice-adapted derivatives, 298 and 299, were sequenced using the PacBio Single Molecule, Real-Time (SMRT) technology.
  5. Tan AH, Chong CW, Lim SY, Yap IKS, Teh CSJ, Loke MF, et al.
    Ann Neurol, 2021 03;89(3):546-559.
    PMID: 33274480 DOI: 10.1002/ana.25982
    OBJECTIVE: Gut microbiome alterations in Parkinson disease (PD) have been reported repeatedly, but their functional relevance remains unclear. Fecal metabolomics, which provide a functional readout of microbial activity, have scarcely been investigated. We investigated fecal microbiome and metabolome alterations in PD, and their clinical relevance.

    METHODS: Two hundred subjects (104 patients, 96 controls) underwent extensive clinical phenotyping. Stool samples were analyzed using 16S rRNA gene sequencing. Fecal metabolomics were performed using two platforms, nuclear magnetic resonance (NMR) spectroscopy and liquid chromatography-mass spectrometry.

    RESULTS: Fecal microbiome and metabolome composition in PD was significantly different from controls, with the largest effect size seen in NMR-based metabolome. Microbiome and NMR-based metabolome compositional differences remained significant after comprehensive confounder analyses. Differentially abundant fecal metabolite features and predicted functional changes in PD versus controls included bioactive molecules with putative neuroprotective effects (eg, short chain fatty acids [SCFAs], ubiquinones, and salicylate) and other compounds increasingly implicated in neurodegeneration (eg, ceramides, sphingosine, and trimethylamine N-oxide). In the PD group, cognitive impairment, low body mass index (BMI), frailty, constipation, and low physical activity were associated with fecal metabolome compositional differences. Notably, low SCFAs in PD were significantly associated with poorer cognition and low BMI. Lower butyrate levels correlated with worse postural instability-gait disorder scores.

    INTERPRETATION: Gut microbial function is altered in PD, characterized by differentially abundant metabolic features that provide important biological insights into gut-brain pathophysiology. Their clinical relevance further supports a role for microbial metabolites as potential targets for the development of new biomarkers and therapies in PD. ANN NEUROL 2021;89:546-559.

  6. Gunaletchumy SP, Teh X, Khosravi Y, Ramli NS, Chua EG, Kavitha T, et al.
    J Bacteriol, 2012 Oct;194(20):5695-6.
    PMID: 23012278
    Helicobacter pylori is the main bacterial causative agent of gastroduodenal disorders and a risk factor for gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. The draft genomes of 10 closely related H. pylori isolates from the multiracial Malaysian population will provide an insight into the genetic diversity of isolates in Southeast Asia. These isolates were cultured from gastric biopsy samples from patients with functional dyspepsia and gastric cancer. The availability of this genomic information will provide an opportunity for examining the evolution and population structure of H. pylori isolates from Southeast Asia, where the East meets the West.
  7. Thevakumar K, Chandren JR, Perez-Perez GI, Chua EG, Teh LK, Salleh MZ, et al.
    PLoS One, 2016;11(7):e0159830.
    PMID: 27441568 DOI: 10.1371/journal.pone.0159830
    The epidemiology of Helicobacter pylori (H. pylori) infection is related to human poverty with marked differences between developing and developed countries. Socioeconomic factors and living standards are the main determinants of the age-dependent acquisition rate of H. pylori, and consequently its prevalence. The aim of this study was to assess the risk and sero-prevalence of H. pylori colonization among Orang Asli in Peninsula Malaysia. This cross-sectional study was conducted on Orang Asli subjects in seven isolated settlements spanning across all three major tribes (Negrito, Proto Malay and Senoi) in Malaysia. Socio-demographic characteristics of the subjects were obtained through interview. Subjects were tested for H. pylori colonization based on CagA and whole cell (WC) antigen serological assays. A total of 275 subjects participated in this study. Among these subjects, 115 (44.7%) were H. pylori sero-positive with highest sero-prevalence among Negrito (65.7%). Among subjects who were H. pylori sero-positive, CagA sero positivity was also significantly higher among Negrito. The highest proportion of respondents reported to be H. pylori sero-positive was from age group 30 years old and below (57.9%), males (56.2%), Negrito (48.6%) and live in bamboo house (92.3%). The highest proportion of respondents reported to be CagA sero-positive was from age group 30 years old and below (41.4%), males (35.6%) and Negrito (48.6%). The results of this study demonstrate that H. pylori colonization can be related to age, gender, tribes and house materials and CagA sero-positive stain closely associated with age, gender and tribes.
  8. Drewes JL, White JR, Dejea CM, Fathi P, Iyadorai T, Vadivelu J, et al.
    PMID: 29214046 DOI: 10.1038/s41522-017-0040-3
    Colorectal cancer (CRC) remains the third most common cancer worldwide, with a growing incidence among young adults. Multiple studies have presented associations between the gut microbiome and CRC, suggesting a link with cancer risk. Although CRC microbiome studies continue to profile larger patient cohorts with increasingly economical and rapid DNA sequencing platforms, few common associations with CRC have been identified, in part due to limitations in taxonomic resolution and differences in analysis methodologies. Complementing these taxonomic studies is the newly recognized phenomenon that bacterial organization into biofilm structures in the mucus layer of the gut is a consistent feature of right-sided (proximal), but not left-sided (distal) colorectal cancer. In the present study, we performed 16S rRNA gene amplicon sequencing and biofilm quantification in a new cohort of patients from Malaysia, followed by a meta-analysis of eleven additional publicly available data sets on stool and tissue-based CRC microbiota using Resphera Insight, a high-resolution analytical tool for species-level characterization. Results from the Malaysian cohort and the expanded meta-analysis confirm that CRC tissues are enriched for invasive biofilms (particularly on right-sided tumors), a symbiont with capacity for tumorigenesis (Bacteroides fragilis), and oral pathogens including Fusobacterium nucleatum, Parvimonas micra, and Peptostreptococcus stomatis. Considered in aggregate, species from the Human Oral Microbiome Database are highly enriched in CRC. Although no detected microbial feature was universally present, their substantial overlap and combined prevalence supports a role for the gut microbiota in a significant percentage (>80%) of CRC cases.
  9. Khosravi Y, Seow SW, Amoyo AA, Chiow KH, Tan TL, Wong WY, et al.
    Sci Rep, 2015;5:8731.
    PMID: 25736205 DOI: 10.1038/srep08731
    Helicobacter pylori, is an invariably commensal resident of the gut microbiome associated with gastric ulcer in adults. In addition, these patients also suffered from a low grade inflammation that activates the immune system and thus increased shunting of energy to host defense mechanisms. To assess whether a H. pylori infection could affect growth in early life, we determined the expression levels of selected metabolic gut hormones in germ free (GF) and specific pathogen-free (SPF) mice with and without the presence of H. pylori. Despite H. pylori-infected (SPFH) mice display alteration in host metabolism (elevated levels of leptin, insulin and peptide YY) compared to non-infected SPF mice, their growth curves remained the same. SPFH mice also displayed increased level of eotaxin-1. Interestingly, GF mice infected with H. pylori (GFH) also displayed increased levels of ghrelin and PYY. However, in contrast to SPFH mice, GFH showed reduced weight gain and malnutrition. These preliminary findings show that exposure to H. pylori alters host metabolism early in life; but the commensal microbiota in SPF mice can attenuate the growth retarding effect from H. pylori observed in GF mice. Further investigations of possible additional side effects of H. pylori are highly warranted.
  10. Kumar N, Mariappan V, Baddam R, Lankapalli AK, Shaik S, Goh KL, et al.
    Nucleic Acids Res, 2015 Jan;43(1):324-35.
    PMID: 25452339 DOI: 10.1093/nar/gku1271
    The discordant prevalence of Helicobacter pylori and its related diseases, for a long time, fostered certain enigmatic situations observed in the countries of the southern world. Variation in H. pylori infection rates and disease outcomes among different populations in multi-ethnic Malaysia provides a unique opportunity to understand dynamics of host-pathogen interaction and genome evolution. In this study, we extensively analyzed and compared genomes of 27 Malaysian H. pylori isolates and identified three major phylogeographic lineages: hspEastAsia, hpEurope and hpSouthIndia. The analysis of the virulence genes within the core genome, however, revealed a comparable pathogenic potential of the strains. In addition, we identified four genes limited to strains of East-Asian lineage. Our analyses identified a few strain-specific genes encoding restriction modification systems and outlined 311 core genes possibly under differential evolutionary constraints, among the strains representing different ethnic groups. The cagA and vacA genes also showed variations in accordance with the host genetic background of the strains. Moreover, restriction modification genes were found to be significantly enriched in East-Asian strains. An understanding of these variations in the genome content would provide significant insights into various adaptive and host modulation strategies harnessed by H. pylori to effectively persist in a host-specific manner.
  11. Choo SW, Ang MY, Fouladi H, Tan SY, Siow CC, Mutha NV, et al.
    BMC Genomics, 2014;15:600.
    PMID: 25030426 DOI: 10.1186/1471-2164-15-600
    Helicobacter is a genus of Gram-negative bacteria, possessing a characteristic helical shape that has been associated with a wide spectrum of human diseases. Although much research has been done on Helicobacter and many genomes have been sequenced, currently there is no specialized Helicobacter genomic resource and analysis platform to facilitate analysis of these genomes. With the increasing number of Helicobacter genomes being sequenced, comparative genomic analysis on members of this species will provide further insights on their taxonomy, phylogeny, pathogenicity and other information that may contribute to better management of diseases caused by Helicobacter pathogens.
  12. Rehvathy V, Tan MH, Gunaletchumy SP, Teh X, Wang S, Baybayan P, et al.
    Genome Announc, 2013;1(5).
    PMID: 24051312 DOI: 10.1128/genomeA.00687-13
    Helicobacter pylori causes human gastroduodenal diseases, including chronic gastritis and peptic ulcer disease. It is also a major microbial risk factor for the development of gastric adenocarcinoma and mucosa-associated lymphoid tissue (MALT) lymphoma. Twenty-one strains with different ethnicity, disease, and antimicrobial susceptibility backgrounds were sequenced by use of Illumina HiSeq and PacBio RS platforms.
  13. Sidahmed HM, Hashim NM, Amir J, Abdulla MA, Hadi AH, Abdelwahab SI, et al.
    Phytomedicine, 2013 Jul 15;20(10):834-43.
    PMID: 23570997 DOI: 10.1016/j.phymed.2013.03.002
    Pyranocycloartobiloxanthone A (PA), a xanthone derived from the Artocarpus obtusus Jarret, belongs to the Moraceae family which is native to the tropical forest of Malaysia. In this study, the efficacy of PA as a gastroprotective compound was examined against ethanol-induced ulcer model in rats. The rats were pretreated with PA and subsequently exposed to acute gastric lesions induced by absolute ethanol. The ulcer index, gastric juice acidity, mucus content, histological analysis, glutathione (GSH) levels, malondialdehyde level (MDA), nitric oxide (NO) and non-protein sulfhydryl group (NP-SH) contents were evaluated in vivo. The activities of PA as anti-Helicobacter pylori, cyclooxygenase-2 (COX-2) inhibitor and free radical scavenger were also investigated in vitro. The results showed that the oral administration of PA protects gastric mucosa from ethanol-induced gastric lesions. PA pretreatment significantly (p<0.05) restored the depleted GSH, NP-SH and NO levels in the gastric homogenate. Moreover, PA significantly (p<0.05) reduced the elevated MDA level due to ethanol administration. The gastroprotective effect of PA was associated with an over expression of HSP70 and suppression of Bax proteins in the ulcerated tissue. In addition, PA exhibited a potent FRAP value and significant COX-2 inhibition. It also showed a significant minimum inhibitory concentration (MIC) against H. pylori bacterium. The efficacy of PA was accomplished safely without the presence of any toxicological parameters. The results of the present study indicate that the gastroprotective effect of PA might contribute to the antioxidant and anti-inflammatory properties as well as the anti-apoptotic mechanism and antibacterial action against Helicobacter pylori.
  14. Chan KG, Loke MF, Ong BL, Wong YL, Hong KW, Tan KH, et al.
    PeerJ, 2015;3:e1367.
    PMID: 26587340 DOI: 10.7717/peerj.1367
    Background. Two non-tuberculous mycobacterial strains, UM_3 and UM_11, were isolated from the trunk wash of captive elephants in Malaysia. As they appeared to be identical phenotypes, they were investigated further by conventional and whole genome sequence-based methods of strain differentiation. Methods. Multiphasic investigations on the isolates included species identification with hsp65 PCR-sequencing, conventional biochemical tests, rapid biochemical profiling using API strips and the Biolog Phenotype Microarray analysis, protein profiling with liquid chromatography-mass spectrometry, repetitive sequence-based PCR typing and whole genome sequencing followed by phylogenomic analyses. Results. The isolates were shown to be possibly novel slow-growing schotochromogens with highly similar biological and genotypic characteristics. Both strains have a genome size of 5.2 Mbp, G+C content of 68.8%, one rRNA operon and 52 tRNAs each. They qualified for classification into the same species with their average nucleotide identity of 99.98% and tetranucleotide correlation coefficient of 0.99999. At the subspecies level, both strains showed 98.8% band similarity in the Diversilab automated repetitive sequence-based PCR typing system, 96.2% similarity in protein profiles obtained by liquid chromatography mass spectrometry, and a genomic distance that is close to zero in the phylogenomic tree constructed with conserved orthologs. Detailed epidemiological tracking revealed that the elephants shared a common habitat eight years apart, thus, strengthening the possibility of a clonal relationship between the two strains.
  15. Yap TW, Leow AH, Azmi AN, Francois F, Perez-Perez GI, Blaser MJ, et al.
    PLoS One, 2015;10(8):e0135771.
    PMID: 26291794 DOI: 10.1371/journal.pone.0135771
    More than half of the world's adults carry Helicobacter pylori. The eradication of H. pylori may affect the regulation of human metabolic hormones. The aim of this study was to evaluate the effect of H. pylori eradication on meal-associated changes in appetite-controlled insulinotropic and digestive hormones, and to assess post-eradication changes in body mass index as part of a currently on-going multicentre ESSAY (Eradication Study in Stable Adults/Youths) study.
  16. Yap TW, Gan HM, Lee YP, Leow AH, Azmi AN, Francois F, et al.
    PLoS One, 2016;11(3):e0151893.
    PMID: 26991500 DOI: 10.1371/journal.pone.0151893
    BACKGROUND: Accumulating evidence shows that Helicobacter pylori protects against some metabolic and immunological diseases in which the development of these diseases coincide with temporal or permanent dysbiosis. The aim of this study was to assess the effect of H. pylori eradication on the human gut microbiome.

    METHODS: As part of the currently on-going ESSAY (Eradication Study in Stable Adults/Youths) study, we collected stool samples from 17 H. pylori-positive young adult (18-30 years-old) volunteers. The same cohort was followed up 6, 12 and 18 months-post H. pylori eradication. The impact of H. pylori on the human gut microbiome pre- and post-eradication was investigated using high throughput 16S rRNA gene (V3-V4 region) sequencing using the Illumina Miseq followed by data analysis using Qiime pipeline.

    RESULTS: We compared the composition and diversity of bacterial communities in the fecal microbiome of the H. pylori-positive volunteers, before and after H. pylori eradication therapy. The 16S rRNA gene was sequenced at an average of 150,000-170,000 reads/sample. The microbial diversity were similar pre- and post-H. pylori eradication with no significant differences in richness and evenness of bacterial species. Despite that the general profile of the gut microbiome was similar pre- and post-eradication, some changes in the bacterial communities at the phylum and genus levels were notable, particularly the decrease in relative abundance of Bacterioidetes and corresponding increase in Firmicutes after H. pylori eradication. The significant increase of short-chain fatty acids (SCFA)-producing bacteria genera could also be associated with increased risk of metabolic disorders.

    CONCLUSIONS: Our preliminary stool metagenomics study shows that eradication of H. pylori caused perturbation of the gut microbiome and may indirectly affect the health of human. Clinicians should be aware of the effect of broad spectrum antibiotics used in H. pylori eradication regimen and be cautious in the clinical management of H. pylori infection, particularly in immunocompromised patients.

  17. Khosravi Y, Bunte RM, Chiow KH, Tan TL, Wong WY, Poh QH, et al.
    Gut Microbes, 2016;7(1):48-53.
    PMID: 26939851 DOI: 10.1080/19490976.2015.1119990
    Helicobacter pylori have been shown to influence physiological regulation of metabolic hormones involved in food intake, energy expenditure and body mass. It has been proposed that inducing H. pylori-induced gastric atrophy damages hormone-producing endocrine cells localized in gastric mucosal layers and therefore alter their concentrations. In a recent study, we provided additional proof in mice under controlled conditions that H. pylori and gut microbiota indeed affects circulating metabolic gut hormones and energy homeostasis. In this addendum, we presented data from follow-up investigations that demonstrated H. pylori and gut microbiota-associated modulation of metabolic gut hormones was independent and precedes H. pylori-induced histopathological changes in the gut of H. pylori-infected mice. Thus, H. pylori-associated argumentation of energy homeostasis is not caused by injury to endocrine cells in gastric mucosa.
  18. Sidahmed HM, Hashim NM, Mohan S, Abdelwahab SI, Taha MM, Dehghan F, et al.
    Drug Des Devel Ther, 2016;10:297-313.
    PMID: 26834460 DOI: 10.2147/DDDT.S80625
    PURPOSE: β-Mangostin (BM) from Cratoxylum arborescens demonstrated various pharmacological activities such as anticancer and anti-inflammatory. In this study, we aimed to investigate its antiulcer activity against ethanol ulcer model in rats.

    MATERIALS AND METHODS: BM was isolated from C. arborescens. Gastric acid output, ulcer index, gross evaluation, mucus production, histological evaluation using hematoxylin and eosin and periodic acid-Schiff staining and immunohistochemical localization for heat shock protein 70 (HSP70) and Bax proteins were investigated. Possible involvement of reduced glutathione, lipid peroxidation, prostaglandin E2, antioxidant enzymes, superoxide dismutase and catalase enzymes, radical scavenging, nonprotein sulfhydryl compounds, and anti-Helicobacter pylori were investigated.

    RESULTS: BM showed antisecretory activity against the pylorus ligature model. The pretreatment with BM protect gastric mucosa from ethanol damaging effect as seen by the improved gross and histological appearance. BM significantly reduced the ulcer area formation, the submucosal edema, and the leukocytes infiltration compared to the ulcer control. The compound showed intense periodic acid-Schiff staining to the gastric mucus layer and marked amount of alcian blue binding to free gastric mucus. BM significantly increased the gastric homogenate content of prostaglandin E2 glutathione, superoxide dismutase, catalase, and nonprotein sulfhydryl compounds. The compound inhibited the lipid peroxidation revealed by the reduced gastric content of malondialdehyde. Moreover, BM upregulate HSP70 expression and downregulate Bax expression. Furthermore, the compound showed interesting anti-H. pylori activity.

    CONCLUSION: Thus, it could be concluded that BM possesses gastroprotective activity, which could be attributed to the antisecretory, mucus production, antioxidant, HSP70, antiapoptotic, and anti-H. pylori mechanisms.

  19. Lee WC, Anton BP, Wang S, Baybayan P, Singh S, Ashby M, et al.
    BMC Genomics, 2015;16:424.
    PMID: 26031894 DOI: 10.1186/s12864-015-1585-2
    The genome of the human gastric pathogen Helicobacter pylori encodes a large number of DNA methyltransferases (MTases), some of which are shared among many strains, and others of which are unique to a given strain. The MTases have potential roles in the survival of the bacterium. In this study, we sequenced a Malaysian H. pylori clinical strain, designated UM032, by using a combination of PacBio Single Molecule, Real-Time (SMRT) and Illumina MiSeq next generation sequencing platforms, and used the SMRT data to characterize the set of methylated bases (the methylome).
  20. Chua EG, Wise MJ, Khosravi Y, Seow SW, Amoyo AA, Pettersson S, et al.
    DNA Res, 2017 Feb 01;24(1):37-49.
    PMID: 27803027 DOI: 10.1093/dnares/dsw046
    Helicobacter pylori is a highly successful gastric pathogen. High genomic plasticity allows its adaptation to changing host environments. Complete genomes of H. pylori clinical isolate UM032 and its mice-adapted serial derivatives 298 and 299, generated using both PacBio RS and Illumina MiSeq sequencing technologies, were compared to identify novel elements responsible for host-adaptation. The acquisition of a jhp0562-like allele, which encodes for a galactosyltransferase, was identified in the mice-adapted strains. Our analysis implies a new β-1,4-galactosyltransferase role for this enzyme, essential for Ley antigen expression. Intragenomic recombination between babA and babB genes was also observed. Further, we expanded on the list of candidate genes whose expression patterns have been mediated by upstream homopolymer-length alterations to facilitate host adaption. Importantly, greater than four-fold reduction of mRNA levels was demonstrated in five genes. Among the down-regulated genes, three encode for outer membrane proteins, including BabA, BabB and HopD. As expected, a substantial reduction in BabA protein abundance was detected in mice-adapted strains 298 and 299 via Western analysis. Our results suggest that the expression of Ley antigen and reduced outer membrane protein expressions may facilitate H. pylori colonisation of mouse gastric epithelium.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links