Displaying publications 1 - 20 of 55 in total

Abstract:
Sort:
  1. Chong KW, Hong FJ, Thomas NF, Low YY, Kam TS
    J Org Chem, 2017 06 16;82(12):6172-6191.
    PMID: 28552001 DOI: 10.1021/acs.joc.7b00753
    A systematic study was undertaken to determine the influence of ortho'-substituted nucleophilic groups (OH, NH2, or NHR) on the reactivity of anodically generated 4-methoxy- and 3,4-dimethoxystilbene cation radicals. The results showed that when ortho-substituted nucleophilic groups such as OH and NHR are present in the other ring, both direct and crossover intramolecular cation-nucleophile reactions occur to give bisbenzofurans/bisindoles or fused bisbenzopyrans/bisquinolines, respectively. Where an additional 3-methoxy substituent is present, bridged oxocine/azocine products are formed in addition to the bisbenzopyrans/bisquinolines and bisbenzofurans/bisindoles. Mechanistic rationalization of the observed behavior is presented based on a generalized pathway involving fast cation radical dimerization following electron transfer, followed by direct and crossover trapping of the benzylic cations by the ortho-substituted oxygen and nitrogen nucleophilic groups. In the instances where an additional 3-methoxy group is present, the bridged oxocine/azocine products are also formed as a result of competing aromatic substitution (Friedel-Crafts reaction). The results have shed further light and provided additional clarification on the reactivity of anodically generated stilbene cation radicals.
  2. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2019 Jun 07;84(11):7279-7290.
    PMID: 31056921 DOI: 10.1021/acs.joc.9b00939
    The present investigation represents a continuation of studies on the effect of ortho'-substitution on the reactivity of anodically generated methoxystilbene cation radicals. Whereas previous studies have focused on the effect of ortho'-substituted nucleophilic groups such as OH, NH2, CH2OH, CH2NH2, and COOH, the present study extends the investigation to ortho'-substituted vinyl and formyl groups. The results show that when the ortho'-substituent is a vinyl group, the products include a bisdihydronaphthalene derivative and a doubly bridged, dibenzofused cyclononane from direct trapping of a bis carbocation intermediate. In the presence of an additional 3-methoxy substituent, the products are the tetracyclic chrysene derivatives. When the ortho'-substituent is a nonnucleophilic formyl group, the products include fused indanylnaphthalenes and indanylbenzopyran aldehydes. When an additional 3-methoxy group is present, an unusual fused benzofluorene-dibenzoannulene product is obtained. Mechanistic rationalization for the formation of the various products is presented. The results have contributed to a deeper understanding of how the reactivity of the methoxystilbene cation radicals is affected by the nature of the ortho'-substituents.
  3. Hong FJ, Low YY, Chong KW, Thomas NF, Kam TS
    J Org Chem, 2014 May 16;79(10):4528-43.
    PMID: 24754525 DOI: 10.1021/jo500559r
    A systematic study of the electrochemical oxidation of 1,2-diarylalkenes was carried out with the focus on detailed product studies and variation of product type as a function of aromatic substitution. A reinvestigation of the electrochemical oxidation of 4,4'-dimethoxystilbene under various conditions was first carried out, and all products formed were fully characterized and quantitated. This was followed by a systematic investigation of the effect of aromatic substitution on the nature and distribution of the products. The aromatic substituents were found to fall into three main categories, viz., substrates in which the nature and position of the aromatic substituents gave rise to essentially the same products as 4,4'-dimethoxystilbene, for example, tetraaryltetrahydrofurans, dehydrotetralins, and aldehydes (p-MeO or p-NMe2 on one ring and X on the other ring, where X = o-MeO or p-alkyl, or m- or p-EWG; e.g., 4-methoxy-4'-trifluoromethylstilbene); those that gave rise to a mixture of indanyl (or tetralinyl) acetamides and dehydrotetralins (or pallidols) (both or one ring substituted by alkyl groups, e.g., 4,4'-dimethylstilbene); and those where strategic placement of donor groups, such as OMe and OH, led to the formation of ampelopsin F and pallidol-type carbon skeletons (e.g., 4,3',4'-trimethoxystilbene). Reaction pathways to rationalize the formation of the different products are presented.
  4. Chong KW, Thomas NF, Low YY, Kam TS
    J Org Chem, 2018 Dec 21;83(24):15087-15100.
    PMID: 30488699 DOI: 10.1021/acs.joc.8b02360
    The effect of ortho'-substituted side chains bearing nucleophilic groups such as CH2OH, CH2NHR, and CO2H on the reactivity of anodically generated 4-methoxy- and 3,4-dimethoxystilbene cation radicals was investigated, and results were compared with those of substrates where the nucleophilic groups such as OH and NHR are directly attached to the aromatic ring. It was found that when ortho'-substituted groups such as CH2OH or CH2NHR are present in the other ring, only direct intramolecular cation-nucleophile reactions occur to give bisbenzopyrans or bisisoquinolines. Crossover products (previously obtained when the ortho' substituents were OH and NH2) such as the fused benzoxepanes/fused benzoazepanes were not formed. When the ortho' substituent is COOH, direct intramolecular cation-nucleophile reaction occurs to give the corresponding bis-δ-lactones in high yield. The presence of an additional 3-methoxy substituent resulted in the formation of other fused polycyclic products due to competing aromatic substitution reactions. Reaction pathways leading to the different products and reasons for the difference in behavior shown by the present stilbenes are presented. The results have provided additional insight into the reactivity and behavior of anodically generated stilbene cation radicals.
  5. Nett RS, Dho Y, Low YY, Sattely ES
    Proc Natl Acad Sci U S A, 2021 06 15;118(24).
    PMID: 34112718 DOI: 10.1073/pnas.2102949118
    Plants synthesize many diverse small molecules that affect function of the mammalian central nervous system, making them crucial sources of therapeutics for neurological disorders. A notable portion of neuroactive phytochemicals are lysine-derived alkaloids, but the mechanisms by which plants produce these compounds have remained largely unexplored. To better understand how plants synthesize these metabolites, we focused on biosynthesis of the Lycopodium alkaloids that are produced by club mosses, a clade of plants used traditionally as herbal medicines. Hundreds of Lycopodium alkaloids have been described, including huperzine A (HupA), an acetylcholine esterase inhibitor that has generated interest as a treatment for the symptoms of Alzheimer's disease. Through combined metabolomic profiling and transcriptomics, we have identified a developmentally controlled set of biosynthetic genes, or potential regulon, for the Lycopodium alkaloids. The discovery of this putative regulon facilitated the biosynthetic reconstitution and functional characterization of six enzymes that act in the initiation and conclusion of HupA biosynthesis. This includes a type III polyketide synthase that catalyzes a crucial imine-polyketide condensation, as well as three Fe(II)/2-oxoglutarate-dependent dioxygenase (2OGD) enzymes that catalyze transformations (pyridone ring-forming desaturation, piperidine ring cleavage, and redox-neutral isomerization) within downstream HupA biosynthesis. Our results expand the diversity of known chemical transformations catalyzed by 2OGDs and provide mechanistic insight into the function of noncanonical type III PKS enzymes that generate plant alkaloid scaffolds. These data offer insight into the chemical logic of Lys-derived alkaloid biosynthesis and demonstrate the tightly coordinated coexpression of secondary metabolic genes for the biosynthesis of medicinal alkaloids.
  6. Tan CH, Sim DSY, Lim SH, Mohd Mohidin TB, Mohan G, Low YY, et al.
    Planta Med, 2022 Nov;88(14):1325-1340.
    PMID: 35100653 DOI: 10.1055/a-1755-5605
    Two iboga-vobasine bisindoles, 16'-decarbomethoxyvoacamine (1: ) and its 19,20-dihydro derivative, 16'-decarbomethoxydihydrovoacamine (2: ) from Tabernaemontana corymbosa exhibited potent cytotoxicity against the human colorectal adenocarcinoma HT-29 cells in our previous studies. Bisindoles 1: and 2: selectively inhibited the growth of HT-29 cells without significant cytotoxicity to normal human colon fibroblasts CCD-18Co. Treatment with bisindoles 1: and 2: suppressed the formation of HT-29 colonies via G0/G1 cell cycle arrest and induction of mitochondrial apoptosis. Owing to its higher antiproliferative activity, bisindole 2: was chosen for the subsequent studies. Bisindole 2: inhibited the formation of HT-29 spheroids (tumor-like cell aggregates) in 3D experiments in a dose-dependent manner, while an in vitro tubulin polymerization assay and molecular docking analysis showed that bisindole 2: is a microtubule-stabilizing agent which is predicted to bind at the β-tubulin subunit at the taxol-binding site. The binding resulted in the generation of ROS, which consequently activated the oxidative stress-related cell cycle arrest and apoptotic pathways, viz., JNK/p38, p21Cip1/Chk1, and p21Cip1/Rb/E2F, as shown by microarray profiling.
  7. Gan CY, Yoganathan K, Sim KS, Low YY, Lim SH, Kam TS
    Phytochemistry, 2014 Dec;108:234-42.
    PMID: 25442910 DOI: 10.1016/j.phytochem.2014.09.014
    Eleven indole alkaloids, comprising four corynanthean, two eburnane, one aspidofractinine, one secoleuconoxine, one andranginine, and two pauciflorine type alkaloids were isolated from the stem-bark and leaf extracts of Kopsia pauciflora. Their structures were determined using NMR and MS analyses. The catharinensine type alkaloid kopsirensine B and the secoleuconoxine alkaloid arboloscine A showed moderate to weak activity in reversing MDR in vincristine-resistant KB cells. The alkaloid content was markedly different compared to that of a sample from Malaysian Borneo.
  8. Yap VA, Loong BJ, Ting KN, Loh SH, Yong KT, Low YY, et al.
    Phytochemistry, 2015 Jan;109:96-102.
    PMID: 25468714 DOI: 10.1016/j.phytochem.2014.10.032
    Hispidacine, an 8,4'-oxyneolignan featuring incorporation of an unusual 2-hydroxyethylamine moiety at C-7, and hispiloscine, a phenanthroindolizidine alkaloid, were isolated from the stem-bark and leaves of the Malaysian Ficus hispida Linn. Their structures were established by spectroscopic analysis. Hispidacine induced a moderate vasorelaxant activity in rat isolated aorta, while hispiloscine showed appreciable antiproliferative activities against MDA-MB-231, MCF-7, A549, HCT-116 and MRC-5 cell lines.
  9. Lim SH, Low YY, Sinniah SK, Yong KT, Sim KS, Kam TS
    Phytochemistry, 2014 Feb;98:204-15.
    PMID: 24342109 DOI: 10.1016/j.phytochem.2013.11.014
    A total of seventeen alkaloids, comprising six macroline (including alstofolinine A, a macroline indole incorporating a butyrolactone ring-E), two ajmaline, one sarpagine, and eight akuammiline alkaloids, were isolated from the stem-bark and leaf extracts of the Malayan Alstonia macrophylla. The structure and relative configurations of these alkaloids were established using NMR, MS and in several instances, confirmed by X-ray diffraction analysis. Six of these alkaloids were effective in reversing multidrug-resistance (MDR) in vincristine-resistant KB cells.
  10. Ku WF, Tan SJ, Low YY, Komiyama K, Kam TS
    Phytochemistry, 2011 Dec;72(17):2212-8.
    PMID: 21889176 DOI: 10.1016/j.phytochem.2011.08.001
    A total of 20 alkaloids were isolated from the leaf and stem-bark extracts of Alstonia angustiloba, of which two are hitherto unknown. One is an alkaloid of the angustilobine type (angustilobine C), while the other is a bisindole alkaloid angustiphylline, derived from the union of uleine and secovallesamine moieties. The structures of these alkaloids were established using NMR and MS analysis. Angustilobine C showed moderate cytotoxicity towards KB cells.
  11. Gan CY, Low YY, Robinson WT, Komiyama K, Kam TS
    Phytochemistry, 2010 Aug;71(11-12):1365-70.
    PMID: 20542302 DOI: 10.1016/j.phytochem.2010.05.015
    Leucofoline and leuconoline, representing the first members of the aspidospermatan-aspidospermatan and eburnane-sarpagine subclasses of the bisindole alkaloids, respectively, were isolated from the Malayan Leuconotis griffithii. The structures of these bisindole alkaloids were established using NMR and MS analysis, and in the case of leuconoline, confirmed by X-ray diffraction analysis. Both alkaloids showed weak cytotoxicity towards human KB cells.
  12. Lim SH, Low YY, Subramaniam G, Abdullah Z, Thomas NF, Kam TS
    Phytochemistry, 2013 Mar;87:148-56.
    PMID: 23200029 DOI: 10.1016/j.phytochem.2012.11.005
    Lumusidines A-D, bisindole alkaloids of the macroline-macroline type, and one of the macroline-pleiocarpamine type, villalstonidine F, were isolated from the stem-bark extract of Alstonia macrophylla (Apocynaceae). The structures and absolute configurations of these alkaloids were established using NMR, MS, and X-ray diffraction analyses.
  13. Lim JL, Sim KS, Yong KT, Loong BJ, Ting KN, Lim SH, et al.
    Phytochemistry, 2015 Sep;117:317-24.
    PMID: 26125941 DOI: 10.1016/j.phytochem.2015.06.024
    Four alkaloids comprising two vallesamine, one strychnan, and one pyranopyridine alkaloid, in addition to 32 other known alkaloids were isolated from two Malayan Alstonia species, Alstonia pneumatophora and Alstonia rostrata. The structures of these alkaloids were determined using NMR and MS analyses, and in one instance, confirmed by X-ray diffraction analysis. The nor-6,7-secovallesamine alkaloid, pneumatophorine, is notable for an unusual incorporation of a 3-ethylpyridine moiety in a monoterpenoid indole. The rhazinilam-type alkaloids (rhazinicine, nor-rhazinicine, rhazinal, and rhazinilam) showed strong cytotoxicity toward human KB, HCT-116, MDA-MB-231, and MRC-5 cells, while pneumatophorine, the uleine alkaloid undulifoline, and the strychnan alkaloids, N4-demethylalstogustine and echitamidine, induced concentration dependent relaxation in phenylephrine-precontracted rat aortic rings.
  14. Yeap JS, Tan CH, Yong KT, Lim KH, Lim SH, Low YY, et al.
    Phytochemistry, 2020 Aug;176:112391.
    PMID: 32387883 DOI: 10.1016/j.phytochem.2020.112391
    Fourteen previously undescribed alkaloids comprising two N-1-hydroxymethylmacroline alkaloids, one talpinine-type oxindole acetal, a pair of equilibrating talpinine-type oxindole hemiacetals, eight oxidized derivatives of sarpagine- and akuammiline-type indole alkaloids, in addition to alstochalotine a diastereomer of gelsochalotine recently isolated from Gelsemium elegans, were isolated from the leaf and stem-bark extracts of Alstonia penangiana. The structures and relative configurations of these alkaloids were established using NMR, MS, and in one instance, confirmed by X-ray diffraction analysis. An NMR-based method is described as a useful chemotaxonomic tool for differentiating between A. penangiana and A. macrophylla. Several of the alkaloids isolated showed appreciable growth inhibitory effects when tested against a number of human cancer cell lines.
  15. Cho ES, Krishnan P, Loh HS, Daly JM, Leong CO, Mai CW, et al.
    Phytochemistry, 2021 Oct 27;193:112988.
    PMID: 34717280 DOI: 10.1016/j.phytochem.2021.112988
    Four undescribed cucurbitacins, designated as petiolaticins A-D, and four known cucurbitacins were isolated from the bark and leaves of Elaeocarpus petiolatus (Jack) Wall. Their chemical structures were elucidated based on detailed analyses of the NMR and MS data. The absolute configuration of petiolaticin A was also determined by X-ray diffraction analysis. Petiolaticin A represents a cucurbitacin derivative incorporating a 3,4-epoxyfuranyl-bearing side chain, while petiolaticin B possesses a furopyranyl unit fused to the tetracyclic cucurbitane core structure. Petiolaticins A, B, and D were evaluated in vitro against a panel of human breast, pancreatic, and colorectal cancer cell lines. Petiolaticin A exhibited the greatest cytotoxicity against the MDA-MB-468, MDA-MB-231, MCF-7, and SW48 cell lines (IC50 7.4, 9.2, 9.3, and 4.6 μM, respectively). Additionally, petiolaticin D, 16α,23α-epoxy-3β,20β-dihydroxy-10αH,23βH-cucurbit-5,24-dien-11-one, and 16α,23α-epoxy-3β,20β-dihydroxy-10αH,23βH-cucurbit-5,24-dien-11-one 3-O-β-D-glucopyranoside were tested for their ability to inhibit cell entry of a pseudotyped virus bearing the hemagglutinin envelope protein of a highly pathogenic avian influenza virus. Petiolaticin D showed the highest inhibition (44.3%), followed by 16α,23α-epoxy-3β,20β-dihydroxy-10αH,23βH-cucurbit-5,24-dien-11-one (21.0%), and 16α,23α-epoxy-3β,20β-dihydroxy-10αH,23βH-cucurbit-5,24-dien-11-one 3-O-β-D-glucopyranoside showed limited inhibition (9.0%). These preliminary biological assays have demonstrated that petiolaticins A and D possess anticancer and antiviral properties, respectively, which warrant for further investigations.
  16. Ezeoke MC, Krishnan P, Sim DS, Lim SH, Low YY, Chong KW, et al.
    Phytochemistry, 2018 Feb;146:75-81.
    PMID: 29247894 DOI: 10.1016/j.phytochem.2017.12.003
    From the leaves of Elaeocarpus tectorius (Lour.) Poir. four previously undescribed phenethylamine-containing alkaloids were isolated, namely, tectoricine, possessing an unprecedented isoquinuclidinone ring system incorporating a phenethylamine moiety, tectoraline, representing a rare alkamide incorporating two phenethylamine moieties, and tectoramidines A and B, representing the first naturally occurring trimeric and dimeric phenethylamine alkaloids incorporating an amidine function. The structures of these alkaloids were established by detailed spectroscopic analysis. The absolute configuration of tectoricine was determined by comparison of the experimental and calculated ECD spectra. Plausible biosynthetic pathways to the four alkaloids are proposed.
  17. Tang SY, Tan CH, Sim KS, Yong KT, Lim KH, Low YY, et al.
    Phytochemistry, 2023 Apr;208:113587.
    PMID: 36646163 DOI: 10.1016/j.phytochem.2023.113587
    Eight undescribed iboga alkaloids, polyneurines A-H, were isolated from the bark of Tabernaemontana polyneura. The structures of these alkaloids were established by interpretation of the MS and NMR data, while the configurations were determined using GIAO NMR calculations and DP4+ probability analysis, TDDFT-ECD method, or X-ray diffraction analysis. Polyneurine A possesses a γ-lactone unit embedded within the iboga skeleton, while polyneurines D and E incorporate a formylmethyl moiety at C-3 of the iboga skeleton. Biosynthetic pathways towards the formation of polyneurines A, C, D, and E were proposed.
  18. Ng CT, Fong LY, Low YY, Ban J, Hakim MN, Ahmad Z
    Physiol Res, 2016 12 13;65(6):1053-1058.
    PMID: 27539106
    The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
  19. Nge CE, Gan CY, Lim KH, Ting KN, Low YY, Kam TS
    Org. Lett., 2014 Dec 19;16(24):6330-3.
    PMID: 25454201 DOI: 10.1021/ol503072g
    Two new indole alkaloids characterized by previously unencountered natural product skeletons, viz., criofolinine (1), incorporating a pyrroloazepine motif within a pentacyclic ring system, and vernavosine (2, isolated as its ethyl ether derivative 3, which on hydrolysis regenerated the putative precursor alkaloid 2), incorporating a pyridopyrimidine moiety embedded within a pentacyclic carbon framework, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined on the basis of NMR and MS analysis and confirmed by X-ray diffraction analysis.
  20. Nge CE, Gan CY, Low YY, Thomas NF, Kam TS
    Org. Lett., 2013 Sep 20;15(18):4774-7.
    PMID: 23991636 DOI: 10.1021/ol4021404
    Two new indole alkaloids, voatinggine (1) and tabertinggine (2), which are characterized by previously unencountered natural product skeletons, were isolated from a Malayan Tabernaemontana species. The structures and absolute configuration of these alkaloids were determined using NMR and MS analysis, and X-ray diffraction analysis. A possible biogenetic pathway to these novel alkaloids from an iboga precursor, and via a common cleavamine-type intermediate, is presented.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links