Displaying publications 1 - 20 of 135 in total

Abstract:
Sort:
  1. Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, et al.
    Am J Hum Genet, 2015 Jul 02;97(1):54-66.
    PMID: 26073780 DOI: 10.1016/j.ajhg.2015.05.005
    Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.
  2. Rosenthal VD, Yin R, Lu Y, Rodrigues C, Myatra SN, Kharbanda M, et al.
    Am J Infect Control, 2023 Jun;51(6):675-682.
    PMID: 36075294 DOI: 10.1016/j.ajic.2022.08.024
    BACKGROUND: The International Nosocomial Infection Control Consortium has found a high ICU mortality rate. Our aim was to identify all-cause mortality risk factors in ICU-patients.

    METHODS: Multinational, multicenter, prospective cohort study at 786 ICUs of 312 hospitals in 147 cities in 37 Latin American, Asian, African, Middle Eastern, and European countries.

    RESULTS: Between 07/01/1998 and 02/12/2022, 300,827 patients, followed during 2,167,397 patient-days, acquired 21,371 HAIs. Following mortality risk factors were identified in multiple logistic regression: Central line-associated bloodstream infection (aOR:1.84; P

  3. Zheng J, Wai JL, Lake RJ, New SY, He Z, Lu Y
    Anal Chem, 2021 08 10;93(31):10834-10840.
    PMID: 34310132 DOI: 10.1021/acs.analchem.1c01077
    DNAzymes have emerged as an important class of sensors for a wide variety of metal ions, with florescence DNAzyme sensors as the most widely used in different sensing and imaging applications because of their fast response time, high signal intensity, and high sensitivity. However, the requirements of an external excitation light source and its associated power increase the cost and size of the fluorometer, making it difficult to be used for portable detections. To overcome these limitations, we report herein a DNAzyme sensor that relies on chemiluminescence resonance energy transfer (CRET) without the need for external light. The sensor is constructed by combining the functional motifs from both Pb2+-dependent 8-17 DNAzyme conjugated to fluorescein (FAM) and hemin/G-quadruplex that mimics horseradish peroxidase to catalyze the oxidation of luminol by H2O2 to yield chemiluminescence. In the absence of Pb2+, the hybridization between the enzyme and substrate strands bring the FAM and hemin/G-quadruplex in close proximity, resulting in CRET. The presence of Pb2+ ions can drive the cleavage on the substrate strand, resulting in a sharp decrease in the melting temperature of hybridization and thus separation of the FAM from hemin/G-quadruplex. The liberated CRET pair causes a ratiometric increase in the donor's fluorescent signal and a decrease in the acceptor signal. Using this method, Pb2+ ions have been measured rapidly (<15 min) with a low limit of detection at 5 nM. By removing the requirement of exogenous light excitation, we have demonstrated a simple and portable detection using a smartphone, making the DNAzyme-CRET system suitable for field tests of lake water. Since DNAzymes selective for other metal ions or targets, such as bacteria, can be obtained using in vitro selection, the method reported here opens a new avenue for rapid, portable, and ratiometric detection of many targets in environmental monitoring, food safety, and medical diagnostics.
  4. Heng BC, Bai Y, Li X, Meng Y, Lu Y, Zhang X, et al.
    Animal Model Exp Med, 2023 Apr;6(2):120-130.
    PMID: 36856186 DOI: 10.1002/ame2.12300
    Understanding the bioelectrical properties of bone tissue is key to developing new treatment strategies for bone diseases and injuries, as well as improving the design and fabrication of scaffold implants for bone tissue engineering. The bioelectrical properties of bone tissue can be attributed to the interaction of its various cell lineages (osteocyte, osteoblast and osteoclast) with the surrounding extracellular matrix, in the presence of various biomechanical stimuli arising from routine physical activities; and is best described as a combination and overlap of dielectric, piezoelectric, pyroelectric and ferroelectric properties, together with streaming potential and electro-osmosis. There is close interdependence and interaction of the various electroactive and electrosensitive components of bone tissue, including cell membrane potential, voltage-gated ion channels, intracellular signaling pathways, and cell surface receptors, together with various matrix components such as collagen, hydroxyapatite, proteoglycans and glycosaminoglycans. It is the remarkably complex web of interactive cross-talk between the organic and non-organic components of bone that define its electrophysiological properties, which in turn exerts a profound influence on its metabolism, homeostasis and regeneration in health and disease. This has spurred increasing interest in application of electroactive scaffolds in bone tissue engineering, to recapitulate the natural electrophysiological microenvironment of healthy bone tissue to facilitate bone defect repair.
  5. Park YH, Senkus-Konefka E, Im SA, Pentheroudakis G, Saji S, Gupta S, et al.
    Ann Oncol, 2020 04;31(4):451-469.
    PMID: 32081575 DOI: 10.1016/j.annonc.2020.01.008
    In view of the planned new edition of the most recent version of the European Society for Medical Oncology (ESMO) Clinical Practice Guidelines for the diagnosis, treatment and follow-up of primary breast cancer published in 2015, it was decided at the ESMO Asia Meeting in November 2018, by both the ESMO and the Korean Society of Medical Oncology (KSMO), to convene a special face-to-face guidelines meeting in 2019 in Seoul. The aim was to adapt the latest ESMO 2019 guidelines to take into account the ethnic and geographical differences associated with the treatment of early breast cancer in Asian patients. These guidelines represent the consensus opinions reached by experts in the treatment of patients with early breast cancer representing the oncology societies of Korea (KSMO), China (CSCO), India (ISMPO) Japan (JSMO), Malaysia (MOS), Singapore (SSO) and Taiwan (TOS). The voting was based on scientific evidence, and was independent of both the current treatment practices, and the drug availability and reimbursement situations, in the individual participating Asian countries.
  6. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  7. Zeng R, Li H, Jia L, Lee SH, Jiang R, Zhang Y, et al.
    BMC Cancer, 2022 Dec 16;22(1):1317.
    PMID: 36527000 DOI: 10.1186/s12885-022-10369-x
    BACKGROUND: Acquired chemo-drug resistance constantly led to the failure of chemotherapy for malignant cancers, consequently causing cancer relapse. Hence, identifying the biomarker of drug resistance is vital to improve the treatment efficacy in cancer. The clinical prognostic value of CYP24A1 remains inconclusive, hence we aim to evaluate the association between CYP24A1 and the drug resistance in cancer patients through a meta-analysis approach.

    METHOD: Relevant studies detecting the expression or SNP of CYP24A1 in cancer patients up till May 2022 were systematically searched in four common scientific databases including PubMed, EMBASE, Cochrane library and ISI Web of Science. The pooled hazard ratios (HRs) indicating the ratio of hazard rate of survival time between CYP24A1high population vs CYP24A1low population were calculated. The pooled HRs and odds ratios (ORs) with 95% confidence intervals (CIs) were used to explore the association between CYP24A1's expression or SNP with survival, metastasis, recurrence, and drug resistance in cancer patients.

    RESULT: Fifteen studies were included in the meta-analysis after an initial screening according to the inclusion and exclusion criteria. There was a total of 3784 patients pooled from all the included studies. Results indicated that higher expression or SNP of CYP24A1 was significantly correlated with shorter survival time with pooled HRs (95% CI) of 1.21 (1.12, 1.31), metastasis with pooled ORs (95% CI) of 1.81 (1.11, 2.96), recurrence with pooled ORs (95% CI) of 2.14 (1.45, 3.18) and drug resistance with pooled HRs (95% CI) of 1.42 (1.17, 1.68). In the subgroup analysis, cancer type, treatment, ethnicity, and detection approach for CYP24A1 did not affect the significance of the association between CYP24A1 expression and poor prognosis.

    CONCLUSION: Findings from our meta-analysis demonstrated that CYP24A1's expression or SNP was correlated with cancer progression and drug resistance. Therefore, CYP24A1 could be a potential molecular marker for cancer resistance.

  8. Zhang F, Shih SF, Harapan H, Rajamoorthy Y, Chang HY, Singh A, et al.
    BMC Res Notes, 2021 Nov 25;14(1):428.
    PMID: 34823587 DOI: 10.1186/s13104-021-05846-8
    OBJECTIVES: This study assessed changes in behaviors/attitudes related to the COVID-19. With the understanding that behaviors and vaccine decision-making could contribute to global spread of infectious diseases, this study collected several waves of internet-based surveys from individuals in the United States, mainland China, Taiwan, Malaysia, Indonesia, and India. The aims of this study were to (1) characterize the relationship between the epidemiology of disease and changes over time in risk perceptions, knowledge, and attitudes towards hygienic behaviors; (2) examine if risk perceptions affect acceptance of less-than-ideal vaccines; and (3) contrast adherence to public health recommendations across countries which have had different governmental responses to the outbreak.

    DATA DESCRIPTION: We conducted cross-sectional online surveys in six countries from March 2020 to April 2021. By the end of June 2021, there will be six waves of surveys for the United States and China, and four waves for the rest of countries. There are common sets of questions for all countries, however, some questions were adapted to reflect local situations and some questions were designed intentionally for specific countries to capture different COVID-19 mitigation actions. Participants were asked about their adherence towards countermeasures, risk perceptions, and acceptance of a hypothetical vaccine for COVID-19.

  9. Chu C, Lu Y, Li S, Yao Z
    Biodivers Data J, 2022;10:e96003.
    PMID: 36761640 DOI: 10.3897/BDJ.10.e96003
    BACKGROUND: The spider family Ctenidae Keyserling, 1877 has a worldwide distribution with 584 species belonging to 49 genera. Amongst these, 141 species are from Asia, including 130 species assigned to Cteninae Keyserling, 1877.

    NEW INFORMATION: Nine new species belonging to three genera of Cteninae are reported from Asia: Amauropelmakrabi sp. n. (female; Krabi, Thailand), Am.phangnga sp. n. (male; Phang Nga, Thailand), Am.saraburi sp. n. (male and female; Saraburi, Thailand); Anahitamedog sp. n. (male and female; Tibet, China); Bowieninhbinh sp. n. (male; Ninh Binh, Vietnam) and B.vinhphuc sp. n. (male and female; Vinh Phuc, Vietnam) from the robustus-species group; B.borneo sp. n. (male; Sabah, Malaysia) from the chinagirl-species group; B.engkilili sp. n. (female; Engkilili, Malaysia); B.sabah sp. n. (male and female; Sabah, Malaysia) from the scarymonsters-species group. The male of An.popa Jäger & Minn, 2015 and the female of B.fascination Jäger, 2022 (robustus-species group) are described for the first time. B.fascination Jäger, 2022 is reported from China for the first time. In addition, the DNA barcodes of all the species in this study were obtained, except for B.vinhphuc sp. n.

  10. Chu C, Lu Y, Yao Z, Li S
    Biodivers Data J, 2022;10:e87597.
    PMID: 36761608 DOI: 10.3897/BDJ.10.e87597
    BACKGROUND: Amauropelma Raven, Stumkat & Gray, 2001 currently contains 24 species. It is distributed in Australia, India, Indonesia, Laos and Malaysia. This genus has not been found in China. Ctenus Walckenaer, 1805 comprises 213 known species. This genus is distributed worldwide. Currently, only two species, Ctenuslishuqiang Jäger, 2012 and Ctenusyaeyamensis Yoshida, 1998 are known to occur in China.

    NEW INFORMATION: Three new species of ctenid spiders are described from Xishuangbanna Tropical Botanical Garden in Yunnan Province, China: Amauropelmayunnan sp. nov., Ctenusbanna sp. nov. and Ctenusyulin sp. nov. Amauropelma and Ctenusrobustus Thorell, 1897 are reported from China for the first time.

  11. Li Z, Lee SHR, Chin WHN, Lu Y, Jiang N, Lim EH, et al.
    Blood Adv, 2021 12 14;5(23):5226-5238.
    PMID: 34547766 DOI: 10.1182/bloodadvances.2021004895
    Among the recently described subtypes in childhood B-lymphoblastic leukemia (B-ALL) were DUX4- and PAX5-altered (PAX5alt). By using whole transcriptome RNA sequencing in 377 children with B-ALL from the Malaysia-Singapore ALL 2003 (MS2003) and Malaysia-Singapore ALL 2010 (MS2010) studies, we found that, after hyperdiploid and ETV6-RUNX1, the third and fourth most common subtypes were DUX4 (n = 51; 14%) and PAX5alt (n = 36; 10%). DUX4 also formed the largest genetic subtype among patients with poor day-33 minimal residual disease (MRD; n = 12 of 44). But despite the poor MRD, outcome of DUX4 B-ALL was excellent (5-year cumulative risk of relapse [CIR], 8.9%; 95% confidence interval [CI], 2.8%-19.5% and 5-year overall survival, 97.8%; 95% CI, 85.3%-99.7%). In MS2003, 21% of patients with DUX4 B-ALL had poor peripheral blood response to prednisolone at day 8, higher than other subtypes (8%; P = .03). In MS2010, with vincristine at day 1, no day-8 poor peripheral blood response was observed in the DUX4 subtype (P = .03). The PAX5alt group had an intermediate risk of relapse (5-year CIR, 18.1%) but when IKZF1 was not deleted, outcome was excellent with no relapse among 23 patients. Compared with MS2003, outcome of PAX5alt B-ALL with IKZF1 codeletion was improved by treatment intensification in MS2010 (5-year CIR, 80.0% vs 0%; P = .05). In conclusion, despite its poor initial response, DUX4 B-ALL had a favorable overall outcome, and the prognosis of PAX5alt was strongly dependent on IKZF1 codeletion.
  12. Lu Y, Kham SK, Ariffin H, Oei AM, Lin HP, Tan AM, et al.
    Br. J. Cancer, 2014 Mar 18;110(6):1673-80.
    PMID: 24434428 DOI: 10.1038/bjc.2014.7
    Host germline variations and their potential prognostic importance is an emerging area of interest in paediatric ALL.
  13. Yeoh AE, Li Z, Dong D, Lu Y, Jiang N, Trka J, et al.
    Br J Haematol, 2018 Jun;181(5):653-663.
    PMID: 29808917 DOI: 10.1111/bjh.15252
    Accurate risk assignment in childhood acute lymphoblastic leukaemia is essential to avoid under- or over-treatment. We hypothesized that time-series gene expression profiles (GEPs) of bone marrow samples during remission-induction therapy can measure the response and be used for relapse prediction. We computed the time-series changes from diagnosis to Day 8 of remission-induction, termed Effective Response Metric (ERM-D8) and tested its ability to predict relapse against contemporary risk assignment methods, including National Cancer Institutes (NCI) criteria, genetics and minimal residual disease (MRD). ERM-D8 was trained on a set of 131 patients and validated on an independent set of 79 patients. In the independent blinded test set, unfavourable ERM-D8 patients had >3-fold increased risk of relapse compared to favourable ERM-D8 (5-year cumulative incidence of relapse 38·1% vs. 10·6%; P = 2·5 × 10-3 ). ERM-D8 remained predictive of relapse [P = 0·05; Hazard ratio 4·09, 95% confidence interval (CI) 1·03-16·23] after adjusting for NCI criteria, genetics, Day 8 peripheral response and Day 33 MRD. ERM-D8 improved risk stratification in favourable genetics subgroups (P = 0·01) and Day 33 MRD positive patients (P = 1·7 × 10-3 ). We conclude that our novel metric - ERM-D8 - based on time-series GEP after 8 days of remission-induction therapy can independently predict relapse even after adjusting for NCI risk, genetics, Day 8 peripheral blood response and MRD.
  14. Lu Y, Cross AJ, Murphy N, Freisling H, Travis RC, Ferrari P, et al.
    Cancer Causes Control, 2016 07;27(7):919-27.
    PMID: 27294726 DOI: 10.1007/s10552-016-0772-z
    BACKGROUND: The etiology of small intestinal cancer (SIC) is largely unknown, and there are very few epidemiological studies published to date. No studies have investigated abdominal adiposity in relation to SIC.

    METHODS: We investigated overall obesity and abdominal adiposity in relation to SIC in the European Prospective Investigation into Cancer and Nutrition (EPIC), a large prospective cohort of approximately half a million men and women from ten European countries. Overall obesity and abdominal obesity were assessed by body mass index (BMI), waist circumference (WC), hip circumference (HC), waist-to-hip ratio (WHR), and waist-to-height ratio (WHtR). Multivariate Cox proportional hazards regression modeling was performed to estimate hazard ratios (HRs) and 95 % confidence intervals (CIs). Stratified analyses were conducted by sex, BMI, and smoking status.

    RESULTS: During an average of 13.9 years of follow-up, 131 incident cases of SIC (including 41 adenocarcinomas, 44 malignant carcinoid tumors, 15 sarcomas and 10 lymphomas, and 21 unknown histology) were identified. WC was positively associated with SIC in a crude model that also included BMI (HR per 5-cm increase = 1.20, 95 % CI 1.04, 1.39), but this association attenuated in the multivariable model (HR 1.18, 95 % CI 0.98, 1.42). However, the association between WC and SIC was strengthened when the analysis was restricted to adenocarcinoma of the small intestine (multivariable HR adjusted for BMI = 1.56, 95 % CI 1.11, 2.17). There were no other significant associations.

    CONCLUSION: WC, rather than BMI, may be positively associated with adenocarcinomas but not carcinoid tumors of the small intestine.

    IMPACT: Abdominal obesity is a potential risk factor for adenocarcinoma in the small intestine.

  15. Lu Y, Beeghly-Fadiel A, Wu L, Guo X, Li B, Schildkraut JM, et al.
    Cancer Res, 2018 Sep 15;78(18):5419-5430.
    PMID: 30054336 DOI: 10.1158/0008-5472.CAN-18-0951
    Large-scale genome-wide association studies (GWAS) have identified approximately 35 loci associated with epithelial ovarian cancer (EOC) risk. The majority of GWAS-identified disease susceptibility variants are located in noncoding regions, and causal genes underlying these associations remain largely unknown. Here, we performed a transcriptome-wide association study to search for novel genetic loci and plausible causal genes at known GWAS loci. We used RNA sequencing data (68 normal ovarian tissue samples from 68 individuals and 6,124 cross-tissue samples from 369 individuals) and high-density genotyping data from European descendants of the Genotype-Tissue Expression (GTEx V6) project to build ovarian and cross-tissue models of genetically regulated expression using elastic net methods. We evaluated 17,121 genes for their cis-predicted gene expression in relation to EOC risk using summary statistics data from GWAS of 97,898 women, including 29,396 EOC cases. With a Bonferroni-corrected significance level of P < 2.2 × 10-6, we identified 35 genes, including FZD4 at 11q14.2 (Z = 5.08, P = 3.83 × 10-7, the cross-tissue model; 1 Mb away from any GWAS-identified EOC risk variant), a potential novel locus for EOC risk. All other 34 significantly associated genes were located within 1 Mb of known GWAS-identified loci, including 23 genes at 6 loci not previously linked to EOC risk. Upon conditioning on nearby known EOC GWAS-identified variants, the associations for 31 genes disappeared and three genes remained (P < 1.47 × 10-3). These data identify one novel locus (FZD4) and 34 genes at 13 known EOC risk loci associated with EOC risk, providing new insights into EOC carcinogenesis.Significance: Transcriptomic analysis of a large cohort confirms earlier GWAS loci and reveals FZD4 as a novel locus associated with EOC risk. Cancer Res; 78(18); 5419-30. ©2018 AACR.
  16. Yang Y, Wu L, Shu X, Lu Y, Shu XO, Cai Q, et al.
    Cancer Res, 2019 Feb 01;79(3):505-517.
    PMID: 30559148 DOI: 10.1158/0008-5472.CAN-18-2726
    DNA methylation is instrumental for gene regulation. Global changes in the epigenetic landscape have been recognized as a hallmark of cancer. However, the role of DNA methylation in epithelial ovarian cancer (EOC) remains unclear. In this study, high-density genetic and DNA methylation data in white blood cells from the Framingham Heart Study (N = 1,595) were used to build genetic models to predict DNA methylation levels. These prediction models were then applied to the summary statistics of a genome-wide association study (GWAS) of ovarian cancer including 22,406 EOC cases and 40,941 controls to investigate genetically predicted DNA methylation levels in association with EOC risk. Among 62,938 CpG sites investigated, genetically predicted methylation levels at 89 CpG were significantly associated with EOC risk at a Bonferroni-corrected threshold of P < 7.94 × 10-7. Of them, 87 were located at GWAS-identified EOC susceptibility regions and two resided in a genomic region not previously reported to be associated with EOC risk. Integrative analyses of genetic, methylation, and gene expression data identified consistent directions of associations across 12 CpG, five genes, and EOC risk, suggesting that methylation at these 12 CpG may influence EOC risk by regulating expression of these five genes, namely MAPT, HOXB3, ABHD8, ARHGAP27, and SKAP1. We identified novel DNA methylation markers associated with EOC risk and propose that methylation at multiple CpG may affect EOC risk via regulation of gene expression. SIGNIFICANCE: Identification of novel DNA methylation markers associated with EOC risk suggests that methylation at multiple CpG may affect EOC risk through regulation of gene expression.
  17. Wu Y, Lewis W, Wai JL, Xiong M, Zheng J, Yang Z, et al.
    Chemistry (Basel), 2023 Sep;5(3):1745-1759.
    PMID: 38371491 DOI: 10.3390/chemistry5030119
    While fluorescent sensors have been developed for monitoring metal ions in health and diseases, they are limited by the requirement of an excitation light source that can lead to photobleaching and a high autofluorescence background. To address these issues, bioluminescence resonance energy transfer (BRET)-based protein or small molecule sensors have been developed; however, most of them are not highly selective nor generalizable to different metal ions. Taking advantage of the high selectivity and generalizability of DNAzymes, we report herein DNAzyme-based ratiometric sensors for Zn2+ based on BRET. The 8-17 DNAzyme was labeled with luciferase and Cy3. The proximity between luciferase and Cy3 permiQed BRET when coelenterazine, the substrate for luciferase, was introduced. Adding samples containing Zn2+ resulted in a cleavage of the substrate strand, causing dehybridization of the DNAzyme construct, thus increasing the distance between Cy3 and luciferase and changing the BRET signals. Using these sensors, we detected Zn2+ in serum samples and achieved Zn2+ detection with a smartphone camera. Moreover, since the BRET pair is not the component that determines the selectivity of the sensors, this sensing platform has the potential to be adapted for the detection of other metal ions with other metal-dependent DNAzymes.
  18. Jiang Q, Lou K, Hou L, Lu Y, Sun L, Tan SC, et al.
    Complement Ther Med, 2020 May;50:102360.
    PMID: 32444042 DOI: 10.1016/j.ctim.2020.102360
    BACKGROUND: Data about the effects of resistance exercise on level of IGF-1 in the serum are conflicting. To resolve this inconsistency, we performed a systematic review and meta-analysis to precisely examine the effects of resistance exercise on the levels of serum IGF-1.

    METHODS: PubMed, Scopus, Web of Science, and Embase databases were systematically searched from their inceptions until 10 December 2019 for randomized controlled trials (RCTs) comparing individuals who underwent resistance training and control participants. We applied a random-effects model to calculate the weighted mean difference (WMD).

    RESULTS: 33 trials reported IGF-1 level as an outcome measure. The pooled estimate demonstrated a significant increase in IGF-1 (WMD: 10.34 ng/ml, 95 % CI: 4.93, 15.74, p = 0.000, I2 = 90.3 %) after resistance training compared with the control group. Subgroup analysis demonstrated that the increase in IGF-1 levels following resistance training was only statistically significant in treatment duration ≤16 weeks (WMD: 8.04 ng/ml), participants aged more than 60 years old (WMD: 9.84 ng/ml); and in women (WMD: 17.27 ng/ml). Subsequent analysis of the relationship between participants' age with plasma IGF-1 alterations revealed a U shape correlation in non-liner dose response, in which resistance training resulted in a declined IGF-1 level up to 40 years of age. Beyond 40 years old, the IGF-1 level was increased following resistance training.

    CONCLUSION: We have successfully demonstrated that resistance training was associated with an increased IGF-1 level among those who received the training for ≤16 weeks, among participants older than 60 years old, and among women. Further studies are warranted to clarify the mechanisms underlying the influence of resistance training on IGF-1.

  19. Zhang T, Liu H, Lu Y, Wang Q, Loh YC, Li Z
    Environ Res, 2024 Feb 14.
    PMID: 38365060 DOI: 10.1016/j.envres.2024.118405
    Climate change and coastal ecosystems have become challenging subjects for world sustainability. Humans, animals, and other ocean habitats are primarily affected by the harmful changes in climate. Coastal ecosystems support biodiversity and a wide range of species that serve as habitats for many commercially important fish species and enhance human activities in coastal areas. By engaging in coastal outdoor activities, individuals can experience numerous physical and mental health benefits, foster environmental awareness. This study provided valuable insights into the importance of coastal outdoor activities and their potential to improve our quality of life. This study undertook a challenging subject where we graphically and econometrically analyze the relationship and linkages among coastal indicators with other climate-concerning factors. The study comprises the ordinary regression and comparative analysis among the four largest coastline countries in the world. The study took a sample from Canada, Indonesia, Norway, and the Russian Federation from 1990 to 2022. The data is selected on a convenient basis. Results declared that each country has its unique challenges and opportunities in mitigating adverse climate change and retaining a sustainable coastal ecosystem. The study surprisingly revealed that climate change insignificantly affects the coastal ecosystem in Indonesia and the Russian Federation while it inversely affects the coastal ecosystem in Canada and Norway, showed that climate change on average declines coastal production by 0.0041922 and 0.0261104 in Canada and Norway respectively. The detailed review is given in the results section; however, the pooling analysis proved that at the aggregate level, a one percent increase in climate change caused a 0.02266-tonne decline in coastal ecosystems in the four largest coastline nations. There is a need for policies tend to increase CAP activities by implementing practical marine protected areas. Furthermore, scientific research and monitoring will be beneficial in restoring coastal sustainability.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links