Displaying publications 1 - 20 of 43 in total

Abstract:
Sort:
  1. Ge S, Ma NL, Jiang S, Ok YS, Lam SS, Li C, et al.
    ACS Appl Mater Interfaces, 2020 Jul 08;12(27):30824-30832.
    PMID: 32544314 DOI: 10.1021/acsami.0c07448
    We used an innovative approach involving hot pressing, low energy consumption, and no adhesive to transform bamboo biomass into a natural sustainable fiber-based biocomposite for structural and furniture applications. Analyses showed strong internal bonding through mechanical "nail-like" nano substances, hydrogen, and ester and ether bonds. The biocomposite encompasses a 10-fold increase in internal bonding strength with improved water resistance, fire safety, and environmentally friendly properties as compared to existing furniture materials using hazardous formaldehyde-based adhesives. As compared to natural bamboo material, this new biocomposite has improved fire and water resistance, while there is no need for toxic adhesives (mostly made from formaldehyde-based resin), which eases the concern of harmful formaldehyde-based VOC emission and ensures better indoor air quality. This surpasses existing structural and furniture materials made by synthetic adhesives. Interestingly, our approach can 100% convert discarded bamboo biomass into this biocomposite, which represents a potentially cost reduction alternative with high revenue. The underlying fragment riveting and cell collapse binding are obviously a new technology approach that offers an economically and sustainable high-performance biocomposite that provides solutions to structural and furniture materials bound with synthetic adhesives.
  2. Sutthi N, Wangkahart E, Panase P, Karirat T, Deeseenthum S, Ma NL, et al.
    Animals (Basel), 2023 Oct 19;13(20).
    PMID: 37893987 DOI: 10.3390/ani13203262
    Overuse of antibiotics in aquaculture has generated bacterial resistance and altered the ecology. Aquacultural disease control requires an environmentally sustainable approach. Bacterial exopolysaccharides (EPSs) as bioimmunostimulants have not been extensively explored in aquaculture. This study investigated EPS produced from 5% w/v riceberry broken rice as a carbon source and 1% w/v soybean meal as a nitrogen source by Bacillus tequilensis PS21 from milk kefir grain for its immunomodulatory, antioxidant activities and resistance to pathogenic Streptococcus agalactiae in Nile tilapia (Oreochromis niloticus). The FTIR spectrum of EPS confirmed the characteristic bonds of polysaccharides, while the HPLC chromatogram of EPS displayed only the glucose monomer subunit, indicating its homopolysaccharide feature. This EPS (20 mg/mL) exhibited DPPH scavenging activity of 65.50 ± 0.31%, an FRAP value of 2.07 ± 0.04 mg FeSO4/g DW, and antimicrobial activity (14.17 ± 0.76 mm inhibition zone diameter) against S. agalactiae EW1 using the agar disc diffusion method. Five groups of Nile tilapia were fed diets (T1 (Control) = 0.0, T2 = 0.1, T3 = 0.2, T4 = 1.0, and T5 = 2.0 g EPS/kg diet) for 90 days. Results showed that EPS did not affect growth performances or body composition, but EPS (T4 + T5) significantly stimulated neutrophil levels and serum lysozyme activity. EPS (T5) significantly induced myeloperoxidase activity, catalase activity, and liver superoxide dismutase activity. EPS (T5) also significantly increased the survival of fish at 80.00 ± 5.77% at 14 days post-challenge with S. agalactiae EW1 compared to the control (T1) at 53.33 ± 10.00%. This study presents an efficient method for utilizing agro-industrial biowaste as a prospective source of value-added EPS via a microbial factory to produce a bio-circular green economy model that preserves a healthy environment while also promoting sustainable aquaculture.
  3. Khairul WM, Hashim F, Mohammed M, Shah NSMN, Johari SATT, Rahamathullah R, et al.
    Anticancer Agents Med Chem, 2021;21(13):1738-1750.
    PMID: 33176667 DOI: 10.2174/1871520620999201110190709
    INTRODUCTION: In this contribution, a series of alkoxy substituted chalcones were successfully designed, synthesized, spectroscopically characterized and evaluated for their cytotoxicity potential in inhibiting the growth of MCF-7 cells.

    OBJECTIVE: In order to investigate the influence between electron density in conjugated π-systems and biological activities, different withdrawing substituents, namely Nitro (NO2), Cyano (C≡N) and trifluoromethyl (CF3) were introduced in the chalcone-based molecular system.

    METHODS: All the derivatives were then tested on MCF-7 cell line using the fluorescence microscopy-based cytotoxicity analyses.

    RESULTS: The preliminary findings showed that both -NO2 and -CF3 substituents revealed their potential to inhibit the growth of MCF-7 with IC;50 values of 14.75 and 13.75 μg/ml, respectively. In addition, the morphological changes of MCF-7 cells were observed in response to alkoxy substituted chalcone treatment through an induction of apoptosis pathway with cell blebbing, phosphatidylserine exposure and autophagic activity with acidification of lysosomal structure. Intermolecular interaction based on in silico investigation on nitro, trifluoromethyl and cyano based chalcones exhibited several types of interactions with tumor necrosis factor receptor (PDB: 1EXT) protein and high hydrogen bond in the molecule-receptor interaction have given significant impact towards their toxicity on MCF-7 cells.

    CONCLUSION: Significantly, these types of chalcones exhibited ideal and high potential to be further developed as anti-cancer agents.

  4. Zamhuri A, Lim GP, Ma NL, Tee KS, Soon CF
    Biomed Eng Online, 2021 Apr 01;20(1):33.
    PMID: 33794899 DOI: 10.1186/s12938-021-00873-9
    MXene is a recently emerged multifaceted two-dimensional (2D) material that is made up of surface-modified carbide, providing its flexibility and variable composition. They consist of layers of early transition metals (M), interleaved with n layers of carbon or nitrogen (denoted as X) and terminated with surface functional groups (denoted as Tx/Tz) with a general formula of Mn+1XnTx, where n = 1-3. In general, MXenes possess an exclusive combination of properties, which include, high electrical conductivity, good mechanical stability, and excellent optical properties. MXenes also exhibit good biological properties, with high surface area for drug loading/delivery, good hydrophilicity for biocompatibility, and other electronic-related properties for computed tomography (CT) scans and magnetic resonance imaging (MRI). Due to the attractive physicochemical and biocompatibility properties, the novel 2D materials have enticed an uprising research interest for application in biomedicine and biotechnology. Although some potential applications of MXenes in biomedicine have been explored recently, the types of MXene applied in the perspective of biomedical engineering and biomedicine are limited to a few, titanium carbide and tantalum carbide families of MXenes. This review paper aims to provide an overview of the structural organization of MXenes, different top-down and bottom-up approaches for synthesis of MXenes, whether they are fluorine-based or fluorine-free etching methods to produce biocompatible MXenes. MXenes can be further modified to enhance the biodegradability and reduce the cytotoxicity of the material for biosensing, cancer theranostics, drug delivery and bio-imaging applications. The antimicrobial activity of MXene and the mechanism of MXenes in damaging the cell membrane were also discussed. Some challenges for in vivo applications, pitfalls, and future outlooks for the deployment of MXene in biomedical devices were demystified. Overall, this review puts into perspective the current advancements and prospects of MXenes in realizing this 2D nanomaterial as a versatile biological tool.
  5. Ma NL, Teh KY, Lam SS, Kaben AM, Cha TS
    Bioresour Technol, 2015 Aug;190:536-42.
    PMID: 25812996 DOI: 10.1016/j.biortech.2015.03.036
    This study demonstrates the use of NMR techniques coupled with chemometric analysis as a high throughput data mining method to identify and examine the efficiency of different disruption techniques tested on microalgae (Chlorella variabilis, Scenedesmus regularis and Ankistrodesmus gracilis). The yield and chemical diversity from the disruptions together with the effects of pre-oven and pre-freeze drying prior to disruption techniques were discussed. HCl extraction showed the highest recovery of oil compounds from the disrupted microalgae (up to 90%). In contrast, NMR analysis showed the highest intensity of bioactive metabolites obtained for homogenized extracts pre-treated with freeze-drying, indicating that homogenizing is a more favorable approach to recover bioactive substances from the disrupted microalgae. The results show the potential of NMR as a useful metabolic fingerprinting tool for assessing compound diversity in complex microalgae extracts.
  6. Liew RK, Azwar E, Yek PNY, Lim XY, Cheng CK, Ng JH, et al.
    Bioresour Technol, 2018 Oct;266:1-10.
    PMID: 29936405 DOI: 10.1016/j.biortech.2018.06.051
    A micro-mesoporous activated carbon (AC) was produced via an innovative approach combining microwave pyrolysis and chemical activation using NaOH/KOH mixture. The pyrolysis was examined over different chemical impregnation ratio, microwave power, microwave irradiation time and types of activating agents for the yield, chemical composition, and porous characteristic of the AC obtained. The AC was then tested for its feasibility as textile dye adsorbent. About 29 wt% yield of AC was obtained from the banana peel with low ash and moisture (<5 wt%), and showed a micro-mesoporous structure with high BET surface area (≤1038 m2/g) and pore volume (≤0.80 cm3/g), indicating that it can be utilized as adsorbent to remove dye. Up to 90% adsorption of malachite green dye was achieved by the AC. Our results indicate that the microwave-activation approach represents a promising attempt to produce good quality AC for dye adsorption.
  7. Lam SS, Wan Mahari WA, Ma NL, Azwar E, Kwon EE, Peng W, et al.
    Chemosphere, 2019 Sep;230:294-302.
    PMID: 31108440 DOI: 10.1016/j.chemosphere.2019.05.054
    Used baby diaper consists of a combination of decomposable cellulose, non-biodegradable plastic materials (e.g. polyolefins) and super-absorbent polymer materials, thus making it difficult to be sorted and separated for recycling. Microwave pyrolysis was examined for its potential as an approach to transform used baby diapers into value-added products. Influence of the key operating parameters comprising process temperature and microwave power were investigated. The pyrolysis showed a rapid heating process (up to 43 °C/min of heating rate) and quick reaction time (20-40 min) in valorizing the used diapers to generate pyrolysis products comprising up to 43 wt% production of liquid oil, 29 wt% gases and 28 wt% char product. Microwave power and operating temperature were observed to have impacts on the heating rate, process time, production and characteristics of the liquid oil and solid char. The liquid oil contained alkanes, alkenes and esters that can potentially be used as chemical additives, cosmetic products and fuel. The solid char contained high carbon, low nitrogen and free of sulphur, thus showing potential for use as adsorbents and soil additives. These observations demonstrate that microwave pyrolysis has great prospect in transforming used baby diaper into liquid oil and char products that can be utilised in several applications.
  8. Khoo SC, Ma NL, Peng WX, Ng KK, Goh MS, Chen HL, et al.
    Chemosphere, 2022 Jan;286(Pt 1):131477.
    PMID: 34303046 DOI: 10.1016/j.chemosphere.2021.131477
    Global solid waste is expected to increase by at least 70% annually until year 2050. The mixture of solid waste including food waste from food industry and domestic diaper waste in landfills is causing environmental and human health issues. Nevertheless, food and diaper waste containing high lignocellulose can easily degrade using lignocellulolytic enzymes thereby converted into energy for the development and growth of mushroom. Therefore, this study explores the potential of recycling biomass waste from coffee ground, banana, eggshell, tea waste, sugarcane bagasse and sawdust and diaper waste as raw material for Lingzhi mushroom (Ganoderma lucidum) cultivation. Using 2% of diaper core with sawdust biowaste leading to the fastest 100% mushroom mycelium spreading completed in one month. The highest production yield is 71.45 g mushroom; this represents about 36% production biological efficiency compared to only 21% as in commercial substrate. The high mushroom substrate reduction of 73% reflect the valorisation of landfill waste. The metabolomics profiling showed that the Lingzhi mushroom produced is of high quality with a high content of triterpene being the bioactive compounds that are medically important for treating assorted disease and used as health supplement. In conclusion, our study proposed a potential resource management towards zero-waste and circular bioeconomy for high profitable mushroom cultivation.
  9. Ma J, Ma NL, Zhang D, Wu N, Liu X, Meng L, et al.
    Chemosphere, 2022 Apr;292:133345.
    PMID: 34922964 DOI: 10.1016/j.chemosphere.2021.133345
    Zero waste multistage utilization of biomass from Ginkgo biloba branches (GBBs) was achieved through extraction of bioactive components, analysis of antioxidant and antibacterial activities, preparation and composition of pyrolyzate, adsorption and reuse of modified biochar. The results showed that GBBs had abundant bioactive components for potential application in the industry of food, chemical raw materials and biomedicine. Especially, the bioactive compounds in acetone extract (10 mg/mL) of GBBs identified by DPPH and ABTS had free radical scavenging abilities of 92.28% and 98.18%, respectively, which are equivalent to Vitamin C used as an antioxidant in food additives. Fourier Transform Infrared and X-Ray Diffraction analysis showed that carboxymethyl cellulose (CMC) and magnetic Fe3O4 were successfully incorporated into raw biochar (RB) to form CMC-Fe3O4-RB nanomaterial. Scanning electron microscopy and X-Ray Diffraction spectroscopy displayed Fe, C, and O existed on the surface of CMC-Fe3O4-RB. Compared with RB, CMC-Fe3O4-RB had a larger specific surface area, pore volume and pore size. Meanwhile, nanomagnetic CMC-Fe3O4-RB solved the problem of agglomeration in traditional magnetized biochar production, and improved the adsorption capacity of Pb2+, which was 29.90% higher than that of RB by ICP-OES. Further, the Pb2+ (10 mg/L) adsorption capacity of CMC-Fe3O4-RB reached the highest level in 2 h at the dosage of 0.01 g/L, and remained stable at 52.987 mg/g after five cycles of adsorption and desorption. This research aided in the creation of a strategy for GBBs zero waste multistage usage and a circular economic model for GBBs industry development, which can be promoted and applied to the fields of food industry and environment improvement.
  10. Chu J, Li S, Chen N, Wen P, Sonne C, Ma NL
    Chemosphere, 2022 Mar;291(Pt 1):132679.
    PMID: 34718007 DOI: 10.1016/j.chemosphere.2021.132679
    Poplar trees rapidly yield wood and are therefore suitable as a biofuel feedstock; however, the quality of poplar is modest, and the profitability of poplar cultivation depends on the efficiency of the harvesting process. This study offers a simple and sustainable technique to harvest lignocellulosic resources from poplar for bioethanol production. The proposed two-step pretreatment method increased the surface lignin content and decreased the surface polysaccharide content. The cellulose content increased to 54.9% and the xylan content decreased to 6.7% at 5% AC. The cellulose yield of poplar residues (Populus L.) reached 65.5% by this two-step acetic acid (AC) and sodium sulphite (SS) treatment method. Two-step pretreatment using 5% AC and 4% SS obtained a recovery of nearly 80% of the total available fermentable sugar. The surface characterization showed a higher porosity in treated samples, which improved their hydrolysability. This method decreased the amount of lignin in plant biomass, making it applicable for further wood resource recovery or waste recycling for biorefinery purposes at very low costs.
  11. Karirat T, Saengha W, Deeseenthum S, Ma NL, Sutthi N, Wangkahart E, et al.
    Data Brief, 2023 Oct;50:109474.
    PMID: 37600590 DOI: 10.1016/j.dib.2023.109474
    This data evaluated the capacity of Bacillus spp. isolated from Thai milk kefir to produce exopolysaccharide (EPS) on cassava pulp and tested its antioxidant and antibacterial properties. Thailand's starch industry generates million tons of cassava pulp, which is underutilized or bio-transformed into higher-value bioproducts. Antioxidant and antibacterial bacterial exopolysaccharides are beneficial in the food, feed, pharmaceutical, and cosmetic industries. Moisture, ash, fat, protein, fiber, starch, sugar, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) were analyzed from cassava pulp as an EPS substrate. After 3 days of bacterial fermentation, EPS generation, culture pH, reducing sugar amount, and bacterial count were recorded. Antioxidant activities and bioactive content including hydroxyl radical scavenging activity, 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity, ferric reducing antioxidant power (FRAP), total phenolic and flavonoid content (TPC and TFC), and antimicrobial activity against two Nile tilapia pathogens (Streptococcus agalactiae and Staphylococcus aureus) from different Bacillus species were evaluated. Proximate analysis, dinitrosalicylic acid assay, pH value record, bacterial count using spread plate method, antioxidant activity and bioactive content assays via spectrophotometry, and agar disk diffusion were the main approaches. This study used microbial cell factories to convert agro-biowaste, such as cassava pulp, into EPS bioproducts which accords with a bio-circular green economy model.
  12. Ma NL, Hansen M, Roland Therkildsen O, Kjær Christensen T, Skjold Tjørnløv R, Garbus SE, et al.
    Environ Int, 2020 09;142:105866.
    PMID: 32590281 DOI: 10.1016/j.envint.2020.105866
    The Baltic/Wadden Sea Flyway of common eiders has declined over the past three decades. Multiple factors such as contaminant exposure, global warming, hunting, white-tailed eagle predation, decreased agricultural eutrophication and infectious diseases have been suggested to explain the decline. We collected information on body mass, mercury (Hg) concentration, biochemistry and untargeted metabolomics of incubating birds in two colonies in the Danish Straits (Hov Røn, n = 100; Agersø, n = 29) and in one colony in the Baltic proper (Christiansø, n = 23) to look into their metabolisms and energy balance. Body mass was available from early and late incubation for Hov Røn and Christiansø, showing a significant decline (25-30%) in both colonies with late body mass at Christiansø being the lowest. Whole blood concentrations of total mercury Hg were significantly higher in birds at Christiansø in the east compared to Hov Røn in the west. All birds in the three colonies had Hg concentrations in the range of ≤1.0 μg/g ww, which indicates that the risk of effects on reproduction is in the no to low risk category for wild birds. Among the biochemical measures, glucose, fructosamine, amylase, albumin and protein decreased significantly from early to late incubation at Hov Røn and Christiansø, reflecting long-term fastening as supported by the decline in body mass. Untargeted metabolomics performed on Christiansø eiders revealed presence of 8,433 plasma metabolites. Of these, 3,179 metabolites changed significantly (log2-fold change ≥1, p ≤ 0.05) from the early to late incubation. For example, smaller peptides and vitamin B2 (riboflavin) were significantly down-regulated while 11-deoxycorticosterone and palmitoylcarnitine were significantly upregulated. These results show that cumulative stress including fasting during incubation affect the eiders' biochemical profile and energy metabolism and that this may be most pronounced for the Christiansø colony in the Baltic proper. This amplify the events of temperature increases and food web changes caused by global warming that eventually accelerate the loss in body weight. Future studies should examine the relationship between body condition, temperature and reproductive outcomes and include mapping of food web contaminant, energy and nutrient content to better understand, manage and conserve the populations.
  13. Sarlaki E, Kermani AM, Kianmehr MH, Asefpour Vakilian K, Hosseinzadeh-Bandbafha H, Ma NL, et al.
    Environ Pollut, 2021 Sep 15;285:117412.
    PMID: 34051566 DOI: 10.1016/j.envpol.2021.117412
    The use of agro-biowaste compost fertilizers in agriculture is beneficial from technical, financial, and environmental perspectives. Nevertheless, the physical, mechanical, and agronomical attributes of agro-biowaste compost fertilizers should be engineered to reduce their storage, handling, and utilization costs and environmental impacts. Pelletizing and drying are promising techniques to achieve these goals. In the present work, the effects of process parameters, including compost particle size/moisture content, pelletizing compression ratio, and drying air temperature/velocity, were investigated on the density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet. The Taguchi technique was applied to understand the effects of independent parameters on the output responses, while the optimal pellet properties were found using the iterative thresholding method. The soil and plant (sweet basil) response to the optimal biocompost pellet was experimentally evaluated. The farm application of the optimal pellet was also compared with the untreated agro-biowaste compost using the life cycle assessment approach to investigate the potential environmental impact mitigation of the pelletizing and drying processes. Generally, the compost moisture content was the most influential factor on the density and specific crushing energy of the dried pellet, while the moisture diffusion of the wet pellet during the drying process was significantly influenced by the pelletizing compression ratio. The density, specific crushing energy, and moisture diffusion of agro-biowaste compost pellet at the optimal conditions were 1242.49 kg/m3, 0.5054 MJ/t, and 8.2 × 10-8 m2/s, respectively. The optimal biocompost pellet could release 80% of its nitrogen content evenly over 98 days, while this value was 28 days for the chemical urea fertilizer. Besides, the optimal pellet could significantly improve the agronomical attributes of the sweet basil plant compared with the untreated biocompost. The applied strategy could collectively mitigate the weighted environmental impact of farm application of the agro-biowaste compost by more than 63%. This reduction could be attributed to the fact that the pelletizing-drying processes could avoid methane emissions from the untreated agro-biowaste compost during the farm application. Overall, pelletizing-drying of the agro-biowaste compost could be regarded as a promising strategy to improve the environmental and agronomical performance of farm application of organic biofertilizers.
  14. Ma NL, Lam SD, Che Lah WA, Ahmad A, Rinklebe J, Sonne C, et al.
    Environ Pollut, 2021 Oct 01;286:117214.
    PMID: 33971466 DOI: 10.1016/j.envpol.2021.117214
    Salinisation of soil is associated with urban pollution, industrial development and rising sea level. Understanding how high salinity is managed at the plant cellular level is vital to increase sustainable farming output. Previous studies focus on plant stress responses under salinity tolerance. Yet, there is limited knowledge about the mechanisms involved from stress state until the recovery state; our research aims to close this gap. By using the most tolerance genotype (SS1-14) and the most susceptible genotype (SS2-18), comparative physiological, metabolome and post-harvest assessments were performed to identify the underlying mechanisms for salinity stress recovery in plant cells. The up-regulation of glutamine, asparagine and malonic acid were found in recovered-tolerant genotype, suggesting a role in the regulation of panicle branching and spikelet formation for survival. Rice could survive up to 150 mM NaCl (∼15 ds/m) with declined of production rate 5-20% ranged from tolerance to susceptible genotype. This show that rice farming may still be viable on the high saline affected area with the right selection of salt-tolerant species, including glycophytes. The salt recovery biomarkers identified in this study and the adaption underlined could be empowered to address salinity problem in rice field.
  15. Kong Y, Ma NL, Yang X, Lai Y, Feng Z, Shao X, et al.
    Environ Pollut, 2020 Oct;265(Pt A):114951.
    PMID: 32554093 DOI: 10.1016/j.envpol.2020.114951
    Greenhouse gases (GHGs) carbon dioxide (CO2) and nitrous oxide (N2O), contribute significantly to global warming, and they have increased substantially over the years. Reforestation is considered as an important forestry application for carbon sequestration and GHGs emission reduction, however, it remains unknown whether reforestation may instead produce too much CO2 and N2O contibuting to GHGs pollution. This study was performed to characterize and examine the CO2 and N2O emissions and their controlling factors in different species and types of pure and mixture forest used for reforestation. Five soil layers from pure forest Platycladus orientalis (PO), Robinia pseudoacacia (RP), and their mixed forest P-R in the Taihang mountains of central China were sampled and incubated aerobically for 11 days. The P-R soil showed lower CO2 and N2O production potentials than those of the PO soils (P 
  16. Gou Z, Zheng H, He Z, Su Y, Chen S, Chen H, et al.
    Environ Pollut, 2023 Jan 15;317:120790.
    PMID: 36460190 DOI: 10.1016/j.envpol.2022.120790
    This study aims to investigate the positive effects of the combined use of Enterobacter cloacae and biochar on improving nitrogen (N) utilization. The greenhouse pots experimental results showed the synergy of biochar and E. cloacae increased soil total N content and plant N uptake by 33.54% and 15.1%, respectively. Soil nitrogenase (NIT) activity increased by 253.02%. Ammonia monooxygenase (AMO) and nitrate reductase (NR) activity associated with nitrification and denitrification decreased by 10.94% and 29.09%, respectively. The relative abundance of N fixing microorganisms like Burkholderia and Bradyrhizobium significantly increased. Sphingomonas and Ottowia, two bacteria involved in the nitrification and denitrification processes, were found to be in lower numbers. The E. cloacae's ability to fix N2 and promote the growth of plants allow the retention of N in soil and make more N available for plant development. Biochar served as a reservoir of N for plants by adsorbing N from the soil and providing a shelter for E. cloacae. Thus, biochar and E. cloacae form a synergy for the management of agricultural N and the mitigation of negative impacts of pollution caused by excessive use of N fertilizer.
  17. Zheng G, Wei K, Kang X, Fan W, Ma NL, Verma M, et al.
    Environ Pollut, 2023 Nov 01;336:122451.
    PMID: 37648056 DOI: 10.1016/j.envpol.2023.122451
    The detrimental impact of volatile organic compounds on the surroundings is widely acknowledged, and effective solutions must be sought to mitigate their pollution. Adsorption treatment is a cost-effective, energy-saving, and flexible solution that has gained popularity. Biomass is an inexpensive, naturally porous material with exceptional adsorbent properties. This article examines current research on volatile organic compounds adsorption using biomass, including the composition of these compounds and the physical (van der Waals) and chemical mechanisms (Chemical bonding) by which porous materials adsorb them. Specifically, the strategic modification of the surface chemical functional groups and pore structure is explored to facilitate optimal adsorption, including pyrolysis, activation, heteroatom doping and other methods. It is worth noting that biomass adsorbents are emerging as a highly promising strategy for green treatment of volatile organic compounds pollution in the future. Overall, the findings signify that biomass modification represents a viable and competent approach for eliminating volatile organic compounds from the environment.
  18. Jiang J, Shi Y, Ma NL, Ye H, Verma M, Ng HS, et al.
    Environ Pollut, 2024 Jan 01;340(Pt 1):122830.
    PMID: 37918773 DOI: 10.1016/j.envpol.2023.122830
    The rapid development of the industrial sector has resulted in tremendous economic growth. However, this growth has also presented environmental challenges, specifically due to the substantial sewage generated and its contribution to the early warning of global water resource depletion. Large concentrations of poisonous heavy metals, including cadmium (Cd), chromium (Cr), copper (Cu), lead (Pb), and nickel (Ni), are found in industrial effluent. Therefore, various studies are currently underway to provide effective solutions to alleviate heavy metal ion pollution in sewage. One emerging strategy for sewage pollution remediation is adsorption using wood and its derivatives. This approach is gaining popularity due to the porous structure, excellent mechanical properties, and easy chemical modification of wood. Recent studies have focused on removing heavy metal ions from sewage, summarising and analysing different technical principles, affecting factors, and mainstream chemical modification methods on wood. Furthermore, this work provides insight into potential future development direction for enhanced adsorption of heavy metal ions using wood and its derivatives in wastewater treatment. Overall, this review aims to raise awareness of environmental pollution caused by heavy metals in sewage and promote green environmental protection, low-carbon energy-saving, and sustainable solutions for sewage heavy metal treatment.
  19. Ma J, Ma NL, Fei S, Liu G, Wang Y, Su Y, et al.
    Environ Pollut, 2024 Apr 01;346:123646.
    PMID: 38402938 DOI: 10.1016/j.envpol.2024.123646
    Stover and manure are the main solid waste in agricultural industry. The generation of stover and manure could lead to serious environmental pollution if not handled properly. Composting is the potential greener solution to remediate and reduce agricultural solid waste, through which stover and manure could be remediated and converted into organic fertilizer, but the long composting period and low efficiency of humic substance production are the key constraints in such remediation approach. In this study, we explore the effect of lignocellulose selective removal on composting by performing chemical pretreatment on agricultural waste followed by utilization of biochar to assist in the remediation by co-composting treatment and reveal the impacts of different lignocellulose component on organic fertilizer production. Aiming to discover the key factors that influence humification during composting process and improve the composting quality as well as comprehensive utilization of agricultural solid waste. The results demonstrated that the removal of selective lignin or hemicellulose led to the shift of abundances lignocellulose-degrading bacteria, which in turn accelerated the degradation of lignocellulose by almost 51.2%. The process also facilitated the remediation of organic waste via humification and increased the humic acid level and HA/FA ratio in just 22 days. The richness of media relies on their lignocellulose content, which is negatively correlated with total nitrogen content, humic acid (HA) content, germination index (GI), and pH, but positively correlated with fulvic acid (FA) and total organic carbon (TOC). The work provides a potential cost effective and efficient framework for agricultural solid waste remediation and reduction.
  20. Peng W, Ma NL, Zhang D, Zhou Q, Yue X, Khoo SC, et al.
    Environ Res, 2020 12;191:110046.
    PMID: 32841638 DOI: 10.1016/j.envres.2020.110046
    Locusts differ from ordinary grasshoppers in their ability to swarm over long distances and are among the oldest migratory pests. The ecology and biology of locusts make them among the most devastating pests worldwide and hence the calls for actions to prevent the next outbreaks. The most destructive of all locust species is the desert locust (Schistocerca gregaria). Here, we review the current locust epidemic 2020 outbreak and its causes and prevention including the green technologies that may provide a reference for future directions of locust control and food security. Massive locust outbreaks threaten the terrestrial environments and crop production in around 100 countries of which Ethiopia, Somalia and Kenya are the most affected. Six large locust outbreaks are reported for the period from 1912 to 1989 all being closely related to long-term droughts and warm winters coupled with occurrence of high precipitation in spring and summer. The outbreaks in East Africa, India and Pakistan are the most pronounced with locusts migrating more than 150 km/day during which the locusts consume food equivalent to their own body weight on a daily basis. The plague heavily affects the agricultural sectors, which is the foundation of national economies and social stability. Global warming is likely the main cause of locust plague outbreak in recent decades driving egg spawning of up to 2-400,000 eggs per square meter. Biological control techniques such as microorganisms, insects and birds help to reduce the outbreaks while reducing ecosystem and agricultural impacts. In addition, green technologies such as light and sound stimulation seem to work, however, these are challenging and need further technological development incorporating remote sensing and modelling before they are applicable on large-scales. According to the Food and Agriculture Organization (FAO) of the United Nations, the 2020 locust outbreak is the worst in 70 years probably triggered by climate change, hurricanes and heavy rain and has affected a total of 70,000 ha in Somalia and Ethiopia. There is a need for shifting towards soybean, rape, and watermelon which seems to help to prevent locust outbreaks and obtain food security. Furthermore, locusts have a very high protein content and is an excellent protein source for meat production and as an alternative human protein source, which should be used to mitigate food security. In addition, forestation of arable land improves local climate conditions towards less precipitation and lower temperatures while simultaneously attracting a larger number of birds thereby increasing the locust predation rates.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links