Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Zhao L, Wang Q, Cui X, Li H, Zhao L, Wang Z, et al.
    Anal Chem, 2024 Feb 06;96(5):1913-1921.
    PMID: 38266028 DOI: 10.1021/acs.analchem.3c04062
    2D nanosheets (NSs) have been widely used in drug-related applications. However, a comprehensive investigation into the cytotoxicity mechanism linked to the redox activity is lacking. In this study, with cytochrome c (Cyt c) as the model biospecies, the cytotoxicity of 2D NSs was evaluated systematically based on their redox effect with microfluidic techniques. The interface interaction, dissolution, and redox effect of 2D NSs on Cyt c were monitored with pulsed streaming potential (SP) measurement and capillary electrophoresis (CE). The relationship between the redox activity of 2D NSs and the function of Cyt c was evaluated in vitro with Hela cells. The results indicated that the dissolution and redox activity of 2D NSs can be simultaneously monitored with CE under weak interface interactions and at low sample volumes. Both WS2 NSs and MoS2 NSs can reduce Cyt c without significant dissolution, with reduction rates measured at 6.24 × 10-5 M for WS2 NSs and 3.76 × 10-5 M for MoS2 NSs. Furthermore, exposure to 2D NSs exhibited heightened reducibility, which prompted more pronounced alterations associated with Cyt c dysfunction, encompassing ATP synthesis, modifications in mitochondrial membrane potential, and increased reactive oxygen species production. These observations suggest a positive correlation between the redox activity of 2D NSs and their redox toxicity in Hela cells. These findings provide valuable insight into the redox properties of 2D NSs regarding cytotoxicity and offer the possibility to modify the 2D NSs to reduce their redox toxicity for clinical applications.
  2. Wang C, Pang Y, Wu Y, Zhang N, Yang R, Li Y, et al.
    Angew Chem Int Ed Engl, 2021 12 20;60(52):26978-26985.
    PMID: 34665909 DOI: 10.1002/anie.202110149
    A divergent synthesis of skeletally distinct arboridinine and arborisidine was achieved. The central divergent strategy was inspired by the divergent biosynthetic cyclization mode of arboridinine and arborisidine and their hidden topological connection. The branch point was reached through a Michael and Mannich cascade process. A site-selective intramolecular Mannich reaction was developed to construct the tetracyclic core of arboridinine, while a site-selective intramolecular α-amination of ketone was used to access the tetracyclic core of arborisidine. A strategic Peterson olefination through intramolecular nucleophile delivery was able to set up the exocyclic olefin of arboridinine.
  3. Yang R, Zhou Z, Jiang H, Kam TS, Chen K, Ma Z
    Angew Chem Int Ed Engl, 2024 Jan 15;63(3):e202316016.
    PMID: 38038685 DOI: 10.1002/anie.202316016
    The first asymmetric total synthesis of the monoterpenoid indole alkaloid arboduridine has been accomplished. The tricyclic A/B/D ring system was constructed by an enantioselective Michael reaction followed by intramolecular nucleophilic addition. Intramolecular α-amination of a ketone forged the piperidine ring, while a Horner-Wadsworth-Emmons (HWE) reaction was used to form the pyrrolidine ring. A reduction cyclization cascade led to formation of the tetrahydrofuran ring.
  4. Li Y, Yu P, Qu C, Li P, Li Y, Ma Z, et al.
    Antiviral Res, 2020 04;176:104743.
    PMID: 32057771 DOI: 10.1016/j.antiviral.2020.104743
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.
  5. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  6. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  7. Li L, Su Y, Li F, Wang Y, Ma Z, Li Z, et al.
    BMC Microbiol, 2020 03 24;20(1):65.
    PMID: 32209070 DOI: 10.1186/s12866-020-01754-2
    BACKGROUND: It has recently been reported that intermittent fasting shapes the gut microbiota to benefit health, but this effect may be influenced to the exact fasting protocols. The purpose of this study was to assess the effects of different daily fasting hours on shaping the gut microbiota in mice. Healthy C57BL/6 J male mice were subjected to 12, 16 or 20 h fasting per day for 1 month, and then fed ad libitum for an extended month. Gut microbiota was analyzed by 16S rRNA gene-based sequencing and food intake was recorded as well.

    RESULTS: We found that cumulative food intake was not changed in the group with 12 h daily fasting, but significantly decreased in the 16 and 20 h fasting groups. The composition of gut microbiota was altered by all these types of intermittent fasting. At genus level, 16 h fasting led to increased level of Akkermansia and decreased level of Alistipes, but these effects disappeared after the cessation of fasting. No taxonomic differences were identified in the other two groups.

    CONCLUSIONS: These data indicated that intermittent fasting shapes gut microbiota in healthy mice, and the length of daily fasting interval may influence the outcome of intermittent fasting.

  8. Ma Z, Idris S, Zhang Y, Zewen L, Wali A, Ji Y, et al.
    BMC Pediatr, 2021 02 24;21(1):95.
    PMID: 33627089 DOI: 10.1186/s12887-021-02550-1
    BACKGROUND: The emerging of psychological problems triggered by COVID-19 particularly in children have been extensively highlighted and emphasized, but original research in this respect is still lagging behind. Therefore, we designed this study to evaluate the impact of COVID-19 pandemic on mental health and the effectiveness and attitudes towards online education among Chinese children aged 7-15 years.

    METHODS: A detailed questionnaire, comprising of 62 questions was designed and parents or caretakers of 7 to 15 years old children were invited to participate via WeChat, a multi-purpose messaging, social media and mobile payment app, which is widely used by the Chinese population. A total of 668 parents across different regions of China were included.

    RESULTS: During COVID-19 pandemic, 20.7 and 7.2% children report experiencing post-traumatic stress disorder (PTSD) and depressive symptoms due to the COVID-19 pandemic. PTSD and SMFQ-P scores are significantly higher in middle school and boarding school students compared to primary and day school students. Multiple logistic regression analysis revealed that school system and province of origin are factors significantly associated with developing PSTD symptoms. 44.3% respondents feel online education is effective in gaining knowledge and improving practical and communications skills. 78.0% believe the online education system is efficient. Overall 79.8% respondents are satisfied and children can adapt to this new education system. During the COVID-19 pandemic, we found 1 in five children have PTSD and 1 in 14 children have depressive symptoms.

    CONCLUSION: In summary, COVID-19 epidemic has caused PTSD and depression symptoms among Chinese children aged 7 to 15 years. In general, a large proportion of respondents are satisfied with online education, but still a substantial proportion of students are not comfortable with this new form of learning. Authorities should optimize online education systems and implement effective interventions to cope with the psychological effects of COVID-19 on children, as it is affecting the global population and remains uncertain when it will end.

  9. Ma ZF, Yusof N, Hamid N, Lawenko RM, Mohammad WMZW, Liong MT, et al.
    Benef Microbes, 2019 Mar 13;10(2):111-120.
    PMID: 30525951 DOI: 10.3920/BM2018.0008
    Individuals in a community who developed irritable bowel syndrome (IBS) after major floods have significant mental health impairment. We aimed to determine if Bifidobacterium infantis M-63 was effective in improving symptoms, psychology and quality of life measures in flood-affected individuals with IBS and if the improvement was mediated by gut microbiota changes. Design was non-randomised, open-label, controlled before-and-after. Of 53 participants, 20 with IBS were given B. infantis M-63 (1×109 cfu/sachet/day) for three months and 33 were controls. IBS symptom severity scale, hospital anxiety and depression scale, SF-36 Questionnaire, hydrogen breath testing for small intestinal bacterial overgrowth and stools for 16S rRNA metagenomic analysis were performed before and after intervention. 11 of 20 who were given probiotics (M-63) and 20 of 33 controls completed study as per-protocol. Mental well-being was improved with M-63 vs controls for full analysis (P=0.03) and per-protocol (P=0.01) populations. Within-group differences were observed for anxiety and bodily pain (both P=0.04) in the M-63 per-protocol population. Lower ratio of Firmicutes/Bacteroidetes was observed with M-63 vs controls (P=0.01) and the lower ratio was correlated with higher post-intervention mental score (P=0.04). B. infantis M-63 is probably effective in improving mental health of victims who developed IBS after floods and this is maybe due to restoration of microbial balance and the gut-brain axis. However, our conclusion must be interpreted within the context of limited sample size. The study was retrospectively registered on 12 October 2017 and the Trial Registration Number (TRN) was NCT03318614.
  10. Ma M, Su J, Wang Y, Wang L, Li Y, Ding G, et al.
    Benef Microbes, 2022 Dec 07;13(6):465-472.
    PMID: 36264094 DOI: 10.3920/BM2021.0046
    Body mass index (BMI) and gut microbiota show significant interaction, but most studies on the relationship between BMI and gut microbiota have been done in Western countries. Relationships that are also identified in other cultural backgrounds are likely to have functional importance. Hence here we explore gut microbiota in adults living in Xining city (China P.R.) and relate results to subject BMI. Analysis of bacterial 16s rRNA gene was performed on faecal samples from participants with normal-weight (n=24), overweight (n=24), obesity (n=11) and type 2 diabetes (T2D) (n=8). The results show that unweighted but not weighted Unifrac distance was significantly different when gut microbiota composition was compared between the groups. Importantly, the genus Streptococcus was remarkably decreased in both obese subjects and subjects suffering from T2D, as compared to normal-weight subjects. Accordingly, strong association was identified between the genus Streptococcus and BMI and especially Streptococcus salivarius subsp. thermophiles was a major contributor in this respect. As previous studies have shown that Streptococcus salivarius subsp. thermophiles is also negatively associated with obesity in Western cohorts, our results suggest that this species is a potential probiotic for the prevention of obesity and related disorders.
  11. Du J, Loh KH, Hu W, Zheng X, Affendi YA, Ooi JLS, et al.
    Biodivers Data J, 2019;7:e47537.
    PMID: 31849564 DOI: 10.3897/BDJ.7.e47537
    Background: Redang Islands Marine Park consists of nine islands in the state of Terengganu, Malaysia. Redang Island is one of the largest off the east coast of Peninsular Malaysia, which is famous for its crystal-clear waters and white sandy beaches. The ichthyofauna of the Redang archipelago was surveyed by underwater visual observations between August 2016 and May 2018. Census data were compiled with existing records into the checklist of the marine fish of the Redang archipelago presented herein. A total of 314 species belonging to 51 families were recorded. The most speciose families (Pomacentridae, Labridae, Scaridae, Serranidae, Apogonidae, Carangidae, Gobiidae, Chaetodontidae, Lutjanidae, Nemipteridae and Siganidae) were also amongst the most speciose at the neighbouring Tioman archipelago (except Chaetodontidae). The coral fish diversity index value for the six families of coral reef fishes (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) of the study sites was 132. We estimated that there were 427 coral reef fish species in the Redang archipelago. According to the IUCN Red List, eight species are Near Threatened (Carcharhinus melanopterus, Chaetodon trifascialis, Choerodon schoenleinii, Epinephelus fuscoguttatus, E. polyphekadion, Plectropomus leopardus, Taeniura lymma and Triaenodon obesus), eleven are Vulnerable (Bolbometopon muricatum, Chaetodon trifasciatus, Chlorurus sordidus, Dascyllus trimaculatus, Epinephelus fuscoguttatus, E. polyphekadion, Halichoeres marginatus, Heniochus acuminatus, Nebrius ferrugineus, Neopomacentrus cyanomos and Plectropomus areolatus) and three are Endangered (Amphiprion clarkia, Cheilinus undulatus and Scarus ghobban) in the Redang archipelago.

    New information: Five species are new records for Malaysia (Ctenogobiops mitodes, Epibulus brevis, Halichoeres erdmanni, H. richmondi and Scarus caudofasciatus) and 25 species are newly recorded in the Redang archipelago.

  12. Ying Ying Tang D, Wayne Chew K, Ting HY, Sia YH, Gentili FG, Park YK, et al.
    Bioresour Technol, 2023 Feb;370:128503.
    PMID: 36535615 DOI: 10.1016/j.biortech.2022.128503
    This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.
  13. Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, et al.
    Bioresour Technol, 2023 Jan 21;372:128661.
    PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661
    Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
  14. Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, et al.
    Biotechnol Adv, 2023 Nov;68:108198.
    PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198
    Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
  15. Khan AJ, Sajjad M, Khan S, Khan M, Mateen A, Shah SS, et al.
    Chem Rec, 2024 Jan;24(1):e202300302.
    PMID: 38010947 DOI: 10.1002/tcr.202300302
    As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.
  16. Suresh R, Gnanasekaran L, Rajendran S, Jalil AA, Soto-Moscoso M, Khoo KS, et al.
    Chemosphere, 2023 Dec;343:140173.
    PMID: 37714490 DOI: 10.1016/j.chemosphere.2023.140173
    The production of low-cost solid adsorbents for carbon dioxide (CO2) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects.
  17. Bin Abu Sofian ADA, Lim HR, Chew KW, Khoo KS, Tan IS, Ma Z, et al.
    Environ Pollut, 2024 Feb 01;342:123024.
    PMID: 38030108 DOI: 10.1016/j.envpol.2023.123024
    The pursuit of carbon neutrality confronts the twofold challenge of meeting energy demands and reducing pollution. This review article examines the potential of gasifying plastic waste and biomass as innovative, sustainable sources for hydrogen production, a critical element in achieving environmental reform. Addressing the problem of greenhouse gas emissions, the work highlights how the co-gasification of these feedstocks could contribute to environmental preservation by reducing waste and generating clean energy. Through an analysis of current technologies, the potential for machine learning to refine gasification for optimal hydrogen production is revealed. Additionally, hydrogen storage solutions are evaluated for their importance in creating a viable, sustainable energy infrastructure. The economic viability of these production methods is critically assessed, providing insights into both their cost-effectiveness and ecological benefits. Findings indicate that machine learning can significantly improve process efficiencies, thereby influencing the economic and environmental aspects of hydrogen production. Furthermore, the study presents the advancements in these technologies and their role in promoting a transition to a green economy and circular energy practices. Ultimately, the review delineates how integrating hydrogen production from unconventional feedstocks, bolstered by machine learning and advanced storage, can contribute to a sustainable and pollution-free future.
  18. Tang DYY, Chew KW, Chia SR, Ting HY, Sia YH, Gentili FG, et al.
    Environ Technol, 2022 Dec 19.
    PMID: 36536589 DOI: 10.1080/09593330.2022.2150094
    Overgrowth of microalgae will result in harmful algae blooms that can affect the aquatic ecosystem and human health. Therefore, the quantitation of chlorophyll pigments can be used as an indicator of algae bloom. However, it is difficult to monitor the geographical and temporal distribution of chlorophyll in the aquatic environment. Accordingly, an innovative and inexpensive method based on the red-green-blue (RGB) image analysis was utilized in this study to estimate the microalgae chlorophyll content. The digital images were acquired using a smartphone camera. The colour index was then evaluated using software and associated with chlorophyll concentration significantly. A regression model, using RGB colour components as independent variables to estimate chlorophyll concentration, was developed and validated. The Green in the RGB index was the most promising way to estimate chlorophyll concentration in microalgae. The result showed that acetone was the best extractant solvent with a high R-squared value among the four extractant solvents. Next, the isolation of useful biomolecules, such as proteins, fatty acids, polysaccharides and antioxidants from the microalgae, has been recognized as an alternative to regulating algae bloom. Microalgae are shown to produce bioactive compounds with a variety of biological activities that can be applied in various industries. This study evaluates the biochemical composition of mixed microalgae species, Desmodesmus sp. and Scenedesmus sp. using the liquid triphasic partitioning (TPP) system. The findings from analytical assays revealed that the biomass consisted of varied concentrations of carbohydrates, protein, and lipids. Phenolic compounds and antioxidant activity were at 60.22 mg/L and 90.69%, respectively.
  19. Zainul NH, Ma ZF, Besari A, Siti Asma H, Rahman RA, Collins DA, et al.
    Epidemiol Infect, 2017 Oct;145(14):3012-3019.
    PMID: 28891459 DOI: 10.1017/S0950268817002011
    Little is known about Clostridium difficile infection (CDI) in Asia. The aims of our study were to explore (i) the prevalence, risk factors and molecular epidemiology of CDI and colonization in a tertiary academic hospital in North-Eastern Peninsular Malaysia; (ii) the rate of carriage of C. difficile among the elderly in the region; (iii) the awareness level of this infection among the hospital staffs and students. For stool samples collected from hospital inpatients with diarrhea (n = 76) and healthy community members (n = 138), C. difficile antigen and toxins were tested by enzyme immunoassay. Stool samples were subsequently analyzed by culture and molecular detection of toxin genes, and PCR ribotyping of isolates. To examine awareness among hospital staff and students, participants were asked to complete a self-administered questionnaire. For the hospital and community studies, the prevalence of non-toxigenic C. difficile colonization was 16% and 2%, respectively. The prevalence of CDI among hospital inpatients with diarrhea was 13%. Out of 22 C. difficile strains from hospital inpatients, the toxigenic ribotypes 043 and 017 were most common (both 14%). In univariate analysis, C. difficile colonization in hospital inpatients was significantly associated with greater duration of hospitalization and use of penicillin (both P < 0·05). Absence of these factors was a possible reason for low colonization in the community. Only 3% of 154 respondents answered all questions correctly in the awareness survey. C. difficile colonization is prevalent in a Malaysian hospital setting but not in the elderly community with little or no contact with hospitals. Awareness of CDI is alarmingly poor.
  20. Fang F, Luo XX, Zhang Q, Azlan H, Razali O, Ma Z, et al.
    Europace, 2015 Oct;17 Suppl 2:ii47-53.
    PMID: 26842115 DOI: 10.1093/europace/euv130
    Biventricular (BiV) pacing was superior to right ventricular apical (RVA) pacing at extended follow-up in the Pacing to Avoid Cardiac Enlargement (PACE) trial. Early pacing-induced systolic dyssynchrony (DYS) might be related to mid-term result. However, it remains unknown whether early pacing-induced DYS can predict long-term reduction of left ventricular (LV) systolic function.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links