Displaying publications 1 - 20 of 35 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, et al.
    Autophagy, 2021 Jan;17(1):1-382.
    PMID: 33634751 DOI: 10.1080/15548627.2020.1797280
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.
  2. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  3. Gao D, Guo P, Cao X, Ge L, Ma H, Cheng H, et al.
    Food Sci Nutr, 2020 Jun;8(6):2798-2808.
    PMID: 32566197 DOI: 10.1002/fsn3.1572
    Chicken plasma protein hydrolysate (CPPH) was prepared by trypsin with angiotensin I-converting enzyme (ACE) inhibitory activity of 53.5% ± 0.14% and the degree of hydrolysis (DH) of 16.22% ± 0.21% at 1 mg·ml-1; then, five proteases, including pepsin, trypsin, papain, alcalase, and neutrase, were employed to improve ACE inhibitory ability by catalyzing plastein reaction. The results indicated that trypsin-catalyzed plastein reaction showed the highest ACE inhibitory activity. The exogenous amino acids of leucine, histidine, tyrosine, valine, and cysteine were selected to modify the CPPH. The leucine-modified plastein reaction released the highest ACE inhibitory activity. The effects of four reaction parameters on plastein reaction were studied, and the optimal conditions with the purpose of obtaining the most powerful ACE inhibitory peptides from modified products were obtained by response surface methodology (RSM). The maximum ACE inhibition rate of the modified hydrolysate reached 82.07% ± 0.03% prepared at concentration of hydrolysates of 30%, reaction time of 4.9 hr, pH value of 8.0, temperature of 40°C, and E/S ratio of 5,681.62 U·g-1. The results indicated that trypsin-catalyzed plastein reaction increased ACE inhibitory activity of chicken plasma protein hydrolysates by 28.57%.
  4. Wang C, Pang Y, Wu Y, Zhang N, Yang R, Li Y, et al.
    Angew Chem Int Ed Engl, 2021 12 20;60(52):26978-26985.
    PMID: 34665909 DOI: 10.1002/anie.202110149
    A divergent synthesis of skeletally distinct arboridinine and arborisidine was achieved. The central divergent strategy was inspired by the divergent biosynthetic cyclization mode of arboridinine and arborisidine and their hidden topological connection. The branch point was reached through a Michael and Mannich cascade process. A site-selective intramolecular Mannich reaction was developed to construct the tetracyclic core of arboridinine, while a site-selective intramolecular α-amination of ketone was used to access the tetracyclic core of arborisidine. A strategic Peterson olefination through intramolecular nucleophile delivery was able to set up the exocyclic olefin of arboridinine.
  5. Zhang H, Gao J, Ma Z, Liu Y, Wang G, Liu Q, et al.
    Front Cell Infect Microbiol, 2022;12:1082809.
    PMID: 36530420 DOI: 10.3389/fcimb.2022.1082809
    BACKGROUND: Wolbachia is gram-negative and common intracellular bacteria, which is maternally inherited endosymbionts and could expand their propagation in host populations by means of various manipulations. Recent reports reveal the natural infection of Wolbachia in Aedes Aegypti in Malaysia, India, Philippines, Thailand and the United States. At present, none of Wolbachia natural infection in Ae. aegypti has been reported in China.

    METHODS: A total of 480 Ae. aegypti adult mosquitoes were collected from October and November 2018 based on the results of previous investigations and the distribution of Ae. aegypti in Yunnan. Each individual sample was processed and screened for the presence of Wolbachia by PCR with wsp primers. Phylogenetic trees for the wsp gene was constructed using the neighbour-joining method with 1,000 bootstrap replicates, and the p-distance distribution model of molecular evolution was applied.

    RESULTS: 24 individual adult mosquito samples and 10 sample sites were positive for Wolbachia infection. The Wolbachia infection rate (IR) of each population ranged from 0 - 41.7%. The infection rate of group A alone was 0%-10%, the infection rate of group B alone was 0%-7.7%, and the infection rate of co-infection with A and B was 0-33.3%.

    CONCLUSIONS: Wolbachia infection in wild Ae. aegypti in China is the first report based on PCR amplification of the Wolbachia wsp gene. The Wolbachia infection is 5%, and the wAlbA and wAlbB strains were found to be prevalent in the natural population of Ae. aegypti in Yunnan Province.

  6. Ying Ying Tang D, Wayne Chew K, Ting HY, Sia YH, Gentili FG, Park YK, et al.
    Bioresour Technol, 2023 Feb;370:128503.
    PMID: 36535615 DOI: 10.1016/j.biortech.2022.128503
    This study presented a novel methodology to predict microalgae chlorophyll content from colour models using linear regression and artificial neural network. The analysis was performed using SPSS software. Type of extractant solvents and image indexes were used as the input data for the artificial neural network calculation. The findings revealed that the regression model was highly significant, with high R2 of 0.58 and RSME of 3.16, making it a useful tool for predicting the chlorophyll concentration. Simultaneously, artificial neural network model with R2 of 0.66 and low RMSE of 2.36 proved to be more accurate than regression model. The model which fitted to the experimental data indicated that acetone was a suitable extraction solvent. In comparison to the cyan-magenta-yellow-black model in image analysis, the red-greenblue model offered a better correlation. In short, the estimation of chlorophyll concentration using prediction models are rapid, more efficient, and less expensive.
  7. Ng YJ, Chan SS, Khoo KS, Munawaroh HSH, Lim HR, Chew KW, et al.
    Biotechnol Adv, 2023 Nov;68:108198.
    PMID: 37330152 DOI: 10.1016/j.biotechadv.2023.108198
    Surfactants have always been a prominent chemical that is useful in various sectors (e.g., cleaning agent production industry, textile industry and painting industry). This is due to the special ability of surfactants to reduce surface tension between two fluid surfaces (e.g., water and oil). However, the current society has long omitted the harmful effects of petroleum-based surfactants (e.g., health issues towards humans and reducing cleaning ability of water bodies) due to their usefulness in reducing surface tension. These harmful effects will significantly damage the environment and negatively affect human health. As such, there is an urgency to secure environmentally friendly alternatives such as glycolipids to reduce the effects of these synthetic surfactants. Glycolipids is a biomolecule that shares similar properties with surfactants that are naturally synthesized in the cell of living organisms, glycolipids are amphiphilic in nature and can form micelles when glycolipid molecules clump together, reducing surface tension between two surfaces as how a surfactant molecule is able to achieve. This review paper aims to provide a comprehensive study on the recent advances in bacteria cultivation for glycolipids production and current lab scale applications of glycolipids (e.g., medical and waste bioremediation). Studies have proven that glycolipids are effective anti-microbial agents, subsequently leading to an excellent anti-biofilm forming agent. Heavy metal and hydrocarbon contaminated soil can also be bioremediated via the use of glycolipids. The major hurdle in the commercialization of glycolipid production is that the cultivation stage and downstream extraction stage of the glycolipid production process induces a very high operating cost. This review provides several solutions to overcome this issue for glycolipid production for the commercialization of glycolipids (e.g., developing new cultivating and extraction techniques, using waste as cultivation medium for microbes and identifying new strains for glycolipid production). The contribution of this review aims to serve as a future guideline for researchers that are dealing with glycolipid biosurfactants by providing an in-depth review on the recent advances of glycolipid biosurfactants. By summarizing the points discussed as above, it is recommended that glycolipids can substitute synthetic surfactants as an environmentally friendly alternative.
  8. Fang F, Luo XX, Zhang Q, Azlan H, Razali O, Ma Z, et al.
    Europace, 2015 Oct;17 Suppl 2:ii47-53.
    PMID: 26842115 DOI: 10.1093/europace/euv130
    Biventricular (BiV) pacing was superior to right ventricular apical (RVA) pacing at extended follow-up in the Pacing to Avoid Cardiac Enlargement (PACE) trial. Early pacing-induced systolic dyssynchrony (DYS) might be related to mid-term result. However, it remains unknown whether early pacing-induced DYS can predict long-term reduction of left ventricular (LV) systolic function.
  9. Li Y, Yu P, Qu C, Li P, Li Y, Ma Z, et al.
    Antiviral Res, 2020 04;176:104743.
    PMID: 32057771 DOI: 10.1016/j.antiviral.2020.104743
    Enteric viruses including hepatitis E virus (HEV), human norovirus (HuNV), and rotavirus are causing global health issues. The host interferon (IFN) response constitutes the first-line defense against viral infections. Melanoma Differentiation-Associated protein 5 (MDA5) is an important cytoplasmic receptor sensing viral infection to trigger IFN production, and on the other hand it is also an IFN-stimulated gene (ISG). In this study, we investigated the effects and mode-of-action of MDA5 on the infection of enteric viruses. We found that MDA5 potently inhibited HEV, HuNV and rotavirus replication in multiple cell models. Overexpression of MDA5 induced transcription of important antiviral ISGs through IFN-like response, without triggering of functional IFN production. Interestingly, MDA5 activates the expression and phosphorylation of STAT1, which is a central component of the JAK-STAT cascade and a hallmark of antiviral IFN response. However, genetic silencing of STAT1 or pharmacological inhibition of the JAK-STAT cascade only partially attenuated the induction of ISG transcription and the antiviral function of MDA5. Thus, we have demonstrated that MDA5 effectively inhibits HEV, HuNV and rotavirus replication through provoking a non-canonical IFN-like response, which is partially dependent on JAK-STAT cascade.
  10. Ma ZF, Yusof N, Hamid N, Lawenko RM, Mohammad WMZW, Liong MT, et al.
    Benef Microbes, 2019 Mar 13;10(2):111-120.
    PMID: 30525951 DOI: 10.3920/BM2018.0008
    Individuals in a community who developed irritable bowel syndrome (IBS) after major floods have significant mental health impairment. We aimed to determine if Bifidobacterium infantis M-63 was effective in improving symptoms, psychology and quality of life measures in flood-affected individuals with IBS and if the improvement was mediated by gut microbiota changes. Design was non-randomised, open-label, controlled before-and-after. Of 53 participants, 20 with IBS were given B. infantis M-63 (1×109 cfu/sachet/day) for three months and 33 were controls. IBS symptom severity scale, hospital anxiety and depression scale, SF-36 Questionnaire, hydrogen breath testing for small intestinal bacterial overgrowth and stools for 16S rRNA metagenomic analysis were performed before and after intervention. 11 of 20 who were given probiotics (M-63) and 20 of 33 controls completed study as per-protocol. Mental well-being was improved with M-63 vs controls for full analysis (P=0.03) and per-protocol (P=0.01) populations. Within-group differences were observed for anxiety and bodily pain (both P=0.04) in the M-63 per-protocol population. Lower ratio of Firmicutes/Bacteroidetes was observed with M-63 vs controls (P=0.01) and the lower ratio was correlated with higher post-intervention mental score (P=0.04). B. infantis M-63 is probably effective in improving mental health of victims who developed IBS after floods and this is maybe due to restoration of microbial balance and the gut-brain axis. However, our conclusion must be interpreted within the context of limited sample size. The study was retrospectively registered on 12 October 2017 and the Trial Registration Number (TRN) was NCT03318614.
  11. Du J, Loh KH, Hu W, Zheng X, Affendi YA, Ooi JLS, et al.
    Biodivers Data J, 2019;7:e47537.
    PMID: 31849564 DOI: 10.3897/BDJ.7.e47537
    Background: Redang Islands Marine Park consists of nine islands in the state of Terengganu, Malaysia. Redang Island is one of the largest off the east coast of Peninsular Malaysia, which is famous for its crystal-clear waters and white sandy beaches. The ichthyofauna of the Redang archipelago was surveyed by underwater visual observations between August 2016 and May 2018. Census data were compiled with existing records into the checklist of the marine fish of the Redang archipelago presented herein. A total of 314 species belonging to 51 families were recorded. The most speciose families (Pomacentridae, Labridae, Scaridae, Serranidae, Apogonidae, Carangidae, Gobiidae, Chaetodontidae, Lutjanidae, Nemipteridae and Siganidae) were also amongst the most speciose at the neighbouring Tioman archipelago (except Chaetodontidae). The coral fish diversity index value for the six families of coral reef fishes (Chaetodontidae, Pomacanthidae, Pomacentridae, Labridae, Scaridae and Acanthuridae) of the study sites was 132. We estimated that there were 427 coral reef fish species in the Redang archipelago. According to the IUCN Red List, eight species are Near Threatened (Carcharhinus melanopterus, Chaetodon trifascialis, Choerodon schoenleinii, Epinephelus fuscoguttatus, E. polyphekadion, Plectropomus leopardus, Taeniura lymma and Triaenodon obesus), eleven are Vulnerable (Bolbometopon muricatum, Chaetodon trifasciatus, Chlorurus sordidus, Dascyllus trimaculatus, Epinephelus fuscoguttatus, E. polyphekadion, Halichoeres marginatus, Heniochus acuminatus, Nebrius ferrugineus, Neopomacentrus cyanomos and Plectropomus areolatus) and three are Endangered (Amphiprion clarkia, Cheilinus undulatus and Scarus ghobban) in the Redang archipelago.

    New information: Five species are new records for Malaysia (Ctenogobiops mitodes, Epibulus brevis, Halichoeres erdmanni, H. richmondi and Scarus caudofasciatus) and 25 species are newly recorded in the Redang archipelago.

  12. Zulkarnain NN, Anuar N, Abd Rahman N, Sheikh Abdullah SR, Alias MN, Yaacob M, et al.
    Hum Vaccin Immunother, 2021 07 03;17(7):2158-2168.
    PMID: 33539195 DOI: 10.1080/21645515.2020.1865044
    Influenza virus is a life-threatening pathogen that infects millions of people every year, with annual mortality in the hundreds of thousands. The scenario for controlling infection has worsened with increasing numbers of vaccine hesitancy cases reported worldwide due to objections on safety, religious and other grounds. Uses of haram (impermissible) and mashbooh (doubtful) ingredients in vaccine production has raised doubts among Muslim consumers and consequently stimulated serious vaccine hesitancy. To address this major problem, we have reviewed and recommended some alternatives appropriate for manufacturing cell-based influenza vaccine which comply with Islamic laws and consumers' needs. Intensive assessments of current influenza vaccine production in both scientific and Islamic views have led to the identification of four main ingredients deemed impermissible in novel sharia-compliant (approved by Islamic laws) vaccine manufacturing. Only some of these impermissible components could be replaced with halal (permissible) alternatives, while others remain impermissible due to unavailability and unsuitability.
  13. Zainul NH, Ma ZF, Besari A, Siti Asma H, Rahman RA, Collins DA, et al.
    Epidemiol Infect, 2017 Oct;145(14):3012-3019.
    PMID: 28891459 DOI: 10.1017/S0950268817002011
    Little is known about Clostridium difficile infection (CDI) in Asia. The aims of our study were to explore (i) the prevalence, risk factors and molecular epidemiology of CDI and colonization in a tertiary academic hospital in North-Eastern Peninsular Malaysia; (ii) the rate of carriage of C. difficile among the elderly in the region; (iii) the awareness level of this infection among the hospital staffs and students. For stool samples collected from hospital inpatients with diarrhea (n = 76) and healthy community members (n = 138), C. difficile antigen and toxins were tested by enzyme immunoassay. Stool samples were subsequently analyzed by culture and molecular detection of toxin genes, and PCR ribotyping of isolates. To examine awareness among hospital staff and students, participants were asked to complete a self-administered questionnaire. For the hospital and community studies, the prevalence of non-toxigenic C. difficile colonization was 16% and 2%, respectively. The prevalence of CDI among hospital inpatients with diarrhea was 13%. Out of 22 C. difficile strains from hospital inpatients, the toxigenic ribotypes 043 and 017 were most common (both 14%). In univariate analysis, C. difficile colonization in hospital inpatients was significantly associated with greater duration of hospitalization and use of penicillin (both P < 0·05). Absence of these factors was a possible reason for low colonization in the community. Only 3% of 154 respondents answered all questions correctly in the awareness survey. C. difficile colonization is prevalent in a Malaysian hospital setting but not in the elderly community with little or no contact with hospitals. Awareness of CDI is alarmingly poor.
  14. Ibrahim TNBT, Feisal NAS, Kamaludin NH, Cheah WY, How V, Bhatnagar A, et al.
    Bioresour Technol, 2023 Jan 21;372:128661.
    PMID: 36690215 DOI: 10.1016/j.biortech.2023.128661
    Microalgae are photoautotrophic microorganisms which comprise of species from several phyla. Microalgae are promising in producing a varieties of products, including food, feed supplements, chemicals, and biofuels. Medicinal supplements derived from microalgae are of a significant market in which compounds such as -carotene, astaxanthin, polyunsaturated fatty acids (PUFA) such as docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), and polysaccharides such as -glucan, are prominent. Microalgae species which are commonly applied for commercial productions include Isochrysis sp., Chaetoceros (Chlorella sp.), Arthrospira sp. (Spirulina Bioactive) and many more. In this present review, microalgae species which are feasible in metabolites production are being summarized. Metabolites produced by microalgae as well as their prospective applications in the healthcare and pharmaceutical industries, are comprehensively discussed. This evaluation is greatly assisting industrial stakeholders, investors, and researchers in making business decisions, investing in ventures, and moving the production of microalgae-based metabolites forward.
  15. Suresh R, Gnanasekaran L, Rajendran S, Jalil AA, Soto-Moscoso M, Khoo KS, et al.
    Chemosphere, 2023 Dec;343:140173.
    PMID: 37714490 DOI: 10.1016/j.chemosphere.2023.140173
    The production of low-cost solid adsorbents for carbon dioxide (CO2) capture has gained massive consideration. Biomass wastes are preferred as precursors for synthesis of CO2 solid adsorbents, due to their high CO2 adsorption efficiency, and ease of scalable low-cost production. This review particularly focuses on waste biomass-derived adsorbents with their CO2 adsorption performances. Specifically, studies related to carbon (biochar and activated carbon) and silicon (silicates and geopolymers)-based adsorbents were summarized. The impact of experimental parameters including nature of biomass, synthesis route, carbonization temperature and type of activation methods on the CO2 adsorption capacities of biomass-derived pure carbon and silicon-based adsorbents were evaluated. The development of various enhancement strategies on biomass-derived adsorbents for CO2 capture and their responsible factors that impact adsorbent's CO2 capture proficiency were also reviewed. The possible CO2 adsorption mechanisms on the adsorbent's surface were highlighted. The challenges and research gaps identified in this research area have also been emphasized, which will help as further research prospects.
  16. Ma Z, Zhang F, Ma H, Chen X, Yang J, Yang Y, et al.
    PLoS One, 2021;16(4):e0248329.
    PMID: 33857162 DOI: 10.1371/journal.pone.0248329
    The elderly usually suffer from many diseases. Improving the quality of life of the elderly is an urgent social issue. In this present study, D-galactose treated aging mice models were used to reveal the effects of different animal sources and different doses of whey protein (WP) on the immune indexes organs and intestinal flora. A total of 9 groups were set up, including normal control (NC), negative control (NS), positive control (Vc), low-, medium- and high-doses of cow WP intervention groups (CL, CM and CH for short, correspondingly) and low-, medium- and high-doses of goat WP intervention groups (GL, GM and GH for short, correspondingly). The body weight gain, thymus/body weight ratio, superoxide dismutase (SOD) activity, malondialdehyde (MDA) content, spleen immunoglobulins G (IgG), spleen interleukin-2 (IL-2) and spleen interleukin-2 (IL-6) were measured. Then, the intestinal contents were collected, and 16s genes of intestinal bacteria were sequenced to reveal the changes in bacterial flora structure. WP intervention significantly increased the weight gain, thymus/body ratio and SOD activity, but decrease the content of MDA. WP intervention increased some immune indicators. All the WP treated aging mice showed similar values of physiological indexes to that of the Vc group, even better. The relative abundance of Lactobacillus and Stenotrophomonas was increased and decreased, respectively, by both cow and goat WP. Lactobacillus may be involved in regulating the functional repair of organisms. In contrast, Stenotrophomonas might play a negative role in the immune and antioxidant capacity of the body. Combining physiological indicators and intestinal flora structure, low-concentration WP for cow and goat might be optimal for aging models.
  17. Bin Abu Sofian ADA, Lim HR, Chew KW, Khoo KS, Tan IS, Ma Z, et al.
    Environ Pollut, 2024 Feb 01;342:123024.
    PMID: 38030108 DOI: 10.1016/j.envpol.2023.123024
    The pursuit of carbon neutrality confronts the twofold challenge of meeting energy demands and reducing pollution. This review article examines the potential of gasifying plastic waste and biomass as innovative, sustainable sources for hydrogen production, a critical element in achieving environmental reform. Addressing the problem of greenhouse gas emissions, the work highlights how the co-gasification of these feedstocks could contribute to environmental preservation by reducing waste and generating clean energy. Through an analysis of current technologies, the potential for machine learning to refine gasification for optimal hydrogen production is revealed. Additionally, hydrogen storage solutions are evaluated for their importance in creating a viable, sustainable energy infrastructure. The economic viability of these production methods is critically assessed, providing insights into both their cost-effectiveness and ecological benefits. Findings indicate that machine learning can significantly improve process efficiencies, thereby influencing the economic and environmental aspects of hydrogen production. Furthermore, the study presents the advancements in these technologies and their role in promoting a transition to a green economy and circular energy practices. Ultimately, the review delineates how integrating hydrogen production from unconventional feedstocks, bolstered by machine learning and advanced storage, can contribute to a sustainable and pollution-free future.
  18. Khan AJ, Sajjad M, Khan S, Khan M, Mateen A, Shah SS, et al.
    Chem Rec, 2024 Jan;24(1):e202300302.
    PMID: 38010947 DOI: 10.1002/tcr.202300302
    As supercapacitor (SC) technology continues to evolve, there is a growing need for electrode materials with high energy/power densities and cycling stability. However, research and development of electrode materials with such characteristics is essential for commercialization the SC. To meet this demand, the development of superior electrode materials has become an increasingly critical step. The electrochemical performance of SCs is greatly influenced by various factors such as the reaction mechanism, crystal structure, and kinetics of electron/ion transfer in the electrodes, which have been challenging to address using previously investigated electrode materials like carbon and metal oxides/sulfides. Recently, tellurium and telluride-based materials have garnered increasing interest in energy storage technology owing to their high electronic conductivity, favorable crystal structure, and excellent volumetric capacity. This review provides a comprehensive understanding of the fundamental properties and energy storage performance of tellurium- and Te-based materials by introducing their physicochemical properties. First, we elaborate on the significance of tellurides. Next, the charge storage mechanism of functional telluride materials and important synthesis strategies are summarized. Then, research advancements in metal and carbon-based telluride materials, as well as the effectiveness of tellurides for SCs, were analyzed by emphasizing their essential properties and extensive advantages. Finally, the remaining challenges and prospects for improving the telluride-based supercapacitive performance are outlined.
  19. Liu G, Tiang MF, Ma S, Wei Z, Liang X, Sajab MS, et al.
    PeerJ, 2024;12:e16995.
    PMID: 38426145 DOI: 10.7717/peerj.16995
    BACKGROUND: Hermetia illucens (HI), commonly known as the black soldier fly, has been recognized for its prowess in resource utilization and environmental protection because of its ability to transform organic waste into animal feed for livestock, poultry, and aquaculture. However, the potential of the black soldier fly's high protein content for more than cheap feedstock is still largely unexplored.

    METHODS: This study innovatively explores the potential of H. illucens larvae (HIL) protein as a peptone substitute for microbial culture media. Four commercial proteases (alkaline protease, trypsin, trypsase, and papain) were explored to hydrolyze the defatted HIL, and the experimental conditions were optimized via response surface methodology experimental design. The hydrolysate of the defatted HIL was subsequently vacuum freeze-dried and deployed as a growth medium for three bacterial strains (Staphylococcus aureus, Bacillus subtilis, and Escherichia coli) to determine the growth kinetics between the HIL peptone and commercial peptone.

    RESULTS: The optimal conditions were 1.70% w/w complex enzyme (alkaline protease: trypsin at 1:1 ratio) at pH 7.0 and 54 °C for a duration of 4 h. Under these conditions, the hydrolysis of defatted HIL yielded 19.25% ±0.49%. A growth kinetic analysis showed no significant difference in growth parameters (μmax, Xmax, and λ) between the HIL peptone and commercial peptone, demonstrating that the HIL hydrolysate could serve as an effective, low-cost alternative to commercial peptone. This study introduces an innovative approach to HIL protein resource utilization, broadening its application beyond its current use in animal feed.

  20. Tang DYY, Chew KW, Chia SR, Ting HY, Sia YH, Gentili FG, et al.
    Environ Technol, 2022 Dec 19.
    PMID: 36536589 DOI: 10.1080/09593330.2022.2150094
    Overgrowth of microalgae will result in harmful algae blooms that can affect the aquatic ecosystem and human health. Therefore, the quantitation of chlorophyll pigments can be used as an indicator of algae bloom. However, it is difficult to monitor the geographical and temporal distribution of chlorophyll in the aquatic environment. Accordingly, an innovative and inexpensive method based on the red-green-blue (RGB) image analysis was utilized in this study to estimate the microalgae chlorophyll content. The digital images were acquired using a smartphone camera. The colour index was then evaluated using software and associated with chlorophyll concentration significantly. A regression model, using RGB colour components as independent variables to estimate chlorophyll concentration, was developed and validated. The Green in the RGB index was the most promising way to estimate chlorophyll concentration in microalgae. The result showed that acetone was the best extractant solvent with a high R-squared value among the four extractant solvents. Next, the isolation of useful biomolecules, such as proteins, fatty acids, polysaccharides and antioxidants from the microalgae, has been recognized as an alternative to regulating algae bloom. Microalgae are shown to produce bioactive compounds with a variety of biological activities that can be applied in various industries. This study evaluates the biochemical composition of mixed microalgae species, Desmodesmus sp. and Scenedesmus sp. using the liquid triphasic partitioning (TPP) system. The findings from analytical assays revealed that the biomass consisted of varied concentrations of carbohydrates, protein, and lipids. Phenolic compounds and antioxidant activity were at 60.22 mg/L and 90.69%, respectively.
Related Terms
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links