Displaying publications 1 - 20 of 129 in total

Abstract:
Sort:
  1. Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A, et al.
    Autophagy, 2016;12(1):1-222.
    PMID: 26799652 DOI: 10.1080/15548627.2015.1100356
  2. CMS Collaboration, Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(3):189.
    PMID: 32226948 DOI: 10.1140/epjc/s10052-020-7739-7
    A search is presented for τ slepton pairs produced in proton-proton collisions at a center-of-mass energy of 13 TeV . The search is carried out in events containing two τ leptons in the final state, on the assumption that each τ slepton decays primarily to a τ lepton and a neutralino. Events are considered in which each τ lepton decays to one or more hadrons and a neutrino, or in which one of the τ leptons decays instead to an electron or a muon and two neutrinos. The data, collected with the CMS detector in 2016 and 2017, correspond to an integrated luminosity of 77.2 fb - 1 . The observed data are consistent with the standard model background expectation. The results are used to set 95% confidence level upper limits on the cross section for τ slepton pair production in various models for τ slepton masses between 90 and 200 GeV and neutralino masses of 1, 10, and 20 GeV . In the case of purely left-handed τ slepton production and decay to a τ lepton and a neutralino with a mass of 1 GeV , the strongest limit is obtained for a τ slepton mass of 125 GeV at a factor of 1.14 larger than the theoretical cross section.
  3. Tan CT, Mao Z, Qiu W, Hu X, Wingerchuk DM, Weinshenker BG
    Neurology, 2016 Feb 2;86(5):491-2.
    PMID: 26833940 DOI: 10.1212/WNL.0000000000002366
  4. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2018;78(11):965.
    PMID: 30881214 DOI: 10.1140/epjc/s10052-018-6373-0
    The production of a Z boson, decaying to two charged leptons, in association with jets in proton-proton collisions at a centre-of-mass energy of 13 TeV is measured. Data recorded with the CMS detector at the LHC are used that correspond to an integrated luminosity of 2.19 fb -1 . The cross section is measured as a function of the jet multiplicity and its dependence on the transverse momentum of the Z boson, the jet kinematic variables (transverse momentum and rapidity), the scalar sum of the jet momenta, which quantifies the hadronic activity, and the balance in transverse momentum between the reconstructed jet recoil and the Z boson. The measurements are compared with predictions from four different calculations. The first two merge matrix elements with different parton multiplicities in the final state and parton showering, one of which includes one-loop corrections. The third is a fixed-order calculation with next-to-next-to-leading order accuracy for the process with a Z boson and one parton in the final state. The fourth combines the fully differential next-to-next-to-leading order calculation of the process with no parton in the final state with next-to-next-to-leading logarithm resummation and parton showering.
  5. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2019;79(5):421.
    PMID: 31178657 DOI: 10.1140/epjc/s10052-019-6909-y
    Combined measurements of the production and decay rates of the Higgs boson, as well as its couplings to vector bosons and fermions, are presented. The analysis uses the LHC proton-proton collision data set recorded with the CMS detector in 2016 at s = 13 Te , corresponding to an integrated luminosity of 35.9 fb - 1 . The combination is based on analyses targeting the five main Higgs boson production mechanisms (gluon fusion, vector boson fusion, and associated production with a W or Z boson, or a top quark-antiquark pair) and the following decay modes: H → γ γ , Z Z , W W , τ τ , b b , and μ μ . Searches for invisible Higgs boson decays are also considered. The best-fit ratio of the signal yield to the standard model expectation is measured to be μ = 1.17 ± 0.10 , assuming a Higgs boson mass of 125.09 Ge . Additional results are given for various assumptions on the scaling behavior of the production and decay modes, including generic parametrizations based on ratios of cross sections and branching fractions or couplings. The results are compatible with the standard model predictions in all parametrizations considered. In addition, constraints are placed on various two Higgs doublet models.
  6. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):460.
    PMID: 28747851 DOI: 10.1140/epjc/s10052-016-4292-5
    Results are reported from a search for the pair production of top squarks, the supersymmetric partners of top quarks, in final states with jets and missing transverse momentum. The data sample used in this search was collected by the CMS detector and corresponds to an integrated luminosity of 18.9[Formula: see text] of proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] produced by the LHC. The search features novel background suppression and prediction methods, including a dedicated top quark pair reconstruction algorithm. The data are found to be in agreement with the predicted backgrounds. Exclusion limits are set in simplified supersymmetry models with the top squark decaying to jets and an undetected neutralino, either through a top quark or through a bottom quark and chargino. Models with the top squark decaying via a top quark are excluded for top squark masses up to 755[Formula: see text] in the case of neutralino masses below 200[Formula: see text]. For decays via a chargino, top squark masses up to 620[Formula: see text] are excluded, depending on the masses of the chargino and neutralino.
  7. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):317.
    PMID: 28775662 DOI: 10.1140/epjc/s10052-016-4149-y
    A search for narrow resonances decaying to an electron and a muon is presented. The [Formula: see text] [Formula: see text] mass spectrum is also investigated for non-resonant contributions from the production of quantum black holes (QBHs). The analysis is performed using data corresponding to an integrated luminosity of 19.7[Formula: see text] collected in proton-proton collisions at a centre-of-mass energy of 8[Formula: see text] with the CMS detector at the LHC. With no evidence for physics beyond the standard model in the invariant mass spectrum of selected [Formula: see text] pairs, upper limits are set at 95 [Formula: see text] confidence level on the product of cross section and branching fraction for signals arising in theories with charged lepton flavour violation. In the search for narrow resonances, the resonant production of a [Formula: see text] sneutrino in R-parity violating supersymmetry is considered. The [Formula: see text] sneutrino is excluded for masses below 1.28[Formula: see text] for couplings [Formula: see text], and below 2.30[Formula: see text] for [Formula: see text] and [Formula: see text]. These are the most stringent limits to date from direct searches at high-energy colliders. In addition, the resonance searches are interpreted in terms of a model with heavy partners of the [Formula: see text] boson and the photon. In a framework of TeV-scale quantum gravity based on a renormalization of Newton's constant, the search for non-resonant contributions to the [Formula: see text] [Formula: see text] mass spectrum excludes QBH production below a threshold mass [Formula: see text] of 1.99[Formula: see text]. In models that invoke extra dimensions, the bounds range from 2.36[Formula: see text] for one extra dimension to 3.63[Formula: see text] for six extra dimensions. This is the first search for QBHs decaying into the [Formula: see text] [Formula: see text] final state.
  8. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):371.
    PMID: 28280444 DOI: 10.1140/epjc/s10052-016-4206-6
    A search is presented for narrow heavy resonances X decaying into pairs of Higgs bosons ([Formula: see text]) in proton-proton collisions collected by the CMS experiment at the LHC at [Formula: see text]. The data correspond to an integrated luminosity of 19.7[Formula: see text]. The search considers [Formula: see text] resonances with masses between 1 and 3[Formula: see text], having final states of two b quark pairs. Each Higgs boson is produced with large momentum, and the hadronization products of the pair of b quarks can usually be reconstructed as single large jets. The background from multijet and [Formula: see text] events is significantly reduced by applying requirements related to the flavor of the jet, its mass, and its substructure. The signal would be identified as a peak on top of the dijet invariant mass spectrum of the remaining background events. No evidence is observed for such a signal. Upper limits obtained at 95 % confidence level for the product of the production cross section and branching fraction [Formula: see text] range from 10 to 1.5[Formula: see text] for the mass of X from 1.15 to 2.0[Formula: see text], significantly extending previous searches. For a warped extra dimension theory with a mass scale [Formula: see text] [Formula: see text], the data exclude radion scalar masses between 1.15 and 1.55[Formula: see text].
  9. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):372.
    PMID: 28280445 DOI: 10.1140/epjc/s10052-016-4205-7
    Inclusive jet production in pPb collisions at a nucleon-nucleon (NN) center-of-mass energy of [Formula: see text] is studied with the CMS detector at the LHC. A data sample corresponding to an integrated luminosity of 30.1 nb[Formula: see text] is analyzed. The jet transverse momentum spectra are studied in seven pseudorapidity intervals covering the range [Formula: see text] in the NN center-of-mass frame. The jet production yields at forward and backward pseudorapidity are compared and no significant asymmetry about [Formula: see text] is observed in the measured kinematic range. The measurements in the pPb system are compared to reference jet spectra obtained by extrapolation from previous measurements in pp collisions at [Formula: see text]. In all pseudorapidity ranges, nuclear modifications in inclusive jet production are found to be small, as predicted by next-to-leading order perturbative QCD calculations that incorporate nuclear effects in the parton distribution functions.
  10. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Bergauer T, Dragicevic M, et al.
    Eur Phys J C Part Fields, 2015 06 09;75(6):251.
    PMID: 26097407
    A search for a standard model Higgs boson produced in association with a top-quark pair and decaying to bottom quarks is presented. Events with hadronic jets and one or two oppositely charged leptons are selected from a data sample corresponding to an integrated luminosity of 19.5[Formula: see text] collected by the CMS experiment at the LHC in [Formula: see text] collisions at a centre-of-mass energy of 8[Formula: see text]. In order to separate the signal from the larger [Formula: see text]  + jets background, this analysis uses a matrix element method that assigns a probability density value to each reconstructed event under signal or background hypotheses. The ratio between the two values is used in a maximum likelihood fit to extract the signal yield. The results are presented in terms of the measured signal strength modifier, [Formula: see text], relative to the standard model prediction for a Higgs boson mass of 125[Formula: see text]. The observed (expected) exclusion limit at a 95 % confidence level is [Formula: see text] (3.3), corresponding to a best fit value [Formula: see text].
  11. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):469.
    PMID: 28303084 DOI: 10.1140/epjc/s10052-016-4293-4
    The differential cross section and charge asymmetry for inclusive [Formula: see text] production at [Formula: see text] are measured as a function of muon pseudorapidity. The data sample corresponds to an integrated luminosity of 18.8[Formula: see text] recorded with the CMS detector at the LHC. These results provide important constraints on the parton distribution functions of the proton in the range of the Bjorken scaling variable x from [Formula: see text] to [Formula: see text].
  12. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):451.
    PMID: 28303083 DOI: 10.1140/epjc/s10052-016-4286-3
    A measurement of the double-differential inclusive jet cross section as a function of jet transverse momentum [Formula: see text] and absolute jet rapidity [Formula: see text] is presented. The analysis is based on proton-proton collisions collected by the CMS experiment at the LHC at a centre-of-mass energy of 13[Formula: see text]. The data samples correspond to integrated luminosities of 71 and 44[Formula: see text] for [Formula: see text] and [Formula: see text], respectively. Jets are reconstructed with the anti-[Formula: see text] clustering algorithm for two jet sizes, R, of 0.7 and 0.4, in a phase space region covering jet [Formula: see text] up to 2[Formula: see text] and jet rapidity up to [Formula: see text] = 4.7. Predictions of perturbative quantum chromodynamics at next-to-leading order precision, complemented with electroweak and nonperturbative corrections, are used to compute the absolute scale and the shape of the inclusive jet cross section. The cross section difference in R, when going to a smaller jet size of 0.4, is best described by Monte Carlo event generators with next-to-leading order predictions matched to parton showering, hadronisation, and multiparton interactions. In the phase space accessible with the new data, this measurement provides a first indication that jet physics is as well understood at [Formula: see text] as at smaller centre-of-mass energies.
  13. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):379.
    PMID: 28280447 DOI: 10.1140/epjc/s10052-016-4105-x
    Jet multiplicity distributions in top quark pair ([Formula: see text]) events are measured in pp collisions at a centre-of-mass energy of 8 TeV with the CMS detector at the LHC using a data set corresponding to an integrated luminosity of 19.7[Formula: see text]. The measurement is performed in the dilepton decay channels ([Formula: see text], [Formula: see text], and [Formula: see text]). The absolute and normalized differential cross sections for [Formula: see text] production are measured as a function of the jet multiplicity in the event for different jet transverse momentum thresholds and the kinematic properties of the leading additional jets. The differential [Formula: see text] and [Formula: see text] cross sections are presented for the first time as a function of the kinematic properties of the leading additional [Formula: see text] jets. Furthermore, the fraction of events without additional jets above a threshold is measured as a function of the transverse momenta of the leading additional jets and the scalar sum of the transverse momenta of all additional jets. The data are compared and found to be consistent with predictions from several perturbative quantum chromodynamics event generators and a next-to-leading order calculation.
  14. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(6):325.
    PMID: 28280439 DOI: 10.1140/epjc/s10052-016-4156-z
    A measurement of the forward-backward asymmetry [Formula: see text] of oppositely charged lepton pairs ([Formula: see text] and [Formula: see text]) produced via [Formula: see text] boson exchange in pp collisions at [Formula: see text] [Formula: see text] is presented. The data sample corresponds to an integrated luminosity of 19.7[Formula: see text] collected with the CMS detector at the LHC. The measurement of [Formula: see text] is performed for dilepton masses between 40[Formula: see text] and 2[Formula: see text] and for dilepton rapidity up to 5. The [Formula: see text] measurements as a function of dilepton mass and rapidity are compared with the standard model predictions.
  15. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(10):536.
    PMID: 28316485 DOI: 10.1140/epjc/s10052-016-4346-8
    A measurement of the decorrelation of azimuthal angles between the two jets with the largest transverse momenta is presented for seven regions of leading jet transverse momentum up to 2.2[Formula: see text]. The analysis is based on the proton-proton collision data collected with the CMS experiment at a centre-of-mass energy of 8[Formula: see text] corresponding to an integrated luminosity of 19.7[Formula: see text]. The dijet azimuthal decorrelation is caused by the radiation of additional jets and probes the dynamics of multijet production. The results are compared to fixed-order predictions of perturbative quantum chromodynamics (QCD), and to simulations using Monte Carlo event generators that include parton showers, hadronization, and multiparton interactions. Event generators with only two outgoing high transverse momentum partons fail to describe the measurement, even when supplemented with next-to-leading-order QCD corrections and parton showers. Much better agreement is achieved when at least three outgoing partons are complemented through either next-to-leading-order predictions or parton showers. This observation emphasizes the need to improve predictions for multijet production.
  16. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016 01 11;76:13.
    PMID: 26855607
    A measurement is presented of differential cross sections for Higgs boson (H) production in pp collisions at [Formula: see text][Formula: see text]. The analysis exploits the [Formula: see text] decay in data corresponding to an integrated luminosity of 19.7[Formula: see text] collected by the CMS experiment at the LHC. The cross section is measured as a function of the kinematic properties of the diphoton system and of the associated jets. Results corrected for detector effects are compared with predictions at next-to-leading order and next-to-next-to-leading order in perturbative quantum chromodynamics, as well as with predictions beyond the standard model. For isolated photons with pseudorapidities [Formula: see text], and with the photon of largest and next-to-largest transverse momentum ([Formula: see text]) divided by the diphoton mass [Formula: see text] satisfying the respective conditions of [Formula: see text] and [Formula: see text], the total fiducial cross section is [Formula: see text][Formula: see text].
  17. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016 03 08;76:128.
    PMID: 27471431
    The cross section for [Formula: see text] production in the all-jets final state is measured in pp collisions at a centre-of-mass energy of 8 [Formula: see text] at the LHC with the CMS detector, in data corresponding to an integrated luminosity of 18.4 [Formula: see text]. The inclusive cross section is found to be [Formula: see text] [Formula: see text]. The normalized differential cross sections are measured as a function of the top quark transverse momenta, [Formula: see text], and compared to predictions from quantum chromodynamics. The results are reported at detector, parton, and particle levels. In all cases, the measured top quark [Formula: see text] spectra are significantly softer than theoretical predictions.
  18. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(8):439.
    PMID: 28303081 DOI: 10.1140/epjc/s10052-016-4261-z
    A search for new physics is performed using events with two isolated same-sign leptons, two or more jets, and missing transverse momentum. The results are based on a sample of proton-proton collisions at a center-of-mass energy of 13[Formula: see text] recorded with the CMS detector at the LHC, corresponding to an integrated luminosity of 2.3 [Formula: see text]. Multiple search regions are defined by classifying events in terms of missing transverse momentum, the scalar sum of jet transverse momenta, the transverse mass associated with a [Formula: see text] boson candidate, the number of jets, the number of [Formula: see text] quark jets, and the transverse momenta of the leptons in the event. The analysis is sensitive to a wide variety of possible signals beyond the standard model. No excess above the standard model background expectation is observed. Constraints are set on various supersymmetric models, with gluinos and bottom squarks excluded for masses up to 1300 and 680[Formula: see text], respectively, at the 95 % confidence level. Upper limits on the cross sections for the production of two top quark-antiquark pairs (119[Formula: see text]) and two same-sign top quarks (1.7[Formula: see text]) are also obtained. Selection efficiencies and model independent limits are provided to allow further interpretations of the results.
  19. Khachatryan V, Sirunyan AM, Tumasyan A, Adam W, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2016;76(7):401.
    PMID: 28286414 DOI: 10.1140/epjc/s10052-016-4219-1
    A measurement of the W boson pair production cross section in proton-proton collisions at [Formula: see text] TeV is presented. The data collected with the CMS detector at the LHC correspond to an integrated luminosity of 19.4[Formula: see text]. The [Formula: see text] candidates are selected from events with two charged leptons, electrons or muons, and large missing transverse energy. The measured [Formula: see text] cross section is [Formula: see text], consistent with the standard model prediction. The [Formula: see text] cross sections are also measured in two different fiducial phase space regions. The normalized differential cross section is measured as a function of kinematic variables of the final-state charged leptons and compared with several perturbative QCD predictions. Limits on anomalous gauge couplings associated with dimension-six operators are also given in the framework of an effective field theory. The corresponding 95 % confidence level intervals are [Formula: see text], [Formula: see text], [Formula: see text], in the HISZ basis.
  20. Sirunyan AM, Tumasyan A, Adam W, Ambrogi F, Asilar E, Bergauer T, et al.
    Eur Phys J C Part Fields, 2020;80(12):1164.
    PMID: 33362286 DOI: 10.1140/epjc/s10052-020-08562-y
    Measurements are presented of the single-diffractive dijet cross section and the diffractive cross section as a function of the proton fractional momentum loss ξ and the four-momentum transfer squared t. Both processes p p → p X and p p → X p , i.e. with the proton scattering to either side of the interaction point, are measured, where X includes at least two jets; the results of the two processes are averaged. The analyses are based on data collected simultaneously with the CMS and TOTEM detectors at the LHC in proton-proton collisions at s = 8 Te during a dedicated run with β ∗ = 90 m at low instantaneous luminosity and correspond to an integrated luminosity of 37.5 nb - 1 . The single-diffractive dijet cross section σ jj p X , in the kinematic region ξ < 0.1 , 0.03 < | t | < 1 Ge 2 , with at least two jets with transverse momentum p T > 40 Ge , and pseudorapidity | η | < 4.4 , is 21.7 ± 0.9 (stat) - 3.3 + 3.0 (syst) ± 0.9 (lumi) nb . The ratio of the single-diffractive to inclusive dijet yields, normalised per unit of ξ , is presented as a function of x, the longitudinal momentum fraction of the proton carried by the struck parton. The ratio in the kinematic region defined above, for x values in the range - 2.9 ≤ log 10 x ≤ - 1.6 , is R = ( σ jj p X / Δ ξ ) / σ jj = 0.025 ± 0.001 (stat) ± 0.003 (syst) , where σ jj p X and σ jj are the single-diffractive and inclusive dijet cross sections, respectively. The results are compared with predictions from models of diffractive and nondiffractive interactions. Monte Carlo predictions based on the HERA diffractive parton distribution functions agree well with the data when corrected for the effect of soft rescattering between the spectator partons.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links