Displaying publications 1 - 20 of 52 in total

Abstract:
Sort:
  1. Noor Hashim, N.H., Maulidiani, M., Mediani, A., Abas, F.
    MyJurnal
    Persicaria hydropiper, locally known as kesum, is an herb belongs to the family Polygonaceae. It has been used widely in many countries as food flavoring and possesses a wide range of medicinal values. The total phenolic content and xanthine oxidase inhibitory activity of the methanolic extract of P. hydropiper and fractions were determined spectrophotometrically. The butanol fraction was found to contain high phenolic content and was able to inhibit xanthine oxidase activity. Online profiling using liquid chromatography coupled with electrospray ionisation spectrometry (LC-ESIMS/MS) has revealed ten constituents in this active fraction. The major components were flavonoid derivatives and flavonoid sulphates, which were confirmed by comparison with an authentic standards as well as their MS/MS fragmentation patterns and UV spectra.
  2. Lee, S.Y., Mediani, A., Nur Ashikin, A.H., Abas, F., Azliana, A.B.S.
    MyJurnal
    The study was aimed to determine the antioxidant and α-glucosidase inhibition activities of
    the stem and leaf of five different traditional medicinal plants. The studied plants exhibited
    varied antioxidant and α-glucosidase inhibition activities. The antioxidant activities of the
    plants were determined through their free radical scavenging capabilities using DPPH assay.
    The most potent antioxidant activity was demonstrated by Neptunia oleracea with an IC50 of
    35.45 and 29.72 μg/mL for leaf and stem, respectively. For α-glucosidase inhibition activity,
    Neptunia oleracea exhibited potential α-glucosidase inhibition activity with IC50 value of
    19.09 and 19.74 μg/mL for leaf and stem, respectively. The highest total phenolic content
    (TPC) was also marked in Neptunia oleracea leaf and stem with value of 40.88 and 21.21 mg
    GAE/g dry weight, respectively. The results also showed that Strobilanthes crispus collected
    from two different locations possessed different levels of phenolic content, antioxidant and
    α-glucosidase inhibition activities. The study revealed that phenolic compounds could be the
    main contributors to the antioxidant and α-glucosidase inhibition activities with R values of 78.9
    and 67.4%, respectively. In addition, antioxidant and α-glucosidase were positively correlated
    (R = 81.9%). Neptunia oleracea could be suggested as a potential natural source of antioxidant
    and antidiabetic compounds that can be used for the prevention or treatment of diabetes.
  3. Siti Zulaikha, A.G., Mediani, A., Khoo, L.W., Lee, S.Y., Leong, S.W., Abas, F.
    MyJurnal
    The main purpose of this study was to evaluate the antioxidant and α-glucosidase inhibitory
    activities of Phyllanthus acidus. The P. acidus fruits were dried using three different methods,
    namely oven (OD), air (AD) and freeze (FD) dryings and extracted with ethanol at different
    ratios (50 and 100%). The proximate analysis and total phenolic content (TPC) as well as
    free radical scavenging and α-glucosidase inhibitory activities were determined. The proximate
    analysis of P. acidus fruit indicated that all the dried samples contained potential nutrient
    contents. The highest TPC value, α-glucosidase inhibitory and antioxidant activities were
    observed for 50% ethanolic extract from OD method with TPC value of 28.39 mg GAE/g dried
    extract, IC50 value of 12.394 μg/mL and 64.17% inhibition, respectively. The study revealed
    that phenolic compounds could be the main contributors to the antioxidant and α-glucosidase
    inhibitory activities based on the Pearson correlation coefficients with R values of 95.0 and
    73.8%, respectively. The study could provide scientific evidence for some folk uses in the
    treatment of diseases related to the production of reactive oxygen species and oxidative stress.
  4. Abdul Kadir, H., Abas, F., Mediani, A., Ismail, I.S., Lajis, N.H.
    MyJurnal
    The aim of the present work was to compare and choose the best method to extract incurred
    pesticide residues from green tea. Accelerated solvent extraction (ASE) with in-cell cleanup
    and the quick, easy, cheap, effective rugged and safe (QuEChERS) methods were tested on
    green tea samples with incurred beta-endosulfan pesticide. The extracts were analyzed by
    GC-MS/MS and the recovery and the precision of both methods were compared. The average
    recovery using ASE with the in-cell cleanup method was in the range of 89 to 92% which is
    better than that obtained using a QuEChERS method. Both the ASE with in-cell cleanup and
    the QuEChERS methods provided good precision with RSDs in the range of 12 to 15% and
    17 to 18%, respectively. This finding indicates that the ASE method with the in-cell cleanup is
    more suitable for the accurate determination of pesticides incurred in tea.
  5. Mediani A, Baharum SN
    Methods Mol Biol, 2024;2745:77-90.
    PMID: 38060180 DOI: 10.1007/978-1-0716-3577-3_5
    Metabolomics can provide diagnostic, prognostic, and therapeutic biomarker profiles of individual patients because a large number of metabolites can be simultaneously measured in biological samples in an unbiased manner. Minor stimuli can result in substantial alterations, making it a valuable target for analysis. Due to the complexity and sensitivity of the metabolome, studies must be devised to maintain consistency, minimize subject-to-subject variation, and maximize information recovery. This effort has been aided by technological advances in experimental design, rodent models, and instrumentation. Proton Nuclear Magnetic Resonance (1H-NMR) spectroscopy of biofluids, such as plasma, urine, and faeces provide the opportunity to identify biomarker change patterns that reflect the physiological or pathological status of an individual patient. Metabolomics has the ultimate potential to be useful in a clinical context, where it could be used to predict treatment response and survival and for early disease diagnosis. During drug treatment, an individual's metabolic status could be monitored and used to predict deleterious effects. Therefore, metabolomics has the potential to improve disease diagnosis, treatment, and follow-up care. In this chapter, we demonstrate how a metabolomics study can be used to diagnose a disease by classifying patients as either healthy or pathological, while accounting for individual variation.
  6. Serag A, Zayed A, Mediani A, Farag MA
    Sci Rep, 2023 Feb 13;13(1):2533.
    PMID: 36781893 DOI: 10.1038/s41598-023-28551-x
    Tongkat ali commonly known as Malaysian Ginseng (Eurycoma longifolia) is a herbal root worldwide available in nutraceuticals, either as a crude powder or capsules blended with other herbal products. Herein, a multiplexed metabolomics approach based on nuclear magnetic resonance (NMR) and solid-phase microextraction combined with gas chromatography-mass spectrometry (SPME-GC-MS) was applied for authentic tongkat ali extract vs some commercial products quality control analysis. NMR metabolite fingerprinting identified 15 major metabolites mostly ascribed to sugars, organic and fatty acids in addition to quassinoids and cinnamates. Following that, multivariate analysis as the non-supervised principal component analysis (PCA) and supervised orthogonal partial least squares-discriminant analysis (OPLS-DA) were applied revealing that differences were related to fatty acids and 13,21-dihydroeurycomanone being more enriched in authentic root. SPME-GC-MS aroma profiling led to the identification of 59 volatiles belonging mainly to alcohols, aldehydes/furans and sesquiterpene hydrocarbons. Results revealed that aroma of commercial products showed relatively different profiles being rich in vanillin, maltol, and methyl octanoate. Whereas E-cinnamaldehyde, endo-borneol, terpinen-4-ol, and benzaldehyde were more associated to the authentic product. The present study shed the light for the potential of metabolomics in authentication and standardization of tongkat ali and identification of its true flavor composition.
  7. Benchoula K, Mediani A, Hwa WE
    J Cell Commun Signal, 2023 Mar;17(1):25-34.
    PMID: 35551607 DOI: 10.1007/s12079-022-00680-4
    The increase in blood glucose causes a myriad of pathways and molecular components to malfunction, leading to diabetes. Diabetes affects each organ differently by activating distinct pathways. It has an impact on the liver, pancreas, kidney (nephropathy), eyes (retinopathy), and nervous system (neuropathy). Understanding the effects of diabetes on each organ is the first step in developing a sustained treatment for the disease. Among the many cellular molecules impacted by diabetes is Ca2+/calmodulin-dependent protein kinase II (CaMKII), a complex Ca2+/calmodulin-activated serine/threonine-protein kinase. When intracellular [Ca2+] rises, it binds to calmodulin (CaM) to produce Ca2+/CaM, which activates CaMKIIs. This factor is involved in the pancreas, liver, heart, muscles, and various organs. Thus, Understanding CaMKII action in each organ is critical for gaining a complete picture of diabetic complications. Therefore, this review covers CaMKII's functions in many organs and how it affects and has been affected by diabetes.
  8. Mediani A, Abas F, Tan CP, Khatib A
    Antioxidants (Basel), 2014 May 07;3(2):358-70.
    PMID: 26784876 DOI: 10.3390/antiox3020358
    The present study was conducted to determine the effect of air (AD), oven (OD) and freeze drying (FD) on the free radical scavenging activity and total phenolic content (TPC) of Cosmos caudatus and the effect of storage time by the comparison with a fresh sample (FS). Among the three drying methods that were used, AD resulted in the highest free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH) (IC50 = 0.0223 mg/mL) and total phenolic content (27.4 g GAE/100 g), whereas OD produced the lowest scavenging activity and TPC value. After three months of storage, the dried samples showed a high and consistent free radical scavenging activity when compared to stored fresh material. The drying methods could preserve the quality of C. caudatus during storage and the stability of its bioactive components can be maintained.
  9. Mediani A, Abas F, Khatib A, Tan CP
    Molecules, 2013 Aug 29;18(9):10452-64.
    PMID: 23994970 DOI: 10.3390/molecules180910452
    The aim of the study was to analyze the influence of oven thermal processing of Cosmos caudatus on the total polyphenolic content (TPC) and antioxidant capacity (DPPH) of two different solvent extracts (80% methanol, and 80% ethanol). Sonication was used to extract bioactive compounds from this herb. The results showed that the optimised conditions for the oven drying method for 80% methanol and 80% ethanol were 44.5 °C for 4 h with an IC₅₀ of 0.045 mg/mL and 43.12 °C for 4.05 h with an IC₅₀ of 0.055 mg/mL, respectively. The predicted values for TPC under the optimised conditions for 80% methanol and 80% ethanol were 16.5 and 15.8 mg GAE/100 g DW, respectively. The results obtained from this study demonstrate that Cosmos caudatus can be used as a potential source of antioxidants for food and medicinal applications.
  10. Mediani A, Abas F, Ping TC, Khatib A, Lajis NH
    Plant Foods Hum Nutr, 2012 Dec;67(4):344-50.
    PMID: 23054393 DOI: 10.1007/s11130-012-0317-x
    The impact of tropical seasons (dry and wet) and growth stages (8, 10 and 12 weeks) of Cosmos caudatus on the antioxidant activity (AA), total phenolic content (TPC) as well as the level of bioactive compounds were evaluated using high performance liquid chromatography (HPLC). The plant morphology (plant height) also showed variation between the two seasons. Samples planted from June to August (during the dry season) exhibited a remarkably higher bioactivity and height than those planted from October to December (during the wet season). The samples that were harvested at eight weeks of age during the dry season showed the highest bioactivity with values of 26.04 g GAE/100 g and 22.1 μg/ml for TPC and IC₅₀, respectively. Identification of phytochemical constituents in the C. caudatus extract was carried out by liquid chromatography coupled with diode array detection and electrospray tandem mass (LC-DAD-ESIMS/MS) technique and the confirmation of constituents was achieved by comparison with literature data and/or co-chromatography with authentic standards. Six compounds were indentified including quercetin 3-O-rhamnoside, quercetin 3-O-glucoside, rutin, quercetin 3-O-arabinofuranoside, quercetin 3-O-galactoside and chlorogenic acid. Their concentrations showed significant variance among the 8, 10 and 12-week-old herbs during both seasons.
  11. Lee SY, Mediani A, Ismail IS, Maulidiani, Abas F
    BMC Complement Altern Med, 2019 Jan 07;19(1):7.
    PMID: 30616569 DOI: 10.1186/s12906-018-2413-4
    BACKGROUND: Neptunia oleracea is a plant cultivated as vegetable in Southeast Asia. Previous works have revealed the potential of this plant as a source of natural antioxidants and α-glucosidase inhibitors. Continuing our interest on this plant, the present work is focused in identification of the bioactive compounds from different polarity fractions of N. oleracea, namely hexane (HF), chloroform (CF), ethyl acetate (EF) and methanol (MF).

    METHODS: The N. oleracea fractions were obtained using solid phase extraction (SPE). A metabolomics approach that coupled the use of proton nuclear magnetic resonance (1H NMR) with multivariate data analysis (MVDA) was applied to distinguish the metabolite variations among the N. oleracea fractions, as well as to assess the correlation between metabolite variation and the studied bioactivities (DPPH free radical scavenging and α-glucosidase inhibitory activities). The bioactive fractions were then subjected to ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis to profile and identify the potential bioactive constituents.

    RESULTS: The principal component analysis (PCA) discriminated EF and MF from the other fractions with the higher distributions of phenolics. Partial least squares (PLS) analysis revealed a strong correlation between the phenolics and the studied bioactivities in the EF and the MF. The UHPLC-MS/MS profiling of EF and MF had tentatively identified the phenolics present. Together with some non-phenolic metabolites, a total of 37 metabolites were tentatively assigned.

    CONCLUSIONS: The findings of this work supported that N. oleracea is a rich source of phenolics that can be potential antioxidants and α-glucosidase inhibitors for the management of diabetes. To our knowledge, this study is the first report on the metabolite-bioactivity correlation and UHPLC-MS/MS analysis of N. oleracea fractions.

  12. Hellal K, Mediani A, Ismail IS, Tan CP, Abas F
    Food Res Int, 2021 02;140:110046.
    PMID: 33648271 DOI: 10.1016/j.foodres.2020.110046
    Lupinus albus or white lupine has recently received increase attention for its medicinal values. Several studies have described the hypoglycemic effect of the white lupine, which is known as a food plant with potential value for treatment of diabetes. This study provides useful information for the identification and quantification of compounds in L. albus fractions by proton nuclear magnetic resonance (1H NMR) spectroscopy. In total, 35 metabolites were identified from L. albus fractions.Principal component analysis (PCA) was used as a multivariate projection method for visualizing the different composition of four different fractions. The bioactivities of fractions with different polarity obtained from the extract of L. albus seeds are reported. Among the fractions studied, the chloroform fraction (CF) exhibits a high free radical scavenging (DPPH) and α-glucosidase inhibitory activities with IC50 values of 24.08 and 20.08 μg/mL, respectively. A partial least-squares analyses (PLS) model had been successfully performed to correlate the potential active metabolites with the corresponding biological activities. Metabolites containing proline, caprate, asparagine, lupinoisolone C, hydroxyiso lupalbigenin and some unknown compounds show high correlation with the bioactivities studied. Moreover, the structural identification in the active fraction was supported by ultrahigh-performance-liquid chromatography-electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) analysis. A total of 21 metabolites were tentatively identified from MS/MS data by comparison with previously reported data. Most of these compounds are isoflavonoids without known biological activity. This information may be useful for developing functional food from L. albus with potential application in the management of diabetes.
  13. Abu Bakar Sajak A, Mediani A, Maulidiani, Ismail A, Abas F
    Appl Biochem Biotechnol, 2017 Jun;182(2):653-668.
    PMID: 27995574 DOI: 10.1007/s12010-016-2352-9
    Diabetes mellitus (DM) is considered as a complex metabolic disease because it affects the metabolism of glucose and other metabolites. Although many diabetes studies have been conducted in animal models throughout the years, the pathogenesis of this disease, especially between lean diabetes (ND + STZ) and obese diabetes (OB + STZ), is still not fully understood. In this study, the urine from ND + STZ, OB + STZ, lean/control (ND), and OB + STZ rats were collected and compared by using (1)H NMR metabolomics. The results from multivariate data analysis (MVDA) showed that the diabetic groups (ND + STZ and OB + STZ) have similarities and dissimilarities for a certain level of metabolites. Differences between ND + STZ and OB + STZ were particularly noticeable in the synthesis of ketone bodies, branched-chain amino acid (BCAA), and sensitivity towards the oral T2DM diabetes drug metformin. This finding suggests that the ND + STZ group was more similar to the T1DM model and OB + STZ to the T2DM model. In addition, we also managed to identify several pathways and metabolism aspects shared by obese (OB) and OB + STZ. The results from this study are useful in developing drug target-based research as they can increase understanding regarding the cause and effect of DM.
  14. Chandradevan M, Simoh S, Mediani A, Ismail IS, Abas F
    Plant Foods Hum Nutr, 2020 Jun;75(2):243-251.
    PMID: 32152783 DOI: 10.1007/s11130-020-00805-3
    Gynura procumbens and Cleome gynandra are two herbs commonly used in Malaysia to treat various ailments and are also consumed as salads (ulam) and vegetables. The present study aims to evaluate the relationship between the chemical compositions of both herbs and their antioxidant and anti-inflammatory properties using nuclear magnetic resonance (NMR) metabolomics approach, which is being reported for the first time. Different ethanolic extracts of both herbs were tested for DPPH scavenging and inhibition of nitric oxide (NO) via RAW 264.7 macrophage cell induction. Principal component analysis (PCA) revealed a good separation between the extracts and the corresponding metabolites identified via 1H NMR spectroscopy. The 100% ethanolic extract from both herbs and 20% ethanolic extract of C. gynandra were found to have the best antioxidant and anti-inflammatory activities. Kaempferol, quercetin, caffeoylquinic, dicaffeoylquinic acids, gallic acid, mallic acid, citric acid, phenylalanine, and choline are among the metabolites that contributed to bioactivities. The partial least square (PLS) model for both herbs have an overall acceptable goodness of fit and predictive power, which further strengthens the validity of this study. The present study provides a preliminary reference for the selection of optimum extract and will shed some light on the potential use of G. procumbens and C. gynandra as a phytomedicinal preparation.
  15. Abdel Rahman RT, Kamal N, Mediani A, Farag MA
    ACS Omega, 2022 Dec 20;7(50):45797-45809.
    PMID: 36570239 DOI: 10.1021/acsomega.2c04708
    Herbal cigarettes, known as tobacco-free or nicotine-free cigarettes, are those recognized as being-tobacco free, being composed of a mixture of various herbs claimed to lessen the smoking habit hazards. However, controversial data regarding its properties occur in the literature with no comprehensive overview or analysis of its effects. Like herbal smokeless tobacco, they are often used to substitute for tobacco products (primarily cigarettes) regarded as a "nonsmoking" aid. This review capitalizes on herbal cigarettes with regard to their quality characteristics, sensory attributes, chemical composition, and health properties to rationalize their choice as a nonsmoking aid. Furthermore, the impacts of heat and/or pyrolysis that occur during smoking on its chemical composition are presented for the first time. Some herbal smokes may produce notable metabolic problems that increase the risk of several chronic metabolic diseases. In general, burning substances from plants can have a variety of negative effects on the body attributed to toxic chemicals such as carbon monoxide, polyaromatics, nicotine, and N-nitrosamines. This review compiles and discusses the phytochemical compositions detected in various herbal cigarettes alongside sensory and quality attributes and health effects.
  16. Ilowefah M, Bakar J, Ghazali HM, Mediani A, Muhammad K
    J Food Sci Technol, 2015 Sep;52(9):5534-45.
    PMID: 26344967 DOI: 10.1007/s13197-014-1661-7
    In the current study, effects of fermentation on physicochemical and functional properties of brown rice flour (BRF) were investigated. Fermentation conditions were optimized using response surface methodology to achieve moderate acidity (pH 5-6), specifically pH 5.5 of brown rice batter with time, temperature and yeast concentration as the independent variables. The results indicated that brown rice batter was well fermented to maintain pH 5.5 at optimum conditions of 32 °C for 6.26 h using 1 % yeast concentration. Fermentation at moderate acidity significantly increased the levels of protein, total ash, insoluble fiber, soluble fibre, minerals, phenolics, antioxidants, resistant starch, riboflavin, pyridoxine, nicotinic acid, γ-tocotrienol, and δ-tocotrienol. However, it reduced the contents of γ-oryzanol, γ-tocopherol, α-tocopherol, phytic acid, amylose and total starch. Foaming capacity, foaming stability, oil holding capacity, gelatinization temperatures, enthalpy and whiteness of BRF were increased after fermentation. In contrast, its swelling power, water solubility index, hot paste viscosity, breakdown, and setback significantly decreased. Microstructure of BRF was also influenced, where its starch granules released from its enclosed structure after fermentation. This investigation shows evidence that yeast fermentation modified the functionality of BRF and can be used as a functional food ingredient.
  17. Mediani A, Abas F, Maulidiani M, Khatib A, Tan CP, Ismail IS, et al.
    J Pharm Biomed Anal, 2016 Sep 05;128:302-312.
    PMID: 27318080 DOI: 10.1016/j.jpba.2016.06.003
    Herbal medicine has been proven to be an effective therapy offering a variety of benefits, such as moderate reduction in hypoglycemia, in the treatment and prevention of obesity and diabetes. Phyllanthus niruri has been used as a treatment for diabetes mellitus. Herein, the induction of type 2 diabetes in Sprague-Dawley rats was achieved by a low dose of streptozotocin (STZ) (25mg/kgbw). Here, we evaluated the in vivo antidiabetic properties of two concentrations (250 and 500mg/kg bw) of P. niruri via metabolomics approach. The administration of 500mg/kgbw of P. niruri extract caused the metabolic disorders of obese diabetic rats to be improved towards the normal state. The extract also clearly decreased the serum glucose level and improved the lipid profile in obese diabetic rats. The results of this study may contribute towards better understanding the molecular mechanism of this medicinal plant in managing diabetes mellitus.
  18. Javadi N, Abas F, Abd Hamid A, Simoh S, Shaari K, Ismail IS, et al.
    J Food Sci, 2014 Jun;79(6):C1130-6.
    PMID: 24888400 DOI: 10.1111/1750-3841.12491
    Cosmos caudatus, which is known as "Ulam Raja," is an herbal plant used in Malaysia to enhance vitality. This study focused on the evaluation of the α-glucosidase inhibitory activity of different ethanolic extracts of C. caudatus. Six series of samples extracted with water, 20%, 40%, 60%, 80%, and 100% ethanol (EtOH) were employed. Gas chromatography-mass spectrometry (GC-MS) and orthogonal partial least-squares (OPLS) analysis was used to correlate bioactivity of different extracts to different metabolite profiles of C. caudatus. The obtained OPLS scores indicated a distinct and remarkable separation into 6 clusters, which were indicative of the 6 different ethanol concentrations. GC-MS can be integrated with multivariate data analysis to identify compounds that inhibit α-glucosidase activity. In addition, catechin, α-linolenic acid, α-D-glucopyranoside, and vitamin E compounds were identified and indicate the potential α-glucosidase inhibitory activity of this herb.
  19. Mazlan NA, Mediani A, Abas F, Ahmad S, Shaari K, Khamis S, et al.
    ScientificWorldJournal, 2013;2013:312741.
    PMID: 24319356 DOI: 10.1155/2013/312741
    The methanol extracts of three Macaranga species (M. denticulata, M. pruinosa, and M. gigantea) were screened to evaluate their total phenolic contents and activities as cholinesterase inhibitors, nitric oxide (NO) production inhibitors, tyrosinase inhibitors, and antioxidants. The bark of M. denticulata showed the highest total phenolic content (2682 mg gallic acid equivalent (GAE)/100 g) and free radical scavenging activity (IC50 = 0.063 mg/mL). All of the samples inhibited linoleic acid peroxidation by greater than 80%, with the leaves of M. gigantea exhibiting the highest inhibition of 92.21%. Most of the samples exhibited significant antioxidant potential. The bark of M. denticulata and the leaves of both M. pruinosa and M. gigantea exhibited greater than 50% tyrosinase inhibition, with the bark of M. denticulata having the highest percentage of inhibition (68.7%). The bark and leaves of M. denticulata exhibited greater than 50% inhibition (73.82% and 54.50%, resp.) of the acetylcholinesterase enzyme (AChE), while none of the samples showed any significant inhibition of butyrylcholinesterase (BChE). Only the bark of M. denticulata and M. gigantea displayed greater than 50% inhibition of nitric oxide production in cells (81.79% and 56.51%, resp.). These bioactivities indicate that some Macaranga spp. have therapeutic potential in medicinal research.
  20. Mediani A, Abas F, Khatib A, Tan CP, Ismail IS, Shaari K, et al.
    Plant Foods Hum Nutr, 2015 Jun;70(2):184-92.
    PMID: 25800644 DOI: 10.1007/s11130-015-0478-5
    The study investigated the changes in the metabolite, antioxidant and α-glucosidase inhibitory activities of Phyllanthus niruri after three drying treatments: air, freeze and oven dryings. Water extracts and extracts obtained using different solvent ratios of ethanol and methanol (50, 70, 80 and 100%) were compared. The relationships among the antioxidant, α-glucosidase inhibitory activity and metabolite levels of the extracts were evaluated using partial least-square analysis (PLS). The solvent selectivity was assessed based on the phytochemical constituents present in the extract and their concentrations quantitatively analyzed using high performance liquid chromatography. The freeze-dried P. niruri samples that were extracted with the mixture of ethanol or methanol with low ratio of water showed higher biological activity values compared with the other extracts. The PLS results for the ethanolic with different ratio and water extracts demonstrated that phenolic acids (chlorogenic acid and ellagic acid) and flavonoids were highly linked to strong α-glucosidase inhibitory and antioxidant activities.
Filters
Contact Us

Please provide feedback to Administrator (afdal@afpm.org.my)

External Links